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Abstract—We reconstructed a three-dimensional tableau from
a single realist painting–Scott Fraser’s “Three way vanitas”
(2006)–based on multiple stereo reconstruction applied to the
direct image and the images in three plane mirrors depicted
within the painting. The tableau contains a carefully chosen
complex arrangement of objects including a moth, egg cup, and
strand of string, glass of water, bone, and hand mirror. Each of
the three plane mirrors presents a different view of the tableau
from a virtual camera behind each mirror and symmetric to
the artist’s viewing point. Our new contributions are three folds.
First, we incorporate single-view geometric information extracted
from the direct image of the wooden mirror frames in obtaining
the camera models of these three virtual cameras. Second, we
estimate 3D of objects using multiple stereo pairs within a single
painting. Third, the geometric accuracies of the painting are also
evaluated.

I. INTRODUCTION

The problem of reconstructing a three-dimensional scene
from multiple views is well explored, and a number of general
methods, such as those based on correlation, relaxation, dy-
namic programming, have been developed and fully character-
ized [1], [2]. Three-dimensional reconstruction and metrology
can be based on single views as well [3], [4], and recently
Criminisi and his colleagues have applied such techniques
to the analysis of paintings, for instance reconstructing the
virtual spaces in Masaccio’s Holy Trinity (c. 1425), Piero
della Francesca’s Flagellation of Christ (c. 1453), Hendrick
V. Steenwick’s St. Jerome in his study (1630), Jan Vermeer’s
A lady at the virginals with a gentleman (16621665), and
others [5]. These methods reveal both the high geometric
accuracies in some passages, and the geometric inconsistencies
in others, properties that are nearly impossible to determine
by eye. Such analyses shed new light on these works and
the artists’ working methods, for instance revealing whether
an artist likely used geometrical aids during the execution of
their work.

Recently Smith, Stork and Zhang reconstructed the three-
dimensional space depicted in a highly realistic modern paint-
ing, Scott Fraser’s Three way vanitas (Fig. 1) using traditional
multiple-view reconstruction methods applied to the direct

view and a view visible in a depicted mirror [6]. They found
passages within the painting having good spatial agreement,
showing high accuracy of the painter, but also passages of
significant disagreement, such as the height of the water in
the glass in the direct view and the view in the right-hand
mirror.

Even though using reflected images by mirrors is a very
popular approach for stereo vision in computer vision [7]–[10],
it was the first time to analyze a painting with such a setup.
There were some limitations in that previous work as well
as unexplored opportunities. For instance, each reconstruction
was based on just the direct view and a single reflected view.
In fact, though, several volumes within the tableau are visible
in three or more views and could have been reconstructed
using all those views. Furthermore, the images of the frames of
the mirrors provide geometric constraints about the centers of
projection of the images depicted within each mirror, and the
earlier scholarship did not incorporate that information when
reconstructing the three-dimensional space. It is this latter
opportunity we address here. However, 3D reconstruction is
not a goal in itself, but merely to further evaluate the painting
accuracy estimation.

The paper is organized as the following. Section II describes
the painting, previous scholarship and an overview of our
new approach to three-dimensional reconstruction based on
incorporating single-view geometrical constraints into multi-
view image correspondences. Section III briefly describe the
single-view geometric estimation of camera parameters. Sec-
tion IV verifies the accuracy of the painting based on multi-
view epipolar geometry. Section V further verifies the accu-
racy of the painting based on multi-view three-dimensional
reconstruction. Section VI summarizes our conclusions and
describes future directions.

II. THE WORK AND PROBLEM ADDRESSED

Fig. 1 shows the work we consider, Scott Fraser’s Three way
vanitas (2006). This painting was commissioned as part of The
Object Project [11], in which fifteen artists were commissioned
to create works, each containing five specified objects: hand
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Fig. 1. The work, the notations and the constraints.

mirror, bone, moth, ball of string and drinking glass [12].
Fraser’s contribution is a sober meditation in the vanitas genre
reminding the viewer of the transient nature of fame and vanity
and of the inevitability of death executed in a narrow palette
of white, brown and blue.

The problem we address is how to use geometric informa-
tion of the frames of the mirrors to obtain an estimate of the
centers of projections of the images depicted in each mirror,
and how to integrate this information into estimates based on
the images themselves so as to obtain an improved overall
estimate of the camera models and hence evaluation of the
three-dimensional scene itself.

Then three pairs of stereoscopic images can be formed. Here
the pair of images were provided by the direct view from the
artist’s viewpoint (main camera) and the image depicted in
each mirror (virtual cameras). We used the fact that the images
depicted in the mirrors corresponded to the views from the
positions of the virtual cameras, but also that these depicted
images were themselves viewed from the artist’s viewpoint.
Our resulting three-dimensional reconstruction yielded more
robust 3D reconstruction than was obtained in previous multi-
view approaches [6], which used only limited number of points
on the table in both the real image and the mirror images but
not the single-view geometrical estimate.

III. CAMERA PARAMETER ESTIMATION

This paper will focus on how to use the camera and mirror
geometry to infer 3D structure of the painting and to analyze
the accuracy of the drawing. For completion, we provide a
brief summary of our calibration method proposed in [13].

We label the mirrors, reading right to left, Mi, their as-
sociated reflected images Ii, and corresponding centers of
projection Ci, for i = 1, 2, 3. The middle frame is labeled
as M0.

In [13], we have described details in estimating the follow-
ing parameters of the real camera and the three virtual cameras
created by the three mirrors: (1) the image center o(cx, cy); (2)
the focal length f ; (3) the plane representation of each mirror;

and (4) the pose (location and orientation) of the three virtual
cameras related to the real camera (the artists eye). Here we
provide a brief summary. The four cameras share the same
focal length and the image center, but the images of the three
mirrored cameras are flipped in the x direction. The intrinsic
geometric constraints we use are the following:

1) All three mirrors are rectangular.
2) The two flanking mirrors are the same width.
3) The back edges of the two flanking mirrors are at the

same distance.
4) The aspect ratio of the image is 1:1.
In addition to the above constraints, by analyzing the images

of the frames and mirrors, we have also observed that the left
and right flanking mirrors (M3 and M1) and the central frame
(M0) are vertical, and the middle inset mirror (M1) is only
tilted in the y direction. We will use the image height (H) and
width (W ) of the frame M0 in the middle as the reference size
of all the real objects (including mirrors). As measured in the
image, we have H = 643.2 pixels, and W = 543.0 pixels.

To find the image center, we need to have both a set
of 3D horizontal lines and a set of vertical lines whose
projections are not parallel in the image. We used the mirror
frames for the task and the image center is estimated as
(cx, cy) = (868.6, 526.8). From this point on, we will use
the image coordinate system xoy (Fig. 1), by performing a
transformation of x = cx − xi, y = cy − yi, where (xi, yi)
is represented in the original digital image system with the
origin at the top-left corner.

We found the focal length f by using the fact that the left
and right flanking mirrors have exactly the same width. We
obtain f = 2050.7 (pixels).

Once we obtain the value of the focal length f and the image
center, we can calculate the 3D vectors for the directions of the
two edges of each mirror Mi using their vanishing points, and
then its normal by using the cross product of the two vectors.
In order to find the virtual camera parameters mirrored by
each mirror, we will build a world coordinate system on each
mirror. For example, for mirror M1, after we find the three



vectors and then normalized them into column unit vectors,
represented as v1, v2, v3, we can define a world coordinate
system using the middle of the mirror plane as its origin, and
the three vectors as its three coordinate axes. In general, the
transformation between the camera coordinate system and the
world coordinate system of the mirror Mi(i = 1, 2, 3) can be
represented as

Pc = R1iPw + T1i (1)

where Pc = (Xc, Yc, Zc)t is represented in the camera coor-
dinate system OXY Z, Pw = (Xw, Yw, Zw)t is represented
in the mirror coordinate system, R1i = (rpq)3 × 3, which
is (v1, v2, v3) for mirror M1, and T1i to be determined. The
projection of Pc into the image of the main camera is

(x, y) = (f
Xc

Zc
, f

Yc

Zc
) (2)

To find the translational vectors for all the three mirrors, we
use the dimension of the middle frame M0 as a reference.

Then the mirrored coordinate system, i.e., the virtual camera
Ci, can be easily obtained. Here we use a coordinate transfor-
mation method to find the relation between each virtual camera
Ci and the real camera C, by finding the rotation matrix Ri

and translational vector Ti (i = 1, 2, 3). In our implementation,
we use (1) to represent the origin and the three axes of
the camera coordinate system in the world coordinate system
XwYwZw of each mirror Mi. Since XwOYw is the mirror
plane, the mirrored origin and axes of the main camera
can be simply obtained by changing the signs of their Zw

components. Then we do a similar procedure as in (1) to find
the transformation (characterized by R2i and T2i, i = 1, 2, 3)
between the world coordinate system Mi and the virtual
camera Ci:

Pw = R2iPi + T2i (3)

Combining (1) and (3), we can find the transformation
between the real camera and the virtual camera:

Pc = RiPi + Ti (4)

Ri = R1iR2i, Ti = R1iT2i + T1i (5)

Table I shows the estimated results. Note that for consis-
tency, we used right-handed coordinate systems for all the
three virtual cameras. But in reality, the mirrored virtual
cameras should all have left-handed systems, as noted in [7].
Therefore in all the three virtual views (in the mirrors), we
will have to change the signs of the x coordinates in all
calculations.

The calibration results here were also verified by using the
method as noted in [7]. This will be further verified using
epipolar geometry of stereo vision.

IV. PAINTING VERIFICATION: EPIPOLAR GEOMETRY

A set of representative corresponding points are manually
selected in the four views (the main camera view and the three
mirror views) for verifying the accuracy of the painting and
the calibration, and for reconstructing the 3D structure of those
objects. Fig. 2 shows the selected points in the main camera
view marked with numbers from 0 to 19.
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Fig. 2. Selected points are used for epipolar geometry and 3D reconstruction.

A. Epipolar geometry

Let Pc(Xc, Yc, Zc) and Pi(Xi, Yi, Zi) be vectors of the
same 3D point P in the real camera coordinate system and the
ith virtual camera coordinate system (i = 1, 2, 3), respectively,
as in (4). From (4), the following relationship holds:

Pi = RT
i (Pc − Ti) (6)

We calculate the essential matrix Ei (i = 1, 2, 3) between
each virtual camera Ci and the real camera C:

Ei = RT
i Si (7)

where Si is a 3× 3 matrix generated from Ti. Then for a pair
of points in the two views, virtual view pi and real view p,
we have

pT
i Ep = 0 (8)

where pi = (−xi, yi, f)T is a point in the ith virtual camera
view, and p = (x, y, f)T is a point in the main camera view,
of the same 3D point P . Note that we put a sign in front of
the xi coordinate of the mirrored point of p, which should be
(xi, yi, f ). The pair of points, (xi, yi, f ) and (x, y, f ), actually
shares the same image coordinate system xoy, as in Fig. 1.

Given p, (8) defines an epipolar line in the ith virtual view.
The corresponding point pi should be on the line. By defining
a = Ep = (a1, a1, a3)T , which is a column vector, we have
the epipolar line equation

(−xi, yi, f)(a1, a1, a3)T = 0 (9)

and the“mirrored” epipolar line of the point p that can be
drawn on the “shared” image space as

(xi, yi, f)(−a1, a1, a3)T = 0 (10)

Fig. 3 shows the selected points in the main camera view
marked with numbers from 0 to 19, and their corresponding
“mirrored” epipolar lines in three mirrored views, respectively.



TABLE I
THE TRANSFORMATIONS BETWEEN VIRTUAL CAMERA Ci (i = 1, 2, 3) AND THE MAIN CAMERA C

Mi M1 M2 M3

Ri

−0.0846 0.0610 0.9945
−0.0610 0.9959 −0.0663
−0.9945 −0.0663 −0.0806

−0.9999 −0.0035 −0.0103
0.0035 0.7878 −0.6159
0.0103 −0.6159 −0.7877

−0.1992 −0.0049 −0.9800
0.0049 1.0000 −0.0059
0.9800 −0.0059 −0.1991

Ti(measured in pixel) (−2299.7, 153.4, 2498.7) (20.4, 1224.4, 3553.8) (2200.2, 13.3, 2692.3)
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Fig. 3. Manually picked points in the main camera view and their “mirrored” epipolar lines in the (a) right (b) middle (c) left mirror view

B. Discussions: epipolar lines and painting accuracy
We have several observations of the epipolar geometry, and

the accuracy of the drawing.
1) All the epipolar lines intersect at a common point, the

epipole, which is the projection of the center of the real
camera in the virtual camera view. This can be seen from
the three sets of epipolar lines in three virtual views.

2) For any point p in the real camera view, its “mirrored”
epipolar line also passes through this point. This is an
interesting property of the stereo system constructed by
using a mirror.

Here is a simple proof for (2):
a) If the 3D point P is on the mirror, then its

“mirrored” point is the same as the real point,
therefore p = (xi, yi, f). Hence p is on the line
represented in (10).

b) If the 3D point P is in front of the mirror, then
extend OcP so that it intersects with the mirror at
Pm, the projection of Pm in the real camera view
is pm, which is exactly the same as p. From (2a)
we know pm is on the line represented in (10).
Therefore p is on the same mirrored epipolar line.

3) There seem to have system errors in the painting judged
by the epipolar geometry. The corresponding points in
the right mirrored views are obviously all below their
epipolar lines, and those in the left mirrored views are
all above their epipolar lines. Given the assumptions we
made on the mirrors and the camera, the mirrored points
of the objects in the right mirror seem to be too low,
and on the other hands, in the left mirror seem to be
too high. This can be verified by comparing the heights
of the object points in the left and right mirrors. This
seems to indicate the drawings in the mirrors are not
perspectively accurate. We have also noticed that the

perspective distortions of the depth edges of the left and
right mirrors are more than they should be. All these
problems may be due to the geometric constraints made
in Section III, but these constraints were confirmed by
the painter.

4) The epipolar geometry in the middle mirror seems to be
the most accurate. This is also verified in the following
3D estimate step.

V. PAINTING VERIFICATION: 3D RECONSTRUCTION

A. 3D reconstruction

From each pair {pi, p} we can get P
(i)
c (X, Y, Z), repre-

sented in the real camera coordinate system (i = 1, 2, 3). From
the four views, we get three estimates, the average can be
calculated. We found that even though the drawing does not
pass the accurate epipolar geometry test, the perspective effects
are correct within certain error bounds and we can still obtain
3D estimations for points both on mirrors and off mirrors.

This reconstruction is solved by stereo triangulation [14]
since we already know both the extrinsic and intrinsic pa-
rameters. Because of error in the locations of corresponding
points, the two rays, Oipi and Op, will not intersect exactly
in space and thus we have to approximate it by finding the
closest midpoint between these two lines.

Note that for the points on mirror frames, only a pair of
views can be used, and the images points in the real camera
view and mirrored view are exactly the same. The points on
regular objects are reconstructed using as many pairs (1 to 3)
as possible.

Table II shows the reconstructed points using multiple stereo
views. If a point is visible from more than one view, we
reconstructed the point for each view, find its average and
the average error in 2 or 3 estimations. All the values are



TABLE II
MULTI-VIEW 3D RECONSTRUCTION IN PIXEL*

Pts M1 view (right) M2 view (middle) M3 view (left) Average Average error (RMS)

14 - (109.2, -295.9, 1680.4) (125.9, -303.0, 1790.2) (117.6, -299.5, 1735.3) (8.4, 3.6, 54.9)

15 - (-174.0, -265.4, 1657.9) - (-174.0, -265.4, 1657.9) -

16 (-170.8, -518.4, 1754.2) (-191.6, -487.4, 1715.0) - (-181.2, -502.9, 1734.6) (10.4, 15.5, 19.6)

17 (25.8, -266.4, 1822.4) (15.8, -240.1, 17874.7) (29.1, -236.9, 1842.1) (23.6, -247.8, 1816.4) (5.7, 13.2, 23.8)

18 (280.1, -336.8, 1785.0) - - (280.1, -336.8, 1785.0) -

19 (-3.4, -535.9, 1863.5) (-15.0, -488.2, 1760.7) (0.3, -513.6, 1885.6) (-6.1, -512.6, 1836.6) (6.5, 19.5, 54.4)
* Use Fig. 2 for points reference
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Fig. 4. 3D reconstructed objects and mirrors in the (a) front (b) side (c) top view

measured in pixels. Average errors vary, from several pixels
to more than fifty pixels.

Fig. 4 shows the 3D reconstruction of both objects and
mirrors in the painting. The location of each object is relatively
similar to the human perception of the painting. We further
verify this in subsequent sections.

B. 3D reconstruction verification

1) Using special points: By picking the frames corners and
compare them with “ground-truth” data, we want to verify the
accuracy of the drawing and the 3D reconstruction technique
using stereo.

For this, we picked 8 corners from the left and right frames,
obtained its image coordinates and transform it into camera
coordinates. Note that for each point on the surface of a mirror,
its projection in the real camera and in the mirrored virtual
camera shares the same image coordinates. Using the stereo
reconstruction technique, we calculated its camera coordinate.
For these points, the two rays of each pair of points intersect
on its 3D location.

To verify the correctness, using (1), we computed the
world coordinates Pw = (Pc − T1i)RT

1i, where Pc is camera
coordinate, T1i is the corresponding frames translation, and
R1i is the corresponding frames rotation. The computed shape
and dimensions of both mirrors are fairly accurate. The Zw

values, are very close to zeros, which are the ground truth
values.

Another way to verify the accuracy of the calibration is to
use a single view and compute some world coordinates. Again

we are going to use the frames corners for verification. We can
do this by solving (1) and (2) with Zw = 0 because we are
computing the coordinates of a point on the mirror plane. The
computed results are almost identical to those using stereo
vision method.

2) Using regular object points: Because of errors in the
locations of corresponding points, probably mainly due to the
drawing inconsistencies, the two rays, Oipi and Op, will not
intersect exactly in space. Hence, we have to approximate
it by finding the closest midpoint between these two lines.
Table III shows the corresponding points P1 and P2 on two
rays that are closed to the midpoint for each pair of points,
for regular object points, # 14-19 (except # 18 which cannot
be seen in the middle mirror), using the main camera and
the 2nd virtual camera generated by the middle mirror M2.
The average differences between P1 and P2 in X, Y and
Z directions are 31.0, 4.3 and 1.2 (pixels). Note this result
is consistent with the epipolar geometry in that this pair is
vertically aligned and the epipolar lines are mainly off in the
X direction. Similar results are observed from the views of
the left and right virtual cameras, where the errors in the
Y direction are the largest due to the misalignment in that
direction in the painting. The average error for the right and
left virtual camera is (10.2, 32.4, 6.9) and (4.8, 20.1, 4.0),
respectively.

VI. CONCLUSIONS AND DISCUSSIONS

We reconstructed a three-dimensional tableau from a single
realist painting–Scott Fraser’s “Three way vanitas” (2006)–



TABLE III
TRIANGULATION ERRORS IN PIXEL UNIT USING THE STEREO PAIR OF MAIN CAMERA AND MIDDLE VIRTUAL CAMERA*

P1 P2 differences

Pts Xc Yc Zc Xc Yc Zc dX dY dZ

14 120.6 −294.6 1679.8 97.7 −297.2 1681.0 22.9 2.6 1.2

15 −158.9 −268.7 1658.8 −189.1 −262.1 1657.0 30.2 6.6 1.8

16 −161.0 −493.1 1716.2 −222.2 −481.7 1713.8 61.2 11.4 2.4

17 29.9 −240.0 1784.5 1.7 −240.1 1785.0 28.2 0.1 0.5

19 3.1 −488.6 1760.6 −33.2 −487.8 1760.9 36.3 0.8 0.3

Average error 35.76 4.2 1.2
* Use Fig. 2 for points reference

based on multiple stereo reconstruction applied to the direct
image and the images in three plane mirrors depicted within
the painting. Our method for estimating the camera models
for the virtual cameras and the 3D structure of the objects was
based on the single-image information of the mirror frames in
the primary image of the painting, the image seen from the
artist’s viewing point (the main camera).

Here are some conclusions and observations.

1) single-view analysis: The relative 3D structures of the
rectangles mirrors and frames are estimated by using
their perspective analysis with a few assumptions of
their geometry (i.e. rectangular shapes) that can be easily
obtained.

2) camera calibration: Both the intrinsic and extrinsic pa-
rameters of the main camera and the virtual cameras
created by mirrors are fully recovered.

3) 3D estimation: The 3D estimates of both the frames
and regular objects are consistent among the single-view
analysis, and results from multiple stereo triangulation.
Comparing to the results published in [6], our 3D
estimation is more accurate because we obtained more
robust camera geometry by using structure of mirror
frames rather than using a limited number of points con-
centrating in the direct view and the frontal mirror, and
incorporated results from multiple views to reconstruct.
They reported there are some clear inconsistencies, such
as the bone and the water glass are not the same distance
away. On the other hand, our reconstruction shows that
the bone and the water glass are approximately the same
distance away.

4) painting analysis: Overall, the painting has 3D geomet-
ric consistencies among the mirrors and among the
objects. However, they are some stereo and perspective
inconsistencies, across four views. These could either be
the accuracies of the perspective distortions, orientations
and sizes of the mirrors, or of the locations of objects
inside the mirrors, which cannot be easily observed by
eye.

In summary, overall method is applicable to improving the
reconstruction of three-dimensional scenes based on general
containing plane mirrors or even curved mirrors (after the
mirror image is dewarped), such as in digital photographs and

video. Our methods provide an objective test of the spatial
accuracy of realist artists. Moreover, the three-dimensional
tableaus reconstructed from paintings can shed light on the
working methods of some realist painters by providing new
views into the picture space and thus the artist’s three-
dimensional compositional choices. As such, our work extends
the new discipline of computer vision applied to the study of
fine art.
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