Lecture 18
Searching

Instructor: George Wolberg
Department of Computer Science
City College of New York
Topics

- Applications
- Most Common Methods
 - Serial Search
 - Binary Search
 - Search by Hashing (next lecture)
- Run-Time Analysis
 - Average-time analysis
 - Time analysis of recursive algorithms
Applications

- Searching a list of values is a common computational task
- Examples
 - database: student record, bank account record, credit record...
 - Internet – information retrieval: Yahoo, Google
 - Biometrics – face/ fingerprint/ iris IDs
Most Common Methods

- Serial Search
 - simplest, $O(n)$
- Binary Search
 - average-case $O(\log n)$
- Search by Hashing (the next lecture)
 - better average-case performance
Serial Search

A serial search algorithm steps through (part of) an array one item a time, looking for a “desired item”

Pseudocode for Serial Search

```plaintext
// search for a desired item in an array a of size n

set i to 0 and set found to false;

while (i<n && ! found)
{
  if (a[i] is the desired item)
    found = true;
  else
    ++i;
}

if (found)
  return i; // indicating the location of the desired item
else
  return -1; // indicating “not found”
```
Serial Search - Analysis

- Size of array: n
- Best-Case: \(O(1)\)
 - item in [0]
- Worst-Case: \(O(n)\)
 - item in [n-1] or not found
- Average-Case
 - usually requires fewer than \(n\) array accesses
 - But, what are the average accesses?
A more accurate computation:

- Assume the target to be searched is in the array
- and the probability of the item being in any array location is the same

The average accesses

\[
\frac{1+2+3+\ldots+n}{n} = \frac{n(n+1)/2}{n} = \frac{(n+1)}{2}
\]
When does the best-case time make more sense?

- For an array of n elements, the best-case time for serial search is just one array access.
- The best-case time is more useful if the probability of the target being in the [0] location is the highest.
 - or loosely if the target is most likely in the front part of the array.
Binary Search

- If \(n \) is huge, and the item to be searched can be in any locations, serial search is slow on average.
- But if the items in an array are sorted, we can somehow know a target’s location earlier:
 - Array of integers from smallest to largest
 - Array of strings sorted alphabetically (e.g. dictionary)
 - Array of students records sorted by ID numbers
Binary Search in an Integer Array

- Items are sorted
 - target = 16
 - n = 8
- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half
Binary Search in an Integer Array

- Items are sorted
 - target = 16
 - n = 8
- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half

if target is in the array

George Wolberg, 2016
Binary Search in an Integer Array

- Items are sorted
 - target = 16
 - n = 8
- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half

if target is in the array

2 3 6 7 10 12 16 18
[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

DONE

@ George Wolberg, 2016
Binary Search in an Integer Array

- Items are sorted
 - target = 16
 - n = 8
- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half

if target is in the array

Recursive calls: what are the parameters?
Binary Search in an Integer Array

- Items are sorted
 - target = 16
 - n = 8

- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half

If target is in the array

Recursive calls with parameters:
array, start, size, target
found, location // reference

George Wolberg, 2016
Binary Search in an Integer Array

if target is not in the array

- Items are sorted
 - target = 17
 - n = 8
- Go to the middle location \(i = \frac{n}{2} \)
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half

@ George Wolberg, 2016
Binary Search in an Integer Array

if target is not in the array

- Items are sorted
 - target = 17
 - n = 8

- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half
Binary Search in an Integer Array

if target is not in the array

- Items are sorted
 - target = 17
 - n = 8
- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target <a[i])
 - go to the first half
- else if (target >a[i])
 - go to the second half

@ George Wolberg, 2016
Binary Search in an Integer Array

- Items are sorted
 - target = 17
 - n = 8
- Go to the middle location \(i = \frac{n}{2} \)
- if (a[i] is target)
 - done!
- else if (target < a[i])
 - go to the first half
- else if (target > a[i])
 - go to the second half

if target is not in the array

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3]

[0] [1] [2]

[0] [0]

the size of the first half is 0!
Binary Search in an Integer Array

if target is not in the array

- target = 17

- If (n == 0)
 - not found!
- Go to the middle location i = n/2
- if (a[i] is target)
 - done!
- else if (target <a[i])
 - go to the first half
- else if (target >a[i])
 - go to the second half

the size of the first half is 0!
void search (const int a[], size_t first, size_t size, int target, bool& found, size_t& location)
{
 size_t middle;

 if (size == 0) // stopping case if not found
 found = false;
 else
 {
 middle = first + size/2;
 if (target == a[middle]) // stopping case if found
 {
 location = middle;
 found = true;
 }
 else if (target < a[middle]) // search the first half
 search(a, first, size/2, target, found, location);
 else //search the second half
 search(a, middle+1, (size-1)/2, target, found, location);
 }
}
Binary Search - Analysis

- Analysis of recursive algorithms
- Analyze the worst-case
- Assuming the target is in the array
- and we always go to the second half

```cpp
void search (const int a[], size_t first, size_t size, int target, bool& found, size_t& location)
{
    size_t middle;

    if (size == 0) // stopping case if not found
    found = false;

    else
    {
        middle = first + size/2;
        if (target == a[middle]) // stopping case if found
        {
            location = middle;
            found = true;
        }
        else if (target < a[middle]) // search the first half
            search(a, first, size/2, target, found, location);
        else //search the second half
            search(a, middle+1, (size-1)/2, target, found, location);
    }
}
```

@ George Wolberg, 2016
Binary Search - Analysis

- Analysis of recursive algorithms
- Define $T(n)$ is the total operations when size=n

$$T(n) = 6 + T(n/2)$$

$T(1) = 6$

```c
void search(const int a[], size_t first, size_t size, int target, bool& found, size_t& location)
{
    size_t middle;

    if (size == 0) // 1 operation
        found = false;
    else
    {
        middle = first + size/2; // 1 operation
        if (target == a[middle]) // 2 operations
        {
            location = middle; // 1 operation
            found = true; // 1 operation
        }
        else if (target < a[middle]) // 2 operations
            search(a, first, size/2, target, found, location);
        else // T(n/2) operations for the recursive call
            search(a, middle+1, (size-1)/2, target, found, location);
    } // ignore the operations in parameter passing
}```
Binary Search - Analysis

- How many recursive calls for the longest chain?

\[
T(n) = 6 + T(n/2^1) \\
= 6 + 6 + T(n/2^2) \\
= ... \\
= 6 + 6 + ... + 6 + T(n/2^m) \\
= 6 + 6 + ... + 6 + 6 \\
= 6(m + 1) \\
= 6 \log_2 n + 6
\]

original call
1st recursion, 1 six
2nd recursion, 2 six

\[m\text{th recursion, } m \text{ six}\]
and \(n/2^m = 1\) – target found

depth of the recursive call
\[m = \log_2 n\]
Worst-Case Time for Binary Search

- For an array of n elements, the worst-case time for binary search is logarithmic
  - We have given a rigorous proof
  - The binary search algorithm is very efficient

- What is the average running time?
  - The average running time for actually finding a number is $O(\log n)$
  - Can we do a rigorous analysis???
Summary

- **Most Common Search Methods**
  - Serial Search – O(n)
  - Binary Search – O (log n )
  - Search by Hashing (*) – better average-case performance (next lecture)

- **Run-Time Analysis**
  - Average-time analysis
  - Time analysis of recursive algorithms
Homework

- Review Chapters 10 & 11 (Trees), and do the self_test exercises
- Read Chapters 12 & 13, and do the self_test exercises
- **Homework/Quiz (on Searching):**
  - Self-Test 12.7, p 590 (binary search re-coding)