
Self-Localization of a Heterogeneous Multi-Robot Team in Constrained
3D Space

Yi Feng
Dept. of Computer Science

The Graduate Center, CUNY
yfeng@gc.cuny.edu

Zhigang Zhu
Dept. of Computer Science
City College of New York
zhu@cs.ccny.cuny.edu

Jizhong Xiao
Dept. of Electrical Engineering

City College of New York
jxiao@ccny.cuny.edu

Abstract— This paper presents a new approach to the self-
localization among a team of robots working in constrained 3D
space of an urban environment. As the base formation, a team
of three ground robots and one climbing robot are deployed on
ground and on a wall or ceiling, respectively. The three ground
robots localize themselves using an existing omnidirectional
vision-based method. However, no method exists to uniquely
determine the pose of the climbing robot based on the positions
of three ground robots in its image and in the world; up
to four valid solutions exist using known methods, although
only one is genuine. Through careful examination of these
methods, two new algorithms for locating the climbing robot
are proposed. The first algorithm makes use of the straight line
constraint of robot motion and can uniquely determine the pose
of climbing robot by moving the climbing robot straight for two
small steps. The second algorithm is based on the principle
of Bayesian localization method and takes advantage of the
motion sensor readings to loose the straight line constraint. This
algorithm could continuously determine the climbing robot’s
pose after the initial pose is obtained. Extensive simulations
are conducted to validate the soundness and robustness of the
two algorithms. Preliminary real experiments are also carried
out to examine the feasibility in applying these algorithms to
real robot applications.

I. INTRODUCTION
A. Motivation

The advancement in Unmanned Aerial Vehicles (UAVs)[3]
and wall-climbing robots [13][19][4][1] has extended the
workspace of robots from 2D to 3D. Unlike the UAVs which
have full freedom in 3D space; the wall-climbing robots
essentially operate in constrained 3D space, i.e., its action
space is confined within planar surfaces while the sensing
space is 3D, facilitated by the freedom of motion on ground,
walls, and ceilings. Employing climbing robots in a robot
team in urban operations (both indoors and outdoors) pro-
vides both opportunities and challenges. The most profound
benefit is that the climbing robots can take vantage positions
on a ceiling or wall to gain better views of a scene, (e.g., a
bird’s eye view) and to avoid occlusions and obstacles. The
challenges lie in the fact that the linear and all simple systems
in 2D may become non-linear and much more complicated
in 3D, which dramatically increase the complexity of motion
planning, localization and navigation problems. Most of the
existing methods for multi-robot systems in 2D are no longer
valid for the application scenario involving wall-climbing
robots.
The above motivation drives us to conduct a series of
research on a new framework to deal with this hard yet previ-

ously unexplored research domain of multi-robot cooperation
in a constrained 3D space.

B. Self-localization Problem
The application scenario in this paper is stated as follows:

a team of heterogenous robots are deployed in a 3D space.
Among them a group of four robots, including three wheel-
driven ground robots and one climbing robot, generate a
basic formation via resource allocation. The three ground
robots mutually view each other with panoramic cameras
or wide angle cameras. The climbing robot can detect the
three ground robots which cannot see the climbing robot
conversely due to the limit of camera fields of view in the
vertical direction. The objective of our self-localization is
to obtain the pose information with six degrees of free-
dom (DOF) among all the four robots. In [16], Spletzer,
et. al.provided an algorithm localizing the three ground
robots with mutual visibility. In [11][9][6] and [12], the
authors attempted to solve the problem of estimating the
pose of an overhead camera by viewing three reference
points with different approaches. However, the pose of the
overhead camera cannot be uniquely determined due to the
lack of constraints in such a non-linear problem - there
could exist up to four valid solutions (only one of them
is genuine). In [14], Quan and Lan’s a method with four
known points could accomplish the task but with relatively
low accuracy, while with five points we could fulfill the task
with high accuracy. Obviously, a method requiring fewer
known 3D points provided by robots themselves will be
more attractive since it reduces the system cost and avoids
occlusion problem and sensor noise sources. Since [16] has
provided a practical solution for determining 3D poses of
the three ground robots, the focus of our self-localization is
to solve the pose estimation problem of overhead camera
(installed on climbing robot) using only three reference
points (ground robots as known landmarks). To the best of
our knowledge, there are no existing algorithms that can
determine the unique solution using only three reference
points.

C. Related Work
Robot localization problem has been studied extensively

in the past decades. Representative work includes the follow-
ing approaches: deterministic algorithms based on landmark
and position tracking [18]; probability based algorithms in
continuous domain (Extended Kalman Filter and Markov

Localization) [2][10], and probabilistic algorithms in discrete
domain (Monte Carlo Localization)[7][17].
In addition, Spletzer et. al.proposed the algorithm of localiz-
ing three ground robots in flat space using three panoramic
cameras. The three-point camera pose estimation algorithm
is also thoroughly studied in a deterministic approach in
[11][9][6] and [12], up to four valid solutions. All these
works provide the background and the basic elements of
algorithms proposed in this paper.

D. Our Contribution
We propose two algorithms that solve the climbing-robot

camera pose estimation problem with three reference ground
robots only. The first one is a deterministic algorithm,
which uses the constraint of straight line motion of climbing
robot by commanding the robot move straight and taking
snapshots of the three ground robots three times (a small
step each time), thus the three poses of the climbing robot
can be uniquely determined. The second one is a proba-
bilistic method inspired by Monte Carlo localization [7][17]
algorithms. The method takes advantage of a motion sensor
on the wall-climbing robot to roughly record the climbing
robot’s motion and eliminate the pseudo solutions (among
the up-to four valid solutions) by belief update of the robot
motion. After the initial convergence stage, the genuine
solution is identified and then tracked throughout the robot
movement. Simulations and real experiments are carried out
to verify the soundness and robustness of our methods.
The contribution of this paper lies on four folds. First, the
three point camera pose estimation problem, which was
proved unsolvable in analytical approach, is solved in both
deterministic and probabilistic manners for the first time.
Second, the location of the climbing robot could be contin-
uously determined after the initial convergence stage in our
probabilistic algorithm, which excels the previous algorithm
in [5] that requires multiple movements of ground robots.
Third, the simulation extends the accuracy analysis in [11]
and a lot of new observations are confirmed in the three point
camera pose estimation problem. Fourth, the probabilistic
algorithm is computing efficient and can be implemented in
real time.
This paper is organized as follows. In Section II, the problem
to be solved is formally defined. In Section III, preliminary
algorithms in [16] and [6] are briefly reviewed. In Section
IV, our deterministic self-localization algorithm is formally
proposed. In Section V, the probabilistic self-localization
algorithm is described. In Section VI, extensive simulation
results and real image based experiments are presented.
Section VII arrives at the conclusion of the paper.

II. PROBLEM FORMATION
Our system is composed of four robots, each mounted

with a camera, as illustrated in Fig. 1. The three robots
mounted with cameras C1, C2 and C3 are on the ground,
which does not have to be a planar surface. The robot
equipped with a camera C is a wall-climbing robot which
can move on the ground, climb on walls or stay on the
ceiling.

Fig. 1: Four-Robot formation in 3D circumstance

Let C1, C2 and C3 be panoramic cameras with paraboloid
reflecting mirrors and camera C be a perspective camera;
let n × n be the resolution of camera C, and ni × ni be
equivalent sensor resolution of the panoramic camera Ci,
i = 1, 2, 3. Let ki be the conic constant of each paraboloid
camera mirror. Let f and fi be the effective focal lengths of
camera C and Ci, respectively. Let α be the aspect ratio of
camera C and let αi = 1 be the aspect ratio of camera Ci,
i = 1, 2, 3. Let Ti = (xi, yi, zi)T and T = (x, y, z)T be the
position of camera Ci and C in the same world coordinate
system, respectively. Let Ri and R be the rotation matrices
of cameras Ci and C in the world coordinate system. Let
jTi and Ti be the translations between camera Ci and
Cj , and C and Ci, respectively. Let jRi and Ri be the
rotation matrices between camera Ci and Cj , and C and Ci,
respectively. For any point X0 = (x0, y0, z0)T , it’s position
in the image camera Ci and C can be uniquely determined
by the parameters above.

Problem 1: Let (uij , vij) be the position of camera
Cj in camera Ci’s image coordinate system, for all
i, j = 1, 2, 3 while i 6= j. Let (uj , vj) be the position
of camera Cj in camera C’s coordinate. Without loss
of generality, assume the distance between camera C1

and C2 is known, which is noted as ‖2T1‖. The results
to be computed are the rotation matrix jRi and Ri, and
translation vector jTi and Ti for all i, j = 1, 2, 3 while i 6= j.

In summary, problem 1 is that a wall-climbing robot local-
izes itself by seeing three ground robots, whose poses are
determined by each of them seeing the other two. In the
end, the 3D positions and orientations of all the four robots
are determined without using any other landmarks in the
environment.

III. PRELIMINARIES

In this section, we will briefly review the two existing
algorithms which serve as the basic components of our new
algorithms.

A. Three Robots Localization Algorithm
This algorithm computes the translations and rotations

among cameras C1, C2, and C3 with mutual visibility. It
is originally completely stated in [16]. Therefore, we will

Fig. 2: Three-robot localization (Courtesy [16])

Fig. 3: Three point camera pose estimation. pi is the point
vector from the optical center, si = ‖pi‖, ji is pi scaled by
scene depth zi and focal length f .

only present the input and output of the algorithm for
notion purpose of this paper. As shown in 2, the three
omnidirectional cameras C1, C2, and C3 are pre-calibrated.
Therefore, their intrinsic parameters are known. Camera Ci’s
position in camera Cj’s image can be extracted by a simple
image processing algorithm given that each robot is color-
coded or has active signal (e.g. IR) to be easily detected,
for i, j = 1, 2, 3 where i 6= j. By running the algorithm in
[16], the translations iTj (up to a scale) and rotations iRj

between any pair of cameras Ci and Cj can be calculated.
The algorithm can be implemented in real time.

B. Three Point Camera Pose Estimation Algorithm
Firstly, we define the three point camera pose estimation

problem.
Problem 2: Shown as in Figure 3, let P1, P2, and P3 be

three points with known positions in the world coordinates;
let (ui, vi) be their positions in the image coordinate system
of the camera C (i = 1, 2, 3), the problem of 3 Point
Camera Pose Estimation is to calculate the pose (position and
orientation) of the camera in the world coordinate system.

There are several independent but unfortunately
incomplete solutions to this problem. Because of the
nonlinear nature of this problem, all independent algorithms

offer up to four (at least one) valid solutions among which
only one is the genuine solution. The first algorithm [9]
was found by Grunert back in 1841. Finsterwalder [6] and
Linnainmaa et. al.[12] solved the problem independently
in 1937 and 1988, respectively. A thorough history of the
problem is discussed by Haralick et. al.in [11]. After having
implemented and examined all these algorithms, we have
found that the algorithm by Finsterwalder [6] provides the
best accuracy and reasonable running time under our system
configuration. Before getting into our algorithms proposed
in this paper, this algorithm is narrated in a mathematical
manner for completeness and easy reference in the following
sections.
As show in Figure 3, the three world points, p1, p2 and
p3, corresponding to cameras C1, C2 and C3 on three
ground robots are viewed at optical center O of camera
C, and pi = (xi, yi, zi)T , i = 1, 2, 3. Let a = ‖p2 − p3‖,
b = ‖p1− p3‖, c = ‖p2− p1‖ denote the side lengths of the
three-camera-triangle. Let the focal length of camera C be f .
The image coordinates qi = (ui, vi), is known from image
processing. Meanwhile, ui = f xi

zi
and vi = f yi

zi
, where f is

known. The vectors j1,j2,and j3 are the in-camera vectors
point from optical center to the points p1, p2, p3 and can
be represented by 1√

u2
i +v2

i +f2
(ui, vi, f)T , i = 1, 2, 3. Let

the angles opposite to side a, b and c be α, β and γ. They
could be calculated by cos α = j2 · j3, cos β = j1 · j3,
cos γ = j1 · j2. Let the unknown distances from O to Pi be
si where si = ‖pi‖. Since pi = siji for i = 1, 2, 3, if scalars
s1, s2, and s3 are determined, p1, p2 and p3 consequently
are determined. The pose of camera C can be estimated
accordingly.
By the law of cosines, we have

s2
2 + s2

3 − 2s2s3 cos α = a2 (1)

s2
1 + s2

3 − 2s1s3 cos β = b2 (2)

s2
1 + s2

2 − 2s1s2 cos γ = c2 (3)

Let s2 = us1 and s3 = vs1 (4)

Then it stands

s2
1 = a2

u2+v2−2uv cos α

= b2

1+v2−2v cos β

= c2

1+u2−2u cos γ

(5)

from which it holds

u2 +
b2 − a2

b2
v2 − 2uv cos α +

2a2

b2
v cos β − a2

b2
= 0 (6)

u2 − c2

b2
v2 + 2v

c2

b2
cos β − 2u cos γ +

b2 − c2

b2
= 0 (7)

By computing (7)×λ+(6) we have

Au2 + 2Buv + Cv2 + 2Du + 2Ev + F = 0 (8)

where the coefficients A = 1+λ, B = − cos α, C = b2−a2

b2 −
λ c2

b2 , D +−λ cos γ, E = (a2

b2 + λ c2

b2) cos β are expressed in

terms of parameter λ.
Take (8) as a quadratic equation of v, we can solve it to
obtain

v =
−(Bu + E) ±

q
(B2 − AC)u2 + 2(BE − CD)u + E2 − CF

C
(9)

Now we need to solve the parameter λ. We observe that λ
should make (B2 − AC)u2 + 2(BE − CD)u + E2 − CF
a perfect square of u in order to provide real solutions of
u (has physical meanings). If there exists such λ, (9) could
be substitute back to (6) or (7) to solve u and consequently
solve v.
The value of λ produces (B2 −AC)u2 + 2(BE −CD)u +
E2 − CF a perfect square should satisfy

Gλ3 + Hλ2 + Iλ + J = 0 (10)

where G = c2(c2 sin2 β − b2 sin2 γ), H =
b2(b2 − a2) sin2 γ + c2(c2 + 2a2) sin2 β + 2b2c2(−1 +
cos α cos β cos γ), I = b2(b2 − c2) sin2 α +
a2(a+2c2) sin2 β + 2a2b2(−1 + cos α cos β cos γ),
J = a2(a2 sin2 β − b2 sin2 α).
Solving (10) provides up to three real roots of λ = λ0,
which determines A, B, C, D, E and F . We substitute
(9) into (7), and then we solve a quadratic equation of u.
Afterward we take u back to (9) to obtain v.
Given u and v solved, we take them back to s1, s2, and
s3, the pose of camera C can be estimated. However, we
notice that (10) offers up to three real solutions of λ, in
addition, for each solution λ = λ0, we need to solve a
quadratic solution of u, therefore, there could be up to six
valid solutions. However, it is observed that if there are
two or three real solutions in (10), two of them (correspond
to the pair of solutions on the quadratic factor component)
will provide the same pair of solutions when we solve the
quadratic equations of u. Therefore, the algorithm will offer
up to four valid solutions.
The techniques in this algorithm only concern solving
third order and quadratic equation, which has deterministic
solution. The computation in this algorithm only evolves
deterministic regular operation, thus it can be implemented
in a real time manner.

IV. DETERMINISTIC ALGORITHM

Up to this point, we could locate the three ground robot
(up to a scale) and offer up to four valid solutions (one of
them is genuine) on estimation of the pose of camera C. In
this section, we will offer a deterministic “linear movement”
algorithm that eliminates those pseudo solutions.
The basic idea of this algorithm is very straight forward: if
the robot moves along a straight line, the genuine solutions
can be picked up by using the linear movement constraint.
The algorithm is also very practical since only three snap-
shots of the ground robot team are needed when the wall-
climbing robot is moving on a straight line. The linear motion
algorithm is composed of the following steps.
1. The three ground robots localized themselves and then
remain stationary. Camera C on climbing robot takes a
snapshot on the three ground robots and estimates its own

pose, provides up to four valid solutions.
2. Camera C moves once for a short distance, then it retake
a snapshot of three ground robots. Camera C redoes three
point pose estimation, and obtains another group (up to four)
of valid solutions.
3. Camera C moves the second time along the same direction
as in 2., takes the third snapshot and obtains the third group
of valid solutions (up to four exist).
4. Now we have three groups of valid solutions, which
provides up to 4 × 4 × 4 = 64 solution combinations. By
using the linear motion constraint of the robot movement,
we do steps 5. on all these solution combinations.
5. For each solution combination, determine a line by the
first camera pose solution and the third camera pose solution.
Calculate the distance of the second camera pose to the line,
record it as the error of current solution combination.
6. Take the solution option with smallest error as the genuine
solution.
This algorithm is very simple and straight forward - if the
robot moves along a straight line, the genuine solutions
should also move along a straight line. On the other hand,
pseudo solutions can hardly keep along a straight line. Even
though it is hard to provide a mathematical proof of this
observation, we have run extensive simulations to validate
this conclusion. Details of experiments are discussed in
section VI.

V. PROBABILISTIC ALGORITHM

It seems that if we could loose the linear motion constraint
to smooth motion constraint, the algorithm could be more
effective and practical. However, we have observed from
our experiments that if the robot moves continuously and
smoothly, both the genuine solutions and pseudo solutions
follow smooth and continuous paths if real solutions exist.
Going back to the three point algorithm in Section III, we
could find that the algorithm was designed to solve a fourth
order equations system, thus given one of the solutions varies
continuously, the other three will also vary continuously
given the existence of the real solution. In addition, other
three camera pose estimation algorithms in [9][12][11] are
all based on similar equations. The properties of all these
algorithms prevent us from using the smoothness constraints
to eliminate pseudo solutions. Inspired by Bayesian based al-
gorithms (in particular the Monte Carlo localization method),
we propose a new probabilistic algorithm to localize the
climbing robot.

A. Overview of the Algorithm
This probabilistic algorithm takes advantage of the motion

sensor on the climbing robot to measure and record the
action of the climbing robot (i.e., camera C). Meanwhile,
the climbing robot estimates its relative position to the
ground-robot team by applying the camera pose estimation
algorithm via the observation of its vision sensor. The robot
verifies its observation with its action using particle filter
to decide its location. Unlike the prevous Monte Carlo
localization methods which make large scale sampling, our
self-localization algorithm only places 4 samples, i.e., four

valid solutions provided by the three-point algorithm. In each
iteration, our algorithm updates its belief at each location by
its observation (vision sensor data) and its action (motion
sensor data).
Mathematically, we define the algorithm as follows.
Without loss of generality, let x

(i)
t , i = 1, 2, 3, 4 be the

possible positions of climbing robot at time t, where su-
perscript (i) denotes the four valid solutions by camera pose
estimation algorithm. Let belief(x(i)

t) be the belief value of
the climbing robot is at position x(i) at time t. belief(x(i)

t)
is normalized at any time t by normalizer

π(t) =
4∑

i=1

belief(x(i)
t) (11)

Let ot be the observation of the climbing robot at time t. In
our specific system setting, ot is defined as the estimated pose
change of climbing robot at time t. We have observed in our
experiments that if the climbing robot moves continuously,
all the valid solutions of estimated climb robot poses also
vary continuously. Meanwhile, the valid solutions are suffi-
ciently far apart from each other, therefore, we could trace
each valid solution by the nearest neighbor in the previous
observation ot−1 give its existence. Otherwise we will ignore
the solution in that it is obviously an invalid pseudo solution.
For simplicity, we defined omt as the observed motion from
time t − 1 to time t by vision system and nearest neighbor
trace. If we could not find a reasonable close nearest neighbor
of ot from ot−1, we will record omt as ∞.
Let at be the action (motion sensor data) of the climbing
robot between time t − 1 and t. In our problem formation,
it is a 3D vector, which is of the same format as omt.
At the very initial stage t = 0, belief(x(i)

0 = 1
4 given four

valid solutions upon existence.
At each time t, we update the belief(x(i)

t), (i = 1, 2, 3, 4),
by

belief(x(i)
t) = belief(x(i)

t−1)× f(om(i)
t−1, a

(i)
t−1) (12)

in which f(om, a) is the likelyhood function calculating the
similarity observed motion and action. After each update, the
belief(x(i)

t) should be normalized across all possibilities (i).
When the belief of the climbing robot at one position reach
a threshold of confidence, we will take this position as the
genuine robot track and keep tracking. During this stage, we
still update the belief on all four positions. Once the belief
on this position reduces to the threshold, we will relocate the
climbing robot position.

B. Likelyhood Function
The likelyhood function plays an important role in the

implementation of our algorithm. It should well categorize
the match and unmatch of action and observed motion. We
developed two options for the likelyhood function.

Definition 1: The simple likelyhood function is the nor-
malized inner product of two 3D vectors, a and om.
This simple function will be great given identical a and om,
while noticeably small if one or more dimensions on the two
vectors remarkably differ from each other.

Definition 2: A complete likelyhood function on two
3D vectors a and om is defined as,

f(a, om) = ‖a− om‖+ λ arccos
a · om
‖a‖‖om‖

(13)

In this likelyhood function, the difference between a and om
are calculated by both the translation difference and heading
difference. The parameter λ plays a role in balancing the
translation and heading differences. In the three point pose
estimation algorithms, we notice that the shift of one solution
could result in shift of other solutions in different rate due
to the high order of the equations, therefore, we consider a
relatively large λ in this function to address the importance
of motion consistency in moving direction. This is further
verified in our experiment in section VI.

C. Monte Carlo Algorithm

Now we give the formalized Monte Carlo algorithm in
pseudo code.
MCA(A, OM, BELIEF_THRESH)
/* A: the vector of actions;OM : the vector of observed motion;
BELIEF_THRESH: threshold of determine the robot position*/
1. double belief[4]={0.25 0.25 0.25 0.25}
2. for t = 1 to n
3. for each valid solution track i
4. belief[i]=belief[i]*f(a[t],om[t]);
5. end
6. normalize(belief[]);
7. if(max(believe)>BELIEF_THRESH)
8. current_location=x[max];
9. end

It can be noticed that the complexity of our probabilistic
self-localization algorithm is low - each iteration only takes
small amount of time to compute. Quite different from large
scale Monte Carlo localization method, 4 sample points are
sufficient to solve the self-localization problem, which makes
it feasible in real-time applications.

VI. EXPERIMENTS
We have conducted extensive simulations on both algo-

rithms and carried out experiments on real image data.

A. Deterministic Algorithm Simulation
The simulation is conducted in Matlab. In the simulated

environment, we modeled three ground cameras with om-
nidirectional views, all with a resolution of 512 × 512.
We modeled the climbing robot camera as a perspective
camera with a resolution of 640×480. By using catadioptric
geometry (of the omnidirectional cameras) and perspective
geometry (of the perspective camera), given the ground truth
data of all the camera poses (positions and orientations), we
obtained the ground truth data of the camera C’s or Ci’s
position in the view of the camera Cj . After acquiring such
data, we add a Gaussian noise of N(0, 0.5) pixels to the
data at a random direction (uniformly distributed across 360
degree of the sensor) in order to test the algorithm robustness.

1) Experiment Setup: We setup our robot work space as
a 3 × 3 × 3 meters cube. We ran the following experiment
for 1000 times.
1. Randomly generate the positions of three “ground” cam-
eras C1, C2 and C3 in sub-cubes with diagonals (0, 0, 0)−
(1, 1, 1), (0, 2, 0)− (1, 3, 1) and (2, 1, 0)− (3, 2, 1), respect-
fully, with uniform distributions.
2. Randomly generate orientation, i.e., the pitch, tilt and

Camera Relative error Standard Dev.
C1 (Ref) 0 0

C2 1.7e-4 6.1e-5
C3 1.6e-4 5.1e-5
C 5.7e-4 1.3e-4

TABLE I: Simulation Results: the relative mean error of
positions using straightness movement algorithm

Algorithm Running Time

Deterministic 1.7 ms
MC (each update) 0.35 ms

TABLE II: Simulation Results: time complexity

yaw angles of the cameras C1, C2, C3 and C to be evenly
distributed within [0, π/6]. We make the camera C as a wide
angle camera with FOV of 2/3π to guarantee the cameras
C1, C2 and C3 appear within its FOV.
3. Randomly generate the position of camera C (on the
“wall-climbing” robot) in the sub-cube diagonal with (1, 1, 2)
and (2, 2, 3), which is a cube right under the center of the
ceiling, to simulate ceilings of different heights.
4. Move the camera C alone the direct of (Θ, Φ) for distance
X twice. The random variables Θ stands the tilt, Φ stands for
pitch. The random variables follow distributions as Θ,Φ ∼
U(0, π/6), X ∼ N(0.4, 0.2). The positions are added with
a Gaussian noise of N(0, 0.001) meter, perpendicular to the
direction of X .
5. On the above formation and movement, run the linear
movement algorithm, setting the error threshold to be 0.003
meter.

2) Simulation Results: After running the simulation, we
found some general statistics of the simulation. First, during
the 1000 simulation, 997 of them offers correct results, which
means within an relative error of 1e − 3 meters out of a
scale of three meters, the algorithm could identify the correct
positions of the climbing robot in almost all the cases. We
further look into the three problematic instances, and find
the failure are caused by the singularity of three point pose
estimation problem. This illustrates that our algorithm is
sound in all valid experiments.
Table I indicates the statistics of the 997 plausible solutions.
It shows that by employing the co-linearity verification
complemented by moving climbing robot along a line to
obtain three samples, our method can generate unique pose
estimation of climbing robot with high accuracy at an relative
error level of 1e− 4.

Figure 4 is the illustration of how our deterministic algo-
rithm can robustly pick up the genuine solution. The example
is randomly selected from our 997 successful simulations.
The three red asterisks represent the position of three ground
robots. The pattern of a circle with a line stands for the cam-
era pose - located at the circle and pointing from the circle
along the line. The three thick-line patterns, with blue, green
and red, respectively, are the genuine (also the estimated)
positions of climbing robot. The thin-line patterns stand
for those pseudo solutions. All the (genuine and pseudo)

0

0.5

1

1.5

2

2.5

3
0

0.5
1

1.5
2

2.5
3

0

0.5

1

1.5

2

2.5

3

3.5

4

yx

z

Fig. 4: Illustration of simple algorithm

solutions of the three camera positions are categorized by
their colors. Any combination of red, green and blue will
form a valid solution combination The magenta dash line
illustrated the straightness of the genuine solutions in which
the 2nd genuine position lies exactly on the line connecting
the 1st and the 3rd ones, and the black dot line stands for the
combination of solution combination with second smallest
error, where the 2nd position’s estimation (in red) lies far
away from the line connecting the 1st (in blue) and the 3rd
(in green) ones. Note that in this specific case, the error of the
genuine solution is 2.04e−4 meters and the second smallest
error (dark dot line from the thick red solution) is 0.379
meter. In all our 997 successful runnings, the average error
of genuine solution is only 3.19e−4 meters with a maximum
error of 8.53e− 3 meters. The average error of the second
best solutions (with second smallest errors) is 0.771 meter,
and the minimum error of the second best solution is 0.293
meters. We could observe that the genuine solutions can be
obviously distinguished from pseudo solutions.

B. Probabilistic Algorithm Simulation
1) Simulation Setup: We build our environment in

Matlab. The work space of ground robots is a 3× 3 meters
field. We built two types of ceiling for the climbing robot.
Type I is a horizontal ceiling at the height of 3 meters. Type
II is a slope ceiling of 45 degree. It starts from a height
2 meters at one side and stop at the other side at height
of 5 meters. We let the robot moves at a velocity of 0.2
meter per second. The algorithm updates at a rate of 10Hz.
We command the robot move at the following three curves
starting from the center of the ceiling in the ceiling plane.
The original point of the ceiling coordinate is also set at the
center of the ceiling.
Curve 1 (straight line): y = 0.5x; Curve II (Sine curve):
y = sin(2x); Curve III (Quadratic): y = x2.
The ground robots are arbitrarily set at position
(0.5, 0.5, 0.3), (0.5, 2.5, 0.4), (2.5, 1.5, 0.2).
Because we already verified the accuracy of our approach
in the simulation of the deterministic linear movement

Curve Ceiling I Ceiling II
Curve I 6.93 7.31
Curve II 11.22 19.47
Curve III 8.97 14.15

TABLE III: Average number of updates to converge on 100
simulations

algorithm in identifying the genuine solutions, the main
purpose of the simulation of our probabilistic algorithm is to
compare how well the two methods converge to the genuine
solutions. We set the threshold of belief at 0.95. We set
the two consequent solutions to be on the same track given
their position are closer than 0.05 meter and the dot product
of their normal vector are greater than or equal to 0.85. We
also set the first update interval as 0.3 second instead of
the regular 0.1 second for the reason that we have stated in
the previous section. We run the simulations on both types
of ceilings and with the climbing robot moving along all
the three types of curves for 100 times. We add a Gaussian
noise of a standard deviation 15% on all three dimensions
of the motion sensor (at) to ensure the robustness of our
algorithm in that motion sensor are usually of high noise.
We also put the noise in image data as we did in previous
simulations. The experiment terminates once the robot
reaches the boundary of the ceiling. The measurement of
algorithm convergence is the average number of updates it
takes to reach the belief threshold.

2) Simulation results: As indicated in Table III, we could
find it take about 1 to 2 seconds for the robot to converge
to its genuine solution. A fact to mention is that after the
algorithm converges to the genuine solution, it never have a
belief under the threshold. This implies the algorithm could
keep on the correct track after convergence. We also note
that straight moving trajectory converges faster than high
order and sinusoid trajectory, this is because linear party of a
nonlinear system is easier to detect. In addition, we find that
horizontal ceiling case converges faster than the slope ceiling
case, which indicates working on two dimensions share the
same benefit as linear trajectory.

3) Time Complexity: Table II indicates the computational
complexity. Note that running time includes the time for
generating random sample data and camera model.

C. Preliminary Real Experiments
To further test our algorithms in real scenarios, we also

conducted experiments on real images. Real tests of the
algorithms on autonomous multi-robot team as shown in
Figure 7 (b) is under construction.

1) Experiment Setup: We use one panoramic camera
(Remote Reality NetVision 360) and two perspective cameras
(Logitech QuickCam Pro Series) as the vision sensors of
the three ground robots. We did not mount the cameras
onto the robots, partially for obtaining easier “ground-truth”
data measurements of the real positions of the cameras
for evaluating our algorithms. We use another perspective
camera (Logitech QuickCam Pro Series) as the vision sensor

(a) EL panel: on (b) EL panel: off

Fig. 5: EL panels

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index of snapshot

B
el

ie
f o

n
ge

nu
in

e
so

lu
tio

n

Fig. 6: The belief on genuine solution across the update in
real experiment

of the climbing robot. In order to ease the detection of other
cameras in each camera’s image, we use active light markers
on the camera. For localizing the optical center of each
camera in images, we wrap a EL Panel around each camera,
as shown in Fig. 5. It is a blinking marker and could be bent
into any shape as the active vision marker. By controlling
blinking of the marker, we could detect other cameras by
background substraction. We mounted the overhead camera
on a light stand, it moves at the same height and a plumb line
was used to measure its exact movement. The experiment
setup is shown in Figure 7 (a).
We tested out both our algorithms by taking a series of

snapshots. In the deterministic algorithm experiment, we had
the overhead camera move along a straight line, at a height
of 2 meters, each movement about 20cm, for three snapshots.
In our probabilistic algorithm experiment, we controlled the
overhead camera to move smoothly on a curve at a height
of 2 meters, about 5cm each time, for 20 steps, and record
the trajectory on a piece of paper by the plumb line.
The evaluation of the deterministic algorithm is the accuracy
of the position of the overhead camera. The evaluation of the
Monte Carlo algorithm is to see how the belief on a genuine
position grows along the twenty snapshots (updates).

2) Experiment Results: In our current experiments, the
measurement on ground truth data is of accuracy at 1 cm.
The estimated position of overhead camera is of (2,−4, 3)cm
away from real camera position. This is also the identified
genuine solution out of the four valid solutions. Fig. 6
indicates the belief on camera real position as the updates
continuous in our Monte Carlo algorithm. It appears to
converge well as the overhead camera moves. Fig. 7
illustrated our preliminary experiment setting and the image

(a) Preliminary
Experiment
Setting

(b) Final Experiment Setting

(c) View from Camera C (d) View from Camera C1

(e) View from Camera C2 (f) View from Camera C3

Fig. 7: Experimental Settings and Views from three different
types of cameras. The camera targets are the bright pink EL
panels

from different cameras, including how the EL panel appears
in these images.
The real experiments successfully examined the feasibility
of our algorithms.

VII. CONCLUSION AND DISCUSSION

In summary, the problem solved in this paper is for a
wall-climbing robot to localize itself by seeing three ground
robots, whose poses are determined by each of them seeing
the other two. Consequently, the 3D positions and orien-
tations of all the four robots are determined without any
additional landmarks in the environment. We have presented
two algorithms that solve the three point pose estimation
problem in an engineering approach. The direct result of this
work is a practical achievement of robot self-localization in
3D space. The two algorithms we proposed address different
aspects of the 3D self-localization problem. The determin-
istic linear movement algorithm makes use of the linear
motion constraint to solve the multiple solution problem of a
nonlinear system. The probabilistic algorithm is based on the
Monte Carlo method and looses the linear motion constraint
to smooth motion. The algorithm only takes 4 samples to
solve the self-localization problem, thus making the real-time
implementation possible. Our extensive simulations indicate

that the probabilistic algorithm works effectively and robustly
in different robot moving trajectories and different surface
types. Since we assume that the ground surface and ceiling
surface are not necessarily flat, the algorithm proposed in
this paper works in any 3D space although the algorithms is
developed for the particular case of wall-climbing robots in
constrained 3D space. Thus the proposed algorithms can be
applied to more general applications, such as UAVs. Our real
experiments, though preliminary, examined the feasibility of
our algorithms in real application scenarios. Experiment on
real robot system is underconstruction.

REFERENCES

[1] A. Asbeck, S. Kim, W. Provancher, M. Lanzetta. Scaling
Hard Vertical Surfaces with Compliant Microspine Arrays. In Online
Proceedings, Robotics: Science and Systems I, June 8 11, 2005, MIT,
http://www.roboticsproceedings.org/.

[2] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the
absolute position of a mobile robot using position probability grids.
In Proc. of AAAI, Menlo Park, August 1996.

[3] Patrick Doherty, Gosta Granlund, Krzystof Kuchcinski, Erik Sande-
wall, Klas Nordberg, Erik Skarman, and Johan Wiklund. The witas
unmanned aerial vehicle project. In Proceedings of IEEE ROBIO,
pages 246–250, 2005.

[4] M. Elliot, W. Morris, and J. Xiao. City climber: a new generation of
wall-climbing robots. In Video Proceedings of ICRA, 2006.

[5] Y. Feng, Z. Zhu, and J. Xiao. Heterogeneous multi-robot localization
in unknown 3d space. In Proceedings of IROS, 2006.

[6] S. Finsterwalder and W. Scheufele. Das Rückwärtseinschneiden im
Raum. Sebastian Finsterwalder zum 75.Geburtstage, pages 86–100,
1937.

[7] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localiza-
tion: Efficient position estimation for mobile robots. In Proc. of AAAI,
Orlando, FL, 1999.

[8] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile
robots in dynamic environments. Jounal of Artifical Intelligence
Research, 11:391–427, 1999.

[9] J. A. Grunert. Das pothenotische problem in erweiterter gestalt
nebst bb̈er seine anwendungen in der geodäsie. Grunerts Archiv für
Mathematik und Physik, 1:238–248, 1841.

[10] J. S. Gutmann and C. Schlegel. Amos: Comparison of scan matching
appraoches for self-localization in indoorenveronment. In Proc. of the
First Euromicro Workshop on Advanced Mobile Robots, 1996.

[11] R. M. Haralick, C. N. Lee, K. Ottenburg, and M. Nolle. Analysis and
solutions of the three points perspective pose estimation problem. In
Proceedings of CVPR, pages 592–598, 1991.

[12] S. Linnainmaa, D. Harwood, and L. S. Davis. Pose estimation of a
three dimensional object using triangle pairs. IEEE Transactions on
PAMI, 10:634–647, 1988.

[13] C. Menon, M. Murphy, and M. Sitt. Gecko inspired surface climbing
robots. in Proceedings of the IEEE ROBIO, 2004.

[14] L. Quan and Z. Lan. Linear n-point camera pose determination. IEEE
Transactions on PAMI, 21:774–780, 1999.

[15] S. I. Roumeliotis and G. A. Bekey. Bayesian estimation and kalman
filtering: A unified framework for mobile robot localization. In
Proceedings of ICRA, pages 2985–2992, San Francisco, CA, 2000.

[16] J. Spletzer, A. K. Das, R. Fierro, C. J. Taylor, V. Kumar, and J. P.
Ostrowski. Cooperative localization control multi-robot manipulation.
In Proceeding of IROS, volume 2, pages 631–636, October 2001.

[17] S. Thrun, D. Fox, W. Burgard., and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial Intelligence, 128:99–141,
2001.

[18] G. Weiβ, C. Wetzler, and E. V. Puttkamer. Keep tracking of position
and orientation of moving indoor systems by correlation of range-
finder scans. In Proc. of the International Conference on Intelligent
Robots and Systems, pages 595–601.

[19] J. Xiao, A. Sadegh, M. Elliot, A. Calle, A. Persad, and H. M. Chiu.
Design of mobile robots with wall climbing capability. In Proceedings
of the IEEE/ASME ICAIM, pages 438–443, July 2005.

