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Abstract 
This paper presents a framework to analyze a large 

amount of video data and extract high-level structural 
information – planar structures and motion information - 
in typical urban scenes, which may be used in video 
coding or object recognition. The method consists of two 
phases. In the first phase, multiple parallel-perspective 
(pushbroom) mosaics are generated from the video data. 
In the second phase, the planar structures and the moving 
objects are extracted from the mosaics by a 
segmentation-based stereo match method.  

The focus of this paper is the use of local and global 
scene constraints to improve the accuracy of high-level 
structural information extraction. The 3D planar patches 
obtained from the first step of 3D reconstruction are 
automatically clustered into one or more dominant 
planes, which are typical in indoor or outdoor city scene 
and are used to improve the 3D model. Then a local 
scene constraint is used to further refine the structure of a 
patch from the structures of its neighboring patches that 
have better structure estimations. Further, the dominant 
planes also provide information of road network 
directions, which greatly facilitates the search of moving 
objects on the roads.  We demonstrate the effectiveness of 
our approach by experiments on a real video data set of a 
New York City scene.   

1. Introduction  
Extracting 3D and motion from video sequences of city 

scenes is very challenging for the following reasons. First, 
the 3D models of such scene change dramatically, e.g., 
with a lot of cluttered high-raising and low-raising 
buildings in a New York City scene we have been 
working. Second, the texture patterns are quite uneven – 
some regions are almost textureless while many have 
complicated surface structures. Third, these kinds of 
scenes typically have very shape depth boundaries and 
dealing with occlusions is an unavoidable issue. Fourth, 
independent moving targets are usually much smaller 
than the static structures, slower than the ego-motion of 
the sensor (particularly an airborne camera). Finally, lots 
of motion detection methods working on aerial video 
relying on first aligning the background and then 
detecting obvious intensity difference among aligned 
image sequences as independent moving target, but it’s 

difficult to align the background in the city scene since 
there is large motion parallax in such cluttered aerial 
video. All these factors increase the difficulties in 
efficiently and accurately reconstructing 3D models and 
extracting moving targets from video sequences taken by 
a traveling camera. 

To fulfill this goal, we want to generate dynamic “3D 
mosaics” from video sequences of city scenes taken by a 
traveling camera, with parallel-perspective pushbroom 
stereo geometry [2, 28]. Pushbroom stereo mosaics have 
uniform depth resolution that is better than with the 
perspective stereo, or the multi-perspective stereo with 
circular projection [19, 21].  

In this paper, a set of parallel-perspective mosaics is 
generated to capture both 3D and dynamic aspects of the 
scene under the camera coverage. This step turns 
hundreds and thousands of frame images of a video 
sequence into just a few large field of view (FOV) 
mosaics. Though these large FOV mosaics are generated 
from a single camera, the results are much like using 
multiple line-scan cameras with different oblique angles 
(parallel viewing directions) to scan through the entire 
scene. Because of the multiple scanning angles, occluded 
regions in one mosaic can be seen from the others. 
Moving objects are all shown up in each mosaic, and by 
switching to different ones, the dynamic aspects can also 
be viewed and extracted. 

Then a segmentation-based stereo algorithm designed 
is used to not only efficiently produces accurate matches 
across the depth boundaries, but also gives higher-level 
object structures since each object (e.g., a building) is 
represented into 3D planar regions and their relations. 
However, problems still remain dealing with many small 
color patches (due to over-segmentation) with unreliable 
matches and in detecting moving targets at directions 
different from the direction of ego-motion. Therefore, we 
explore the local and global constraints in facilitating 3D 
and motion extraction. 

We note that many indoor and city scenes have one or 
more dominant planes, e.g., there are three mutual 
orthogonal plane directions in New York City scene, 
which can be a global constraint. In this paper, the local 
and global constraints are applied by the following 
method. First each homogenous patch, obtained by 
performing color segmentation on the reference mosaic 
and approximated as planar patch, is undertaken a stereo 
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matching process between the reference mosaic and a 
target mosaic. In this way, the plane parameters of all 
patches in the scene are computed. Second, an 
agglomerative clustering method is used to vote the 
dominant plane sets and then the information of the 
dominant planes is used to improve the accuracy of 
estimated structures. Third, a local scene constraint is used 
to further refine the structure of a patch from the 
structures of its neighboring patches that have better 
structure estimations. Fourth, moving objects are detected 
by checking 3D anomalies or applying 2D search in the 
target mosaic. 
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Fig. 1. Dynamic pushbroom stereo mosaics 
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Fig. 2. Multi-view pushbroom mosaics 

The rest of the paper is organized as follows. Section 2 
provides a brief overview of some related work. Section 3 
gives an overview of generation of pushbroom mosaics 
from a video sequence. Section 4 gives an overview of 
the segmentation-based multi-view stereo mosaic 
approach for 3D reconstruction. In Section 5, we discuss 
the extraction of dominant planes in the scene and 
applications of geometric constraints to improve 3D 
reconstruction results. Moving objects extraction is 
presented in Section 6. In Section 7 we show some 
experimental results and provide some concluding 
remarks in Section 8. 

2. Related Work 
Google Earth  and Microsoft Virtual Earth  map the 

earth by the superimposition of images obtained from 
satellite imagery, aerial photography and geographic 
information system data. Many buildings and structures 
from around the world now have detailed 3D structures, 

however, these 3D models are created manually and the 
number of city models is limited.  

In order to reconstruct 3D models automatically, stereo 
vision is still one of the most important methods, and 
recently a thorough comparison study [20] has been 
performed. Global optimization based stereo matching 
methods, such as belief propagation [23] and graph cuts 
[1, 13], can obtain accurate depth information, but these 
methods are computationally expensive. Furthermore, in 
addition to retrieving the accurate depth information, 
detecting moving objects representations is also our goal. 

Mosaics have become common for combining and 
representing a set of images gathered by one moving 
camera or multiple cameras. In the past, video mosaic 
approaches [10, 11, 14, 17] have been proposed for video 
representation and compression, but most of the work is 
for generating 2D mosaics instead of 3D panoramas, and 
using panning (rotating) cameras for arbitrary scenes or 
moving cameras for planar scenes, instead of traveling 
(translating) cameras typically used in airborne or ground 
mobile urban surveillance and 3D scene modeling. In the 
latter applications, obvious motion parallax is the main 
characterization of the video sequences due to the ego-
motion of the sensors, obvious depth changes of the 
scenes, and independent moving targets. This paper deals 
with these problems with typical city or indoor scenes. 

Combining intermediate depth images from several 
overlapping stereo pairs may not provide accurate results 
since accumulation error can quickly add up. Some work 
has been done in 3D reconstruction of panoramic mosaics 
[15, 22] with an off-center rotation camera, but the 
methods are limited to a fixed viewpoint camera instead 
of a moving camera; and the methods usually only deal 
with static scenes. For modeling large-scale 3D scenes, a 
new pushbroom sensor is developed in [9,16], which 
consists of nine CCD line sensors parallel to each other 
but with different viewing angles. Combining each line 
from nine sensors generates a pushbroom image, and 
semi-global matching method is used for 3D 
reconstruction. The geometric principle is the same as our 
stereo mosaics; however, we generate multiple mosaics 
from a single camera, and use a different 3D 
reconstruction approach. On the other hand, layered 
representations [12, 26, 27] have been studied for motion 
sequence representations; however, the methods are 
usually computationally expensive, and the outputs are 
typically motion segmentation represented by affine 
planes instead of true 3D information.  

3. Multi-view Dynamic Stereo Mosaics  
For completeness, we first give an introduction of the 

pushbroom stereo mosaics for a static scene. If we 
assume the motion of a camera is a 1D translation and the 
optical axis is perpendicular to the motion, then we can 
generate two spatio-temporal images (mosaics) by 
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        Modified Multi-view Stereo Match Algorithm 
1. Perform color segmentation on the reference 
mosaic, and each homogenous color patch is 
approximated to be a planar surface. 
2. The following three steps are applied  
    2.1. Extract interest points on the patch boundary;  

     2.2. Perform modified multi-scale matches on 
interest points of the region; 
     2.3. Use RANSAC to fit a plane for each 
homogenous patch 
3. Refine plane parameters from multi-view mosaics 
4. Each patch is classified as reliable or un-reliable by 
a match validation check

extracting two scanlines of pixels of each frame. 
Furthermore, dynamic pushbroom stereo mosaics are 
generated in the same way as above. Fig.1 illustrates the 
geometry. A 3D point P(X,Y,Z) on a target is first seen 
through the leading edge of an image frame when the 
camera is at location L1. If the point P is static, we can 
expect to see it through the trailing edge of an image 
frame when the camera is at location L2. The distance 
between leading and trailing edges is dy (pixels), which 
denotes the constant “disparity”. However, if point P 
moves during that time, the camera needs to be at a 
different location L’2 to see this moving point through its 
trailing edge. For simplifying equations, we assume that 
the motion of the moving points between two 
observations (L1 and L’2) is a 2D motion (Sx, Sy), which 
indicates that the depth of the point does not change over 
that period of time. Therefore, the “depth” of the moving 
point can be calculated as 
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where F is the focal length of the camera and By is the 
distance of the two camera locations (in the y direction).  
Mapping this relation into stereo mosaics following the 
notation [28], we have 
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where H is the depth of plane on which we want to align 
our stereo mosaics, (∆x, ∆y) is visual motion in the stereo 
mosaics of the moving 3D point P, and (sx , sy) is the 
target motion represented in stereo mosaics. Obviously, 
we have sx = ∆x. Therefore, for a moving target P, the 
visual motion with nonzero ∆x will identify itself from 
the static background in the general case when the motion 
of the target in the x direction is not zero (i.e., sx ≠  0). 
Even if the motion of the target happens to be in the 
direction of the camera’s motion (i.e. the y direction), we 
can still discriminate the moving target by examining 3D 
anomalies. While the geometry of pushbroom is 
presented with a pure 1D camera translation, the concept 
can be generalized to 6 DOF camera motion with a 
dominant motion direction. 

A pair of stereo mosaics is a very efficient 
representation for both 3D structures and target 
movements. However, stereo matching will be difficult 
due to the largely separated parallel views of the stereo 
pair. Therefore, multi-view mosaics (more than 2) are 
generated, each of them with a set of parallel rays whose 
viewing direction is between the leading and the trailing 
edges (Fig. 2). There are some benefits of using them. 
First, it eases the stereo correspondence problem in the 
same way as the multi-baseline stereo [18], particularly 
for improving accuracy of 3D estimation and handling 

occlusion. For example, object B is occluded in the right 
view while it appears in the left and middle views. The 
depth information of the patches B and D can be 
computed from a stereo match between the left view and 
the middle view mosaics. If the patches B and D in the 
reference mosaic (left view) are warped onto a target 
mosaic (e.g., right view) to be B’ and D’ under the known 
geometry of pushbroom mosaics, the warped patch B’ is 
occluded by patch D’. Therefore, the match on patch B 
between left view mosaic and right view mosaic will not 
be correct. In another example, the structure (plane 
parameters) of the patch C can be computed from a stereo 
match between two mosaics (e.g., the left view and a 
view between the left and the middle views). Therefore, 
we know C is parallel to the middle view and cannot be 
observed from the middle view. So the match between 
reference mosaic (left view) and any views equal to or 
right to middle view will not be calculated. Second, 
multiple mosaics also increase the possibility to detect 
moving targets with unusual movements and also to 
distinguish the movements of the specified targets (e.g., 
ground vehicles) from those of trees or flags in wind. In 
the next three sections, we will discuss a method to 
extract both of the 3D buildings and moving targets from 
the stereo mosaics. 

4. Multi-Mosaic Stereo Matching 
In order to keep sharp depth boundaries and to obtain 

depth information for textureless areas, the reference 
mosaic (left view) is segmented into homogeneous color 
patches (regions) as the primitives for stereo matching.  
The interest points [24] with large curvature are extracted 
along the boundary of each homogenous patch. We use 
Ip(l) = {Ip1, Ip2, … Ips} denotes the set of interest points 
on lth patch, and s denotes the total number of the interest 
points in the patch.   
Fig. 3. Outline of the stereo mosaic match algorithm  

To carry out stereo matching, we use a modified 
version of our segmentation-based stereo match algorithm 
[24] that had a global matching step. An outline of the 
algorithm is shown in Fig. 3. Whereas the global match 
step assumes that the scene is frontal-parallel, the 
modified algorithm (without this step) is more general, 
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the modified algorithm is also more efficient since only a 
few interest points along the boundary of a patch (rather 
than all the points in the patch in the global match) are 
matched to obtain the 3D of all the points within the patch. 
Multiple pairs of stereo mosaics (refer to Fig. 2) are used 
for facilitating reliable stereo matching and more accurate 
3D reconstruction. Suppose there are N pairs of stereo 
mosaics, constructed from N+1 pushbroom mosaics. 
Then N sets of plane parameters Pl(q)=(aq, bq, cq, dq), 
q=1,…,N, are obtained for each patch in the reference 
mosaic. Only the best of N sets of plane parameters is 
selected as final result by a following warping and 
comparison process between the reference and other 
mosaics. If estimated plane parameters of a patch are 
correct, warping the patch in the reference image to the 
other views according to the plane parameters will render 
a patch that consistent with the real views. We formalize 
the above procedure using the following formulas. The 
match is calculated by following match cost function. 
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where P is the processing patch and (x,y) is one pixel in P. 
))(,( qplpf  )y,(x iii =  and )(•if is the function to 

calculate the correspondence (xi, yi) of a point (x,y) in the 
ith mosaic, i=2,…,N+1. )(•iI  denotes the intensity of a 
point in the patch of the ith mosaic. The inner summation 
represents that of the square of intensity difference of a 
point in the patch on the reference mosaic and in the 
warped patch on the ith mosaic. The outer summation 
denotes that the inner computation process is performed 
on the reference mosaic with all other mosaics. Note: 
taking advantage of multi-view mosaics, if the patch is 
occluded in a mosaic, the match between reference 
mosaic and this mosaic is not taken into account. This is 
done by inferring the visibility of the patch in the ith view 
using the estimated plane parameters. The final parameter 
is selected by following equation. 

))(,( kplpCmin arg  P(k)
k

=      (5) 

K represents the index of the set of plane parameters 
selected to be final result when a minimal summation is 
obtained.  

Other modification of the algorithm is the use of a 
multi-scale local match (coarse to fine) approach with a 
match validation crosscheck: 

)(|),(),(| ),(),( lhyxdyxd jjijji <+                    (6) 
where (x,y) and (xj, yj) are the correspondence pair (e.g., 
(x,y)+d(i,j)(x,y)=(xj, yj)), d(i,j)(x,y) is a 2d disparity vector. 
The subscript (i,j) denotes that a match is performed from 
ith mosaic to jth mosaic. h(l) denotes a function of 
threshold in the lth step when the multi-scale match is 
performed and decreases from a large number to a 
fraction to obtain sub-pixel accuracy. Note, for each 
interest point, (1) it is located on the textured area 

(boundary of patch), and also with feature (large 
curvature). Hence it is robust on the match calculation; (2) 
a “natural” matching correlation template is used; only 
points in the considered regions are involved in the 
correlation computation (match cost step). Therefore, the 
correlation template is naturally adapted with the true 
object boundaries; and (3) a multi-scale approach is 
carried out, in that the search ranges and search steps are 
changed adaptively (from large to small) to achieve both 
robustness and efficiency. The multi-scale strategy is 
performed iteratively and usually converges in three steps. 
The region is marked reliable if the match cost is less than 
a threshold. 

5. Refinement by Geometry Constraints 
Dealing with 3D reconstruction of a large-scale scene 

from aerial video, lots of ambiguities and occlusions can 
degrade the accuracy, particularly for small patches after 
segment. Therefore, we explore two geometric constraints 
to further refine the estimation: local and global scene 
constraints. 

5.1. Global scene constraint 
We found that there are one or more dominant 

directions of planar surfaces in many indoor and outdoor 
city scenes. For example, for the outdoor city scenes, 
there exist three dominant planes (mutual perpendicular) 
in cities (e.g., New York City) and ground surface is a 
dominant plane in suburban scenes; an indoor scene 
obeying three mutual orthogonal planar surfaces are more 
popular due to the architectural structure. Therefore, some 
methods [4, 5] either rely on explicit edge detection and 
then find vanishing points, or use a direct Bayesian 
inference mechanism incorporating all of the image data 
to estimate three mutual orthogonal directions. 

Thanks to the initial 3D reconstruction of our approach, 
some reliable matches and therefore structures of planar 
surfaces are obtained although many others may be still 
inaccurate. From reliable reconstructed planar surfaces, 
some dominant directions can be extracted. This 
geometric information can both benefit the improvement 
of 3D reconstruction and moving targets extraction. The 
detail procedures are explained as follows. 

(1). Reliable matched patch can be classified if the 
match cost )(•C is less than a threshold.  

(2). Collect all the norms of the planar patches with 
reliable match and calculate one or more dominant plane 
directions by an agglomerative clustering method [6]. 

(3). For the rest patches without reliable match, the 
dominant plane directions can be used to hypothesize 
initial estimates of these patches and then verified by 
calculating the match cost. If a smaller match cost is 
achieved for a patch then the hypothesis replaces the old 
unreliable result.  



 5

5.2 Local scene constraint 
After applying the global scene constraint, 3D 

estimations are further refined by employing a local scene 
constraint. We perform a modified version of the 
neighboring plane parameter hypothesis approach [25] to 
infer better plane estimates. The main modification is that 
the parameters of a neighboring region are adopted only if 
it is marked reliable and the best neighboring plane 
parameters are accepted only when the match cost (Eq. 
4.) using the parameters is less than a threshold. Further, 
if the neighboring regions sharing the same plane 
parameter, then they are then merged into one reliable 
region. This step is performed recursively till no more 
merges occur. We prefer to have false negatives than false 
positives, and the former will be handled in the next stage 
– moving object detection. 

6. Moving object detection 
After performing geometric scene constraints, most of 

the small regions adopt the one of plane norms from the 
dominant directions or are merged with neighbors and 
marked as reliable. Moving object patches that move 
along epipolar lines should also obtain reliable matches 
after the plane merging step, but they appear to be 
“floating” in air or below the surrounding ground, with 
depth discontinuities all around it. In other words, they 
can be identified by checking their 3D anomalies. This is 
mostly true for aerial video sequences, where ground 
vehicles and humans move on the ground. Note that this 
is only the special case. 

In general cases, most of the moving targets are not 
exactly on the direction of the camera’s motion. 
Therefore, those regions should have been marked as 
unreliable in the previous steps. Regions with unreliable 
matches fall into the following two categories: (1) 
moving objects with motion not obeying the pushbroom 
epipolar geometry; (2) occluded or partially occluded 
regions. The regions in the first category correspond to 
those moving objects that do not move in the direction of 
camera motion; therefore they do not obey the pushbroom 
stereo epipolar geometry. Therefore, for each of these 
regions, we can always perform a 2D-range search within 
its neighborhood area. If a good match (i.e., with a small 
Sum Squared Difference value) is found within the 2D 
search range, then the region is marked as a moving 
object. However, for regions in the second category, their 
2D search in their neighborhood areas still cannot find 
any good match among all the mosaics. These regions are 
marked as occluded regions. 

We can also take advantage of the known 
approximated road directions along which the traffic 
moves, to more effectively and more reliably search for 
matches of those moving vehicles. The road directions 
can be derived from 3D reconstruction results, e.g., in a 
city scene, the two dominant planes of the building 

façades surrounding the ground area on which the moving 
objects reside. 

7. Experimental Results 
In order to test the proposed framework, we have 

performed experiments on a real data set, New York City 
(NYC) scene. The NYC mosaics were generated from a 
video sequence from an NYC aerial video dataset. The 
video clip has about 758 frames of high-definition 
progressive video (1080*2000). Rooftops and city streets 
are seen as the camera looks ahead and down in a close 
flight just over One Penn Plaza and beyond in New York 
City. Yellow taxicabs make up a noticeable percentage of 
the vehicles traveling the grid of streets in this district of 
mostly lower-rising buildings, but with a few high-rise 
buildings (such as One Penn Plaza). Our main task is to 
recover the full 3D model of the area automatically, with 
cluttered buildings with various heights, from less than 
ten to more than a hundred meters. Fig. 5 shows one of 
the four multi-view mosaics (4816*2016) generated and 
used for 3D reconstruction and moving target detection. 
The camera moves from the left to the right in the mosaic.  

This data set is very challenging due to the cluttered 
buildings and complex micro-surface structures that 
produce a lot of small homogeneous color patches after 
using mean-shift color segmentation [3]. In our experiments, 
among all of the regions that have successfully obtained 
plane-fitting results from multi-view mosaics, those with 
reliable matches (i.e., good match scores and reasonable 
sizes) are used to automatically vote for the three 
domination planes. The three plane sets supporting the 
dominant directions are plotted in Fig. 4. The three plane 
norms are [-0.549, -5.753, 1.000], [4.983, 1.493, 1.000] 
and [-0.209, 0.079, 1.000]. A simple cross-product check 
verifies they are approximately orthogonal to each other 
(The angles between them are 89.2o, 109.5o and 83.7o). 
The information of these three domination plane 
directions is very useful in both refining the 3D 
reconstruction and extracting moving targets. 

By making use of the global scene constraints, 3D 
reconstruction is refined by methods described in Section 
5 namely using the three dominant planes and then 
neighborhood hypotheses. After these steps, the 
remaining regions, i.e., the “outliers”, go through the 
moving object detection test. We use the method 
presented in Section 6. For this NYC dataset, we take 
advantage of the known road directions, to more 
effectively and more reliably search for matches of those 
moving vehicles. 

Fig. 6a shows the 3D reconstruction results of the NYC 
video data, all represented in the reference mosaic. The 
height map is rendered from the result from the 
integration of the 3 stereo pairs of the mosaics (4 
mosaics). Fig. 6b shows the colored coded height map 
(same as Fig. 6a). The color bar on the right-hand side 
shows the correspondences of colors and height values. 
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Due to the lack of the flight and camera parameters, we 
roughly estimate the main parameters of the camera from 
some known buildings. However, this gives us a good 
indication of how well we can obtain the 3D structure of 
this very complex scene. For example, the average 
heights of the three buildings at One Penn Plaza (marked 
as A, B and C in Fig. 6b) are 105.32 m, 48.83 m, and 
19.93 m, respectively. Readers may visually check the 
heights of those buildings with Google Earth. Note that 
the building A has a low-rising part at the top- left corner, 
which was correctly reconstructed. Also note that the 
camera was not pointing perpendicularly down to the 
ground and therefore the reconstructed ground is tilted. 
This can be seen from the colors of the ground plane. 

   In order to test the performance of the global scene 
constraints on 3D reconstruction, we compare the match 
scores, the mean and standard deviation of match cost 
obtained from 3D reconstruction, are 1581.4 and 3338.6, 
respectively (without the global scene constraints), and 
1447.2 and 3240.8, respectively (with global scene 
constraint). Note that the match scores are calculated on 3 
pairs of mosaics, in three RGB channels. Although the 
statistics does not provide a large differences on the 
match scores due to that the unreliable matches only 
occur in small regions, the height maps is able to clearly 
show the improvement. Fig. 7 shows two examples. The 
two images on the left are the height maps of two small 
windows of the reference mosaic, obtained without using 
the global scene constraints. Quite some incorrect 
matches are shown in the height maps. The two images 
on the right are the height maps obtained by using the 
scene constraints. Apparently, most of errors are fixed.  

The moving objects (vehicles) create “outliers” in the 
height map, as can be clearly seen on the color-coded 
map. For example, on the one-way road indicated in the 
first window (left) in Fig. 5, vehicles moved from the 
right to the left in the figure, therefore, their color-
encoded height values have more red/yellow colors (i.e., 
the estimated heights are much higher than the ground if 
assumed static). On the other hand, on the one-way road 
indicated in the second window (right) in Fig. 5, vehicles 
moved from the left to the right in the figure, therefore, 
their color-encoded “height values have more blue colors 
(i.e., the estimated heights are much lower than the 
ground if assumed static). After further applying the 
information of the road directions obtained from the 
dominant plane voting, moving targets are efficiently and 
effectively searched and extracted. In Fig. 8, all of the 
moving targets (vehicles) are extracted, except the three 
circled in the figure. These three vehicles are merged with 
the road in color segmentation. Other vehicles that are not 
detected were stationary; most of them are on the 
orthogonal roads with red traffic signals on for stop, and a 
few parked on these two one-way roads. 

8. Conclusions and Discussions 
In this paper we propose a framework to both construct 

3D model and detect moving target for long video 
sequences captured by a camera on a mobile platform. In 
the first step, multiple parallel-perspective (pushbroom) 
mosaics are generated to capture both the 3D and 
dynamic aspects of the scene under the camera coverage. 
In the second step, a multi-view, segmentation-based 
stereo matching approach is applied to extract parametric 
representation of the color, structure and motion of the 
dynamic and/or 3D objects.  

The geometric constraints are applied to refine both 3D 
reconstruction and moving target detection. First, local 
scene supporting is used to refine 3D estimate. Second, an 
agglomerative clustering method is performed on the 
initial estimated planar structures to automatically vote 
the dominant plane directions which are used as good 
candidates of estimation of plane surfaces so that some 
global scene constraint can be used to fix some unreliable 
matches. Third, dominant planes are used to infer the grid 
of road directions in city scenes, which can be used to 
detect moving object more efficiently and robustly.  

Three dominant plane directions of scenes like the New 
York City can greatly benefit 3D modeling and motion 
detection. The principle can be generalized to a more 
general urban or suburban scene, in which either single 
dominant ground plane and roofs, or more than three 
dominant planes can also be clustering to refine 3D 
models. 

Modeling of large scale 3D scenes will have lots of 
important applications. In the future, our method can be 
extended to the following directions. First, because urban 
planning and developments are on a rapid pace, historical 
urban 3D scene models can be preserved by generating 
large scale mosaics and reconstructing 3D models. 
Further, changes over an urban scene can be detected by 
comparing two or more 3D models generated by different 
periods of times. Second, since a large scale urban scene 
is modeled by 3D planar structure by our approach and 
relations among all structures are known, we can 
recognize, label and index 3D structure (buildings) by 
further extracting high-level information from the 3D 
model.  

 
Fig. 4. Extracted dominant plane directions. Three mutual 
orthogonal plane directions represent norm directions of 
ground, front façades and side façades in red, green and 
blue, respectively. Only a small portion is shown here. 



 

 

 
Fig. 5.  A 4816 (W) x 2016 (H) mosaic from a 758-frame high-resolution NYC video sequence. 

 

 
Fig. 6. (a) Height map from four mosaics, and (b) color-coded height map of (a) 
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Fig. 7. Height maps of two small windows in the mosaic. a) 
and c) are height maps obtained without using the global 
scene constraints; and b) and d) are height maps obtained 
using the constraints. 
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Fig. 8. Moving target detection using the road direction 
constraint. In the figure (a) and (b) are the corresponding 
mosaics and height maps of the down-left and the up-right 
windows in Fig. 5, with the detected moving targets painted 
in red. The two circles show the three moving targets that 
are not detected. The arrows indicate the directions of the 
roads along which the moving targets are searched. 
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