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Abstract

Many applications require the ability to track the 3-D
motion of the subjects. We build a particle filter based
framework for multimodal tracking using multiple cameras
and multiple microphone arrays. In order to calibrate the
resulting system, we propose a method to determine the lo-
cations of all microphones using at least five loudspeakers
and under assumption that for each loudspeaker there ex-
ists a microphone very close to it. We derive the maximum
likelihood (ML) estimator, which reduces to the solution of
the non-linear least squares problem. We verify the correct-
ness and robustness of the multimodal tracker and of the
self-calibration algorithm both with Monte-Carlo simula-
tions and on real data from three experimental setups.

1. Introduction
Many applications require an ability to localize and track

a person in an environment. Integration of information ob-
tained from sensors of multiple modalities can lead to im-
provement of the tracking accuracy and to a practical design
for the development of a surveillance, augmented reality, or
smart videoconferencing system. In particular, in this work
we focus on integration of audio and video measurements
for joint audio-visual tracking.

To allow for self-calibration of the tracking system, we
propose a method to automatically determine the 3-D posi-
tions of multiple microphones by measuring time of flight
(TOF) from a few loudspeakers to all microphones. The
method does not require knowledge of loudspeaker posi-
tions; the only assumption we make is that each loudspeaker
has a microphone attached to it. We obtain implicit expres-
sion for loudspeaker and microphone positions using ML
estimator [1] and derive its mean and covariance.

We then propose a multimodal information fusion al-
gorithm for audio and video measurements obtained from
multiple microphone arrays and calibrated cameras using
sequential Monte-Carlo methods (also known as particle fil-
ters [2]). The proposed tracker is able to seamlessly han-

dle temporary absence of some measurements and to re-
cover dynamically changing self-configuration of the track-
ing system. We describe a particular setup of the audio-
visual tracking system and show simulated and experimen-
tal tracking and occlusion handling results.

2. Overview of the work

2.1. Autocalibration of multi-microphone setup
Given a set of M microphones and S loudspeakers in

unknown locations, our goal is to estimate their 3-D co-
ordinates. We assume that each of S speakers has a mi-
crophone attached to it so the corresponding TOF is very
small. A speaker with an attached microphone is a speaker-
microphone pair; each of the remainingM−S microphones
is a single microphone.

Let mi and sj be the coordinates of the ith microphone
and jth loudspeaker respectively. We excite each of the
S speakers one at a time and measure the TOF at each
of the M microphones using PHAT-weighted generalized
cross correlation. The TOFij for the ith microphone and
the jth speaker is defined as the time taken for the acoustic
signal to travel from the jth speaker to the ith microphone.
Let TOF estimatedij and TOF actualij be the estimated and
the actual TOF respectively for the ith microphone and jth

speaker. The actual TOF is written as

TOF actualij =
nmi − sj n

c
, (1)

where nn is the Euclidean norm and c is the sound speed.
Let Θ be a vector representing all the unknown non-

random parameters to be estimated (microphone and loud-
speaker coordinates). Assuming that each TOF is inde-
pendently corrupted by zero-mean additive white Gaussian
noise of variance σ2ij , we show that the ML estimator re-
duces to a non-linear least squares formulation:

Θ̂ML = argΘmin
M

i=1

S

j=1

(TOF estimatedij − TOF actualij )2

σ2ij
.

(2)



As the solution depends only on pairwise TOFs, it can
be translated and rotated arbitrarily. To eliminate ambigu-
ity, we fix four arbitrary nodes to provide origin, positive
X-axis, positive Y -axis, and positive-Z half-space, respec-
tively. Also, we show that it is necessary to have at least
five speaker-microphone pairs to supply sufficient informa-
tion to determine all unknowns.

As the ML estimate is implicitly defined as a mini-
mum of the non-linear function, the minimization has to
be performed using numerical optimization methods (e.g.
Levenberg-Marquardt), requiring a good initial guess for
convergence. Using measured TOFs, we obtain an approxi-
mate closed-form solution for the speaker-microphone pair
locations using multidimensional scaling [3] and then ap-
proximately localize the remaining single microphones. We
then slightly perturb the obtained coordinates and use them
as an initial guess for the Levenberg-Marquardt method to
determine final locations of each speaker and each micro-
phone. Using Taylor series expansion and implicit function
theorem [4], we also derive expressions for the estimator
mean and covariance and plot uncertainty ellipses for esti-
mated coordinates (not given here for brevity). The plots
show that the estimator uncertainty is minimized when the
loudspeakers are positioned as far away from each other as
possible and in such a way that all microphones lie in the
convex hull formed by the loudspeakers.

2.2. Multimodal tracking algorithm
The particle filter tracker, also known as a CONDENSA-

TION tracker, was first introduced in the computer vision
area by Isard and Blake [5]. The state vector Xs describes
the state of the tracked object. The measurement vectorXm
consists of the measurement values obtained from the sen-
sors, which are related to and carry some information about
the state of the objectXs. Xm is related toXs via measure-
ment equation. The algorithm maintains a set of points in
Xs space along with the weight for each point; these points
approximate the PDF on Xs space. The algorithm also de-
fines rules for updating the PDF as newXm becomes avail-
able. During the update, the measurement equation defining
how Xm depends on Xs is used. The measurement equa-
tion can usually be expressed in the simple form (it is just
the projection equation for video measurement or the defi-
nition of TDOA for audio measurement) and does not need
to be inverted (complicated and error-prone procedure).

We use object position and speed as the state vector and
image coordinates and pairwise time differences of arrival
(TDOAs) between the microphones as the measurements.
To handle unavailability of some data (e.g. camera occlu-
sion or silence), we marginalize the PDF update equation to
operate on available values only. We are also able to han-
dle the case of the sensor moving and/or rotating itself by
including its parameters (e.g. rotation angle and rotational
velocity) in the state vector.
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Figure 1. Multimodal speaker tracking with occlusions.

3. Results
We test our algorithms on synthetic data and on three ex-

perimental setups (a 32-microphone array for HRTF mea-
surements; a 7-microphone 2-camera array for bat track-
ing in a quiet room; and a 14-microphone 2-camera array
for videoconferencing in an office). We show that the self-
calibration algorithm is able to derive the microphone posi-
tions with minimal error compared to ground-truth and that
the audio-visual tracker is able to meaningfully combine
multimodal data to enhance accuracy of the tracker, to sup-
port tracking during temporary absence of some measure-
ments, and to recover sensor motion together with the object
tracking even in the case when only one sensor (out of three)
is stationary. Figure 1 shows a track of the speaker position
in an office environment. The accuracy of the tracker is
somewhat decreased during video occlusion but still stays
acceptable for surveillance/videoconferencing purposes.

References
[1] A. J. Weiss and B. Friedlander (1989). “Array

shape calibration using sources in unknown loca-
tions – a maximum-likelihood approach”, IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. ASSP-
37, no. 12, pp. 1958-1966.

[2] A. Doucet, N. de Freitas, and N. Gordons (eds.)
(2001). “Sequential Monte-Carlo Methods in Practice”,
Springer, New York, NY.

[3] M. Steyvers (2002). “Multidimensional Scaling”, Na-
ture Publishing Group, London, UK.

[4] A. K. Roy Chowdhury and R. Chellappa (2003). “Sto-
chastic approximation and rate distortion analysis for
robust structure and motion estimation”, Intl. J. Com-
puter Vision, vol. 55, no. 1, pp. 27-53.

[5] M. Isard and A. Blake (1996). “CONDENSATION
conditional density propagation for visual tracking”,
Intl. J. Computer Vision, vol. 29, no. 1, pp. 5-28.


