The Sonic Eye: A device for ultrasonic human echolocation

Santani Teng¹, Jascha Sohl-Dickstein², Alex Maki-Jokela, Benji Gaub¹, Mike DeWeese¹, Chris Rodgers¹, & Nicol Harper³

¹University of California, Berkeley ²Stanford University ³University of Oxford

Contact: steng@berkeley.edu; www.thesoniceye.com

Introduction: Echolocation
- Many non-human animals, and even some blind humans, use active echolocation vocalizations to aid in navigation and object perception.
- The **Sonic Eye** presents users with rich ultrasonic echolocation cues that are not otherwise available to humans, or difficult to control.
- Minimal processing of cues exploits the auditory system's inherent ability to process spatial and object information.

Information Flow Overview

Sonic Eye Prototype
- Single centrally placed ultrasonic emitter
- Artificial pinnae (mimicking bat ears) capture elevation information
- PC generates waveforms, manages GUI and processes echo input
- Time-stretched output through stereo earbuds

Preliminary Behavioral Data
- One sighted blindfolded volunteer localized a 30cm disk held at various positions at a 1m distance.

Detection was perfect (absences always reported).

Localization was above chance, with 72% of responses within one sector of the correct location.

Future Directions
We will characterize the envelopes of object detection, localization, discrimination, and navigation; refine the user interface for on-line user customization of echo parameters (e.g. tone, rate, intensity); and move to more robust, compact hardware and software platforms.

Emitter/Mic Power Cones

Pulse & Echo Spectrograms

Configuration (100 trials) Responses