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A viscous fluid model for multimodal non-rigid image registration
using mutual information
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Abstract

We propose a multimodal free-form registration algorithm based on maximization of mutual information. The warped image is modeled
as a viscous fluid that deforms under the influence of forces derived from the gradient of the mutual information registration criterion.
Parzen windowing is used to estimate the joint intensity probability of the images to be matched. The method is evaluated for non-rigid
inter-subject registration of MR brain images. The accuracy of the method is verified using simulated multi-modal MR images with
known ground truth deformation. The results show that the root mean square difference between the recovered and the ground truth
deformation is smaller than 1 voxel. We illustrate the application of the method for atlas-based brain tissue segmentation in MR images in
case of gross morphological differences between atlas and patient images.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction applications, error prone and often difficult to automate.
Voxel based registration approaches on the other hand,

Combining information from multiple images, possibly compute the registration solution by maximizing intensity
acquired using different modalities, at different time points similarity between both images, thereby considering all
or from different subjects, requires image registration, i.e. voxels in the region of overlap of the images to be
knowledge of the geometric relationship between phys- registered without need for prior segmentation or pre-
ically corresponding points in all images. Retrospective processing. Various voxel based registration measures have
registration of three-dimensional (3-D) images, or the been proposed that compute intensity similarity from the
recovery of the coordinate transformation that maps points intensity values directly, typically assuming the intensities
in one image volume onto their anatomically corre- of corresponding voxels to be identical (e.g. sum of
sponding points in the other from the image content itself, squared intensity differences) or linearly related (e.g.
is a fundamental problem in medical image analysis. intensity correlation), which limits their use to unimodal

Strategies for medical image registration can be classi- applications only. In contrast, maximization of mutual
fied according to the image features used to establish information (MMI) of corresponding voxel intensities
geometric correspondence between both images (Maintz assesses intensity similarity of the images to be registered
and Viergever, 1998). Point based or surface based regis- from the co-occurrence of intensities in both images as
tration requires localization or segmentation of corre- reflected by their joint intensity histogram, which varies as
sponding anatomical landmarks or object surfaces in the the registration parameters are changed (Maes et al., 1997;
images to be registered, which is non trivial in most Wells et al., 1996; Studholme et al., 1999; Pluim et al.,

2000). The MMI registration criterion postulates that the
statistical dependence between corresponding voxel inten-
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successful for rigid body or affine registration of mul- Hermosillo et al. (2001),defining the forces driving the
timodal images in a variety of applications where the rigid deformation at each voxel such that mutual information is
body assumption can be assumed to be valid or local tissue maximized and using a regularization functional derived
distortions can be neglected (West et al., 1997). Such from linear elasticity theory. However, such elastic reg-
applications include the registration of images of the same ularizer is suitable only when displacements can be
patient or the global alignment of images of different assumed to be small. In this paper we focus on the
patients or of patient and atlas images (Van Leemput et al., application of non-rigid image registration for inter-subject
1999). However, in applications where local morphologi- comparison of MR brain images, whereby large local
cal differences need to be quantified, affine registration, deformations may have to be recovered as large mor-
using only global translation, rotation, and possibly scaling phological differences may exist in the brains of different
and skew, is no longer sufficient and more general non- subjects, e.g. due to the presence of enlarged ventricles in
rigid registration (NRR) is required. NRR aims at recover- certain patients. For this particular application, a viscous
ing a dense 3-D field of 3-D displacement vectors that fluid model is more appropriate.
maps each voxel individually in one image volume onto its In this paper, we extend the approach ofHermosillo et
corresponding voxel in the other, allowing the registration al. (2001) by replacing the elastic model by the viscous
to adapt to local distortions instead of being restricted to fluid regularization scheme ofChristensen et al. (1996b)
global alignment of both images only. Applications for and thus generalize the method ofChristensen et al.
NRR include shape analysis (to warp all shapes to a (1996b) to multimodal image registration based on MMI.
standard space for statistical comparison), atlas-based The Navier–Stokes equation modeling the viscous fluid is
segmentation (to compensate for gross morphological solved by iteratively updating the deformation field and
differences between atlas and study images), image rectifi- convolving it with a Gaussian filter as in (Thirion, 1998),
cation (to correct for geometric distortion in the images) or approximating the approach ofBro-Nielsen and Gramkow
motion analysis (to infer object motion from the deforma- (1996). The deformation field is regridded as needed
tion between consecutive frames in dynamic image se- during iterations as in (Christensen et al., 1996b) to assure
quences). that its Jacobian remains positive everywhere, such that the

Several approaches have been proposed to extend the method can handle large deformations. We verified the
MMI criterion to NRR. These differ in their representation robustness of the method by applying realistic known
of the deformation field and in the way the variation of MI deformations to simulated multispectral MR brain images
with changes in the deformation parameters is estimated. A and evaluating the difference between the recovered and
popular representation of the deformation field is the use of ground truth deformation fields in terms of displacement
smooth and differentiable basis functions with global (e.g. errors and of tissue classification errors when using the
thin-plate splines (Meyer et al., 1997)) or local (e.g. B- recovered deformation for atlas-based segmentation.
splines (Rueckert et al., 1999), radial basis functions
(Rohde et al., 2001)) support. While the basis functions
implicitly impose local small scale smoothness on the

2 . Methoddeformation field, regularization at larger scales may
require inclusion of an appropriate cost function in the

2 .1. The viscous fluid modelregistration criterion to penalize non-smooth deformations
explicitly (Rueckert et al., 1999). Spline-based approaches

A template imagê is deformed towards a target imagecan correct for gross shape differences, but a dense grid of
¢& by the transformationT, that is represented using ancontrol points is required to characterize the deformation at

¢ ¢ ¢ ¢Eulerian reference frame asT5 x2 u(x), mapping fixedvoxel level detail, implying high computational complexity
¢voxel positions x in & onto the corresponding pointsunless a strategy for local adaptive grid refinement is used

¢ ¢ ¢x2 u(x) in the original templatê (Christensen et al.,(Schnabel et al., 2001).
1996b). The deforming template image is considered as aBlock matching (Gaens et al., 1998) or free-form NRR
viscous fluid whose motion is governed by its Navier–approaches, using a non-parameterized expression for the
Stokes equation of conservation of momentum. Followingdeformation field, assign a local deformation vector to
the argumentation in (Christensen et al., 1996b), thiseach voxel individually, yielding up to 33N degrees of
equation can be simplified tofreedom withN the number of voxels. These methods are,

therefore, in general more flexible than representations →→2 ¢ ¢using basis functions, but need appropriate constraints for ¢ ¢ ¢m= v 1 (m 1l)=(= ? v )1F(x, u)5 0, (1)
spatial regularization of the resulting vector field to assure
that the deformation is physically realistic and acceptable. withm andl material parameters. We setm51 andl50

¢ ¢Such constraints are typically implemented by modeling (Wang and Staib, 2000). v(x, t) is the deformation velocity
¢the deforming image as an elastic or viscous medium. experienced by a particle at positionx, that is non-linearly

¢Recently, a free-form NRR algorithm was presented by related tou by
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^,&
3 modeling the joint intensity distributionp (i , i ) of¢u 1 2¢ ¢ ¢du ≠u ≠u

] ] ]¢v 5 5 1O v , (2) deformed template and target images as a continuousidt ≠t ≠xii51 function using Parzen windowing.
T T ¢ ¢ ¢Mutual information I between^(x 2 u ) and &(x ) is¢ ¢with v 5 [v , v , v ] and u 5 [u , u , u ] .1 2 3 1 2 3

¢ given by¢ ¢ ¢F(x, u ) is the force field acting at positionx, that
¢depends on the deformationu and that drives the deforma- ^,&p (i , i )¢u 1 2^,&tion in the appropriate direction. In Section 2.2, we derive ]]]]¢I(u )5E E p (i , i )log di di . (6)¢u 1 2 1 2^ &¢ p (i )p (i )an expression forF such that the viscous fluid flow ¢1 u 2

maximizes mutual information between corresponding ¢¢ ¢If the deformation fieldu is perturbed intou 1eh,¢ ¢ ¢ ¢voxel intensities of&(x ) and ^(x 2 u(x )). At each time
variational calculus yields the first variation ofI:¢ ¢ ¢instance during the deformation, the termF(x, u ) is

constant, such that the modified Navier–Stokes equation ¢¢≠I(u 1´h )U]]]can be solved iteratively as a temporal concatenation of
≠e e50

linear equations. Solving (1) yields deformation velocities,
^,&from which the deformation itself can be computed by p (i , i )≠ ¢¢u1eh 1 2^,&integration over time. In (Christensen et al., 1996b) the ] ]]]]]5E E p (i , i )log di di¢F ¢ Gu1eh 1 2 1 2^ &≠e p (i )p (i )¢¢1 u1eh 2 e50Navier–Stokes equation is solved by successive over

^,& ^,&relaxation (SOR), but this is a computationally expensive p (i , i ) ≠p (i , i )¢ ¢¢ ¢u1eh 1 2 u1eh 1 2
]]]]] ]]]]5E E 11 logapproach. Instead, we obtain the velocity field by simple FS D^ & ≠ep (i )p (i )¢¢1 u1eh 2convolution of the force field with a 3-D Gaussian kernel

^,& &f with width s (in voxels) as in (Thirion, 1998), which is p (i , i ) ≠p (i )¢ ¢s ¢ ¢u1eh 1 2 u1eh 2
]]]]]]]2 di di . (7)G 1 2&an approximation of the filter kernel derived in (Bro- ≠ep (i )¢¢u1eh 2 e50Nielsen and Gramkow, 1996):

Because(k)(k) ¢¢v 5f F , (3)s

^,& &
(k) E p (i , i ) di 5 p (i ) (8)¢ ¢¢ ¢u1eh 1 2 1 u1eh 2¢with F the force field acting on̂ at iterationk. The

(k11)¢displacementu at iteration (k11) is then given by
and

(k)(k11) (k) (k)¢¢ ¢u 5 u 1R ? Dt , (4)
&E p (i ) di 5 1, (9)¢¢u1eh 2 2(k)¢with R the perturbation to the deformation field:

the last term of (7) reduces to3 (k)¢≠u(k) (k) (k)¢ ]]¢R 5 v 2O v , (5)F Gi ^,& &≠xii51 p (i , i ) ≠p (i )¢ ¢¢ ¢u1eh 1 2 u1eh 2
]]]]]]]E E di di1 2&(k) ≠ep (i )andDt a time step parameter that may be adapted during ¢¢u1eh 2

iterations.
^,&

& E p (i , i )diTo preserve the topology of the deformed template ¢¢u1eh 1 2 1≠p (i )¢¢u1eh 2
]]]]]]]]image, the Jacobian of the deformation field should not 5E di2&≠e p (i )¢¢u1eh 2become negative. When the Jacobian becomes anywhere

&smaller than some positive threshold, regridding of the ≠p (i ) ≠¢¢u1eh 2 &]]] ]5E di 5 E p (i )di 50, (10)¢deformed template image is applied as in (Christensen et ¢2 u1eh 2 2≠e ≠e
al., 1996b) to generate a new template, setting the in-

and (7) simplifies tocremental displacement field to zero. The total deformation
is the concatenation of the incremental deformation fields

^,&¢ p (i , i )¢≠I(u 1eh ) ¢¢u1eh 1 2associated with each propagated template. U]]] ]]]]]5EE 11 logS D^ &≠e e50 p (i )p (i )¢¢1 u1eh 2

2 .2. Force field definition ^,&
≠p (i , i )¢¢u1eh 1 2 U]]]]3 di di . (11)1 2≠e e50¢ ¢ ¢We define an expression for the force fieldF(x, u ) in (1)

such that the viscous fluid deformation strives at maximiz- The joint intensity probability is estimated from the
¢ing mutual informationI(u ) of corresponding voxel inten- region of overlapn of both images (with volumeV ), using

¢ ¢sities between the deformed template image^(x 2 u ) and the 2-D Parzen windowing kernelc (i , i ) with width h:h 1 2
¢the target image&(x ). We adopt here the approach of

1Hermosillo et al. (2001)who derived an expression for the ^,& ] ¢ ¢ ¢ ¢p (i , i )5 E c (i 2^(x 2 u ), i 2&(x )) dx. (12)¢u 1 2 h 1 2V¢gradient= I of I with respect to the deformation fieldu, n¢u
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nInserting (12) in (11) and rearranging as in (Hermosillo 1ˆ ]]et al., 2001), yields f 5 O K (x 2X ). (19)h,i h in 21 j51, j±i

¢¢≠I(u 1eh )U This way of choosingh minimizes the Kullback–Leibler]]]
≠e e50 ˆdistance betweenf (x) and f(x).h

≠c1 ˆh The pseudo-likelihood functionP(h)5o f depends¢ i h,i] ] ¢ ¢ ¢ ¢ ¢ ¢ ¢5 E L (^(x 2 u ), &(x ))=F(x 2 u )h(x )dx,F G¢uV ≠in on the selected samplesX . However, as illustrated inFig.1 i

1, we found that the maximum ofP(h) is not much(13)
affected if not all image samples are accounted for, but

with only a subset thereof. To save computation time, we
consider only 1 out ofM voxels to estimateh, by simply^,&p (i , i )¢u 1 2 picking the first and everyM-th voxel in the image.]]]]L (i , i )511 log . (14)¢u 1 2 ^ &p (i )p (i )¢1 u 2

¢ ¢We, therefore, define the force fieldF at x to be equal to 2 .4. Implementation issues
¢¢ ¢the gradient ofI with respect tou(x ), such thatF drives

¢the deformation to maximizeI: Voxels in & at grid positionsx with intensity i are2

transformed into^ and trilinear interpolation is used to
¢ ¢ ¢F(x, u )5= I¢u determine the corresponding intensitiesi in ^ at the1

¢ ¢transformed positions x 2 u. The joint histogram≠c1 h
^,&] ] ¢ ¢ ¢ ¢ ¢5 L (^(x 2 u ), &(x ))=^(x 2 u ). (15)F G¢u H (i , i ) of ^ and& within their volume of overlap9V ≠i ¢u 1 21

is constructed by binning the pairs (i , i ), after appropriate1 2
¢ ¢ ¢Thus, F(x, u ) is directed along the image intensity linear rescaling of all values within the intensity range of

¢ ¢gradient of the deformed templatê(x 2 u ), weighted by either image and using 128 bins for both images.
the impact on the mutual information of a particle in̂at The cross-validation scheme described in Section 2.3 is
¢ ¢x 2 u being displaced in this direction. applied twice to determineh andh for the template and^ &

target image, respectively, subsampling each image by a
factor M520. We selecth5max(h , h ) to define an^ &2 .3. Joint probability estimation
isotropic 2-D Parzen Gaussian kernelc (i , i )5h 1 2

K (i )K (i ) with K defined in (17). The joint imageh 1 h 2 hThe estimation of the joint image intensity probability ^,&intensity probability p in (12) is computed by the¢uusing (12) requires a proper value for the Parzen kernel
convolution ofH with a discrete approximation ofc :width h. This value is determined automatically using a

standard leave-k-out cross-validation technique applied to ^,& ^,&p (i , i )5c (i , i )H (i , i ). (20)¢ ¢u 1 2 h 1 2 u 1 2the two marginal histograms (Turlach, 1993; Hermosillo,
2002). The Parzen estimator for the probability density

 function f(x) given n samplesX is defined byi

n1ˆ ]f (x)5 O K (x 2X ), (16)h h in i51

with K a symmetric kernel function such thate K(u)
du 5 1 and K (u)5(1 /h)K(u /h) with h the kernel width.h

For our estimator, we use the Gaussian kernel:

21 u
]] ]K (u)5 exp 2 . (17)S D]]h 22Œ 2h2ph

To determine an optimal value forh, we can selecth
such that it maximizes the pseudo-likelihoodP(h) (Tur-
lach, 1993):

n

ˆP(h)5P f (X ). (18)h i
i51

Fig. 1. Effect of image sampling on the Parzen variance estimation for
However, since this pseudo-likelihood has a trivial three different multimodality image pairs. The maximum of the pseudo-

maximum forh50, it has been suggested to use leave-one- likelihood P(h) (18) varies hardly for subsampling factorsM ranging
ˆout cross validation, replacingf in (18) by from 10 to 100.h
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^ &The marginal histogramsp (i ) andp (i ) are obtained iteration during the registration process, together with the¢1 u 2
^,&by integrating p over rows and columns, respectively. gradient weighting factor (≠c /≠i )L and the resulting¢ ¢u h 1 u

¢¢ ¢X-component of the force fieldF, velocities v and per-¢ ¢The force fieldF(x, u ) is computed using (14) and (15),
¢turbation R of the deformation field. The stable andwith the gradient=^ computed using a finite difference

gradual increase of mutual information during iterations isapproximation.
shown in Fig. 2. Convergence is reached after 36 itera-¢The displacement fieldu is updated iteratively using (3),
tions. The small discontinuities that can be observed are(5) and (4). A 3-D isotropic Gaussian kernel was used for
due to regridding.f in (3). The time step parameterDt in (4) is adapteds

each iteration and set to

(k)(k) ¢Dt 5max(uuR uu) ? Du, (21) 3 . Results

with Du (in voxels) the maximal voxel displacement that is
The accuracy of the method and the impact of the

allowed in one iteration. The impact of these parameters is
implementation parameters on registration performance

explored in Section 3.1. Regridding of the deforming
was investigated on simulated MR brain images, generated

¢ ¢template image is performed when the Jacobian ofx 2 u
by the BrainWeb MR simulator (Cocosco et al., 1997) with

becomes anywhere smaller than 0.5. Iterations are con-
different noise levels. The images were downsampled by a

¢tinued as long as mutual informationI(u ) increases, with
factor of 2 in each dimension to a 1283128380 grid of 2

the maximum number of iterations arbitrarily set to 180. In 3mm isotropic voxels in order to limit computer memory
most experiments, convergence is declared after fewer than

requirements and to increase speed performance. In all
80 iterations when the criterion starts to oscillate.

experiments the images were non-linearly deformed by
The method was implemented inMATLAB , with image ¢known deformation fieldsT* as illustrated inFig. 3.These

resampling, histogram computation and image gradient
were generated by using our viscous fluid method (with

computation coded inC. Computation time for matching
optimal parameter values as determined in Section 3.1) to

two images of size 1283128380 is about 20 min on a
match the T1 weighted BrainWeb image to real T1

Linux PC with a PIII 800 MHz processor.
weighted images of three Periventricular Leukomalacia
(PVL) patients (see Section 3.3), typically showing en-

¢2 .5. Example larged ventricles. The maximal displacement inT* within
the brain region is about 7 voxels. In each registration

¢Fig. 2 illustrates the algorithm for an MR image of the experiment, the recovered deformation fieldT is compared
¢brain, for registration of the original image to an artificially with the ground truthT* by the root mean square (RMS)

deformed copy thereof. Parameter values areh54.5,Du5 error DT evaluated in voxels over all brain voxelsB:
0.6 and s53. The template, target and deformed target ]]]]]]]

1 2images are shown on the first row inFig. 3. Fig. 2shows ¢ ¢] ¢ ¢DT 5 O(uT(x )2T*( x )u) . (22)Nœ Bthe joint histogram of both images at one particular B

 

Fig. 2. Top: joint histogram (left), gradient weighting factor (middle) at a particular stage during registration and resultingX-component of force field
(right). Bottom: velocities (left), perturbation to the displacement field (middle) and mutual information versus number of iterations (right). (This figure is
available in colour, see the on-line version.)
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Fig. 3. Left: original BrainWeb T1 template; right: BrainWeb target image obtained by applying a known deformation; middle: template matched to target.
Top: T1/T1 registration, middle: T1/T2; bottom: T1/PD.

3 .1. Influence of parameters on registration performance until convergence for various values of the widthh of the
Parzen window kernelc used to estimate the jointh

Parameters relevant for registration performance are: theprobability density of corresponding voxel intensities, with
width h of the Gaussian Parzen windowing kernelc used fixed Du50.6 ands53. The registration error is minimalh

in (20) to estimate the joint intensity probability; the width for h55, but varies by not more than 1% within the range
s of the spatial smoothing kernelf used in (3) to derive 4.5<h<5.5. The optimal value forh estimated using thes

¢¢deformation velocitiesv from the force fieldF; and the leave-one-out cross validation scheme wash54.5. For this
maximal allowed displacement in one iterationDu, that value ofh, the CPU time is maximal: for an optimal value
determines the time step parameterDt used in (4) by the ofh, the algorithm iterates longer and reaches a more
relation (21). The sensitivity of the performance of our accurate registration solution.
viscous fluid registration algorithm with respect to these Table 2shows the RMS error and CPU time for various
parameter values was evaluated for the template and target values ofDu, with fixed s53 andh54.5. For values ofDu
images shown on inFig. 3. Because the behavior was up to 0.6, the registration error does not vary much with
similar for all three multi-spectral combinations, we only Du, but for Du50.7 the error sharply increases and
present the results for T1/T1 registration. remains equally high for values ofDu.0.7. The CPU time

Table 1tabulates the RMS errorDT and the CPU time gradually decreases with increasingDu up to Du50.6,

T able 1
Impact of the widthh of the Parzen kernelc on RMS errorDT (in voxels) and CPU time (in min) (Du50.6, s53)h

h 3 4 4.5 5 5.5 6 7 8 9
DT 0.53 0.46 0.403 0.399 0.404 0.41 0.46 0.53 0.60
CPU 27 26 32 29 28 26 25 23 22

T able 2
Impact of the maximal displacementDu allowed in one iteration (in voxels) on RMS errorDT (in voxels) and CPU time (in min) (h54.5, s53)

Du 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DT 0.43 0.40 0.41 0.42 0.41 0.42 1.12 1.12 1.12 1.12
CPU 45 33 29 27 24 19 99 91 92 90
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T able 4sharply increases atDu50.7 and then remains more or less
RMS errorDT (in voxels) between ground truth and recovered deforma-constant forDu.0.7. This behavior can be explained by
tion fields within the brain region for T1/T1, T1/T2 and T1/PD

the fact that for large values ofDu, and hence large time registration of BrainWeb simulated MR brain images at different noise
step Dt, the computed deformation is more likely to be levels in three cases with different ground-truth deformations
singular at each iteration, such that the need for regridding

Noise T1/T1 T1/T2 T1/PD
sharply increases. ForDu>0.7, the algorithm keeps regrid- level 3%

0% 3% 7% 0% 3% 7%ding the deformation field without converging to the
Case 1 0.384 0.430 0.465 0.577 0.759 0.685 0.723registration solution and stops when the maximum number
Case 2 0.304 0.398 0.433 0.443 0.640 0.649 0.661of iterations is reached. For smaller values ofDu, conver-
Case 3 0.351 0.411 0.459 0.505 0.753 0.775 0.772gence is slower and more iterations are required. An

optimal balance between speed of convergence and need
for regridding is obtained forDu50.6. withV (M, M*) the volume of the voxels that are assignedj

Table 3shows the RMS error and CPU time for various to classj in both maps andV (M) andV (M*) the volume ofj j

values of the widths of the spatial smoothing kernelf , the voxels assigned to classj in each map separately. Thes

with fixedDu50.6 andh54.5. Optimal performance, both sensitivity SE and specificity SP of the direct registration-j j

in terms of registration error and CPU time, is obtained for based tissue segmentation was evaluated by the number of
s53 voxels. With smaller values ofs, registration evidence true positive and true negative labeled voxel fractions

¢picked up by the force fieldF at one site is insufficiently within each class, respectively:
propagated to neighboring sites and the algorithm fails to

¢ V (M, M*)converge. For larger values ofs, the force fieldF that j
]]]SE 5 , (24)jdrives the registration is overly smoothed and small scale V (M*)j

registration features are obliterated, such that the optimum
of the registration criterion to which the algorithm con- V (M, M*)j̄

]]]SP5 , (25)verges does not correspond to the true registration solution. j V (M*)j̄

3 .2. Validation of accuracy ¯with j indicating voxels not being assigned to classj.
Fig. 3 illustrates the registration of the T1 weighted

The accuracy of the method is validated by matching the image to the artificially deformed T1, T2 and PD weighted
T1 weighted BrainWeb image to the T1, T2 or proton images.Table 4shows the RMS errorDT computed for T1
density (PD) weighted images that were artificially de- to T1, T2 and PD registration of the BrainWeb images at

¢formed by T*. The difference between the recovered different noise levels (each time identical for object and
¢ ¢deformationT and the ground-truthT* is evaluated by the target images), for 3 different ground truth deformations.

RMS error defined in (22). All values are smaller than 1 voxel, with the most accurate
We also verified the impact of possible registration results being obtained for T1/T1-matching. The overlap

errors on atlas-based segmentation. The gray matter (GM),coefficients for WM, GM and CSF in the ground truth and
white matter (WM) and cerebro-spinal fluid (CSF) tissue recovered tissue maps are tabulated inTable 5.Specificity
maps of the original template images are obtained using and sensitivity are reported for each tissue class inTable 6.
the model-based pixel classification approach of (Van The registration-based classification is illustrated inFig. 4.
Leemput et al., 1999). These probability maps are de-

¢formed onto the target image using the transformationsT
¢ 3 .3. Application: atlas-based segmentation in case ofand T*, respectively, and subsequently hard-classified by

gross morphological differencesassigning each voxel its most likely tissue class to obtain
binary tissue mapsM andM*, respectively. The difference

PVL is softening of the brain tissue near the ventricles,betweenM and M* is measured by their overlap coeffi-
starting in premature babies. This softening occurs becausecient O (M, M*) for each of the three tissue typesj (WM,j
brain tissue in that area has died due to ischemia. InGM, CSF):
patients affected by PVL, the brain presents gross mor-

2V (M, M*)j phological differences compared with a normal brain.]]]]]O (M, M*) 5 , (23)j V (M)1V (M*)j j These are most apparent in the ventricles that are strongly

T able 3
Impact of the widths (in voxels) of the spatial smoothing kernelf on RMS errorDT (in voxels) and CPU time (in min) (h54.5, s53)s

s 1 2 2.5 3 4 5 6 7 8 9
DT 1.12 1.12 1.12 0.42 0.46 0.64 0.70 0.79 0.88 0.98
CPU 84 86 87 19 20 24 20 22 20 22



572 E. D’ Agostino et al. / Medical Image Analysis 7 (2003) 565–575

T able 5
Overlap coefficient for different tissue classes of tissue maps obtained with ground truth and recovered deformation fields for T1/T1, T1/T2 and T1/PD
registration of BrainWeb simulated MR brain images in three cases with different ground-truth deformations

T1/T1 T1/T2 T1/PD

WM GM CSF WM GM CSF WM GM CSF

Case 1 0.928 0.918 0.870 0.860 0.832 0.765 0.860 0.845 0.784
Case 2 0.925 0.928 0.897 0.860 0.846 0.784 0.856 0.837 0.782
Case 3 0.928 0.926 0.880 0.846 0.827 0.758 0.855 0.803 0.7413

Noise level was 3% in each case.

enlarged. Brain tissue segmentation of such images using enlarged ventricles is much improved by using viscous
automated atlas-guided intensity-based pixel classification fluid based atlas warping. The use of the viscous fluid
as described in (Van Leemput et al., 1999) may fail, if the regularizer was indeed necessary to get good results.
gross morphological differences between atlas and patient
images are not corrected for. Indeed, the initial classifica-
tion, derived from a digital brain atlas which was con-
structed from normal brain images and which is globally 4 . Discussion
aligned with the patient image by affine registration, labels
large portions of the enlarged ventricles as WM. The initial We present an algorithm for non-rigid multimodal image
estimate of the tissue intensity parameters (i.e. mean and registration using a viscous fluid model by defining a force
spread) is thus not reliable and it is, therefore, unlikely that field that drives the deformation such that mutual in-
the iterative segmentation process, which alternates be- formation of corresponding voxel intensities is maximized.
tween pixel classification and parameter estimation, con- Our method is in fact the merger of the mutual information
verges to the correct segmentation solution. Viscous fluid based registration functional presented in (Hermosillo et
based registration of atlas and patient images using theal., 2001) with the viscous fluid regularization scheme of
method presented above is illustrated inFig. 5. The (Christensen et al., 1996b). Hence, our method is an
original 3-D T1-weighted MR patient brain image was extension of the approach of (Christensen et al., 1996b) to

3downsampled to 1283128380 2 mm voxels. Registra- multi-modal data and of the approach of (Hermosillo et al.,
tion with the BrainWeb T1, T2 or PD-weighted atlas image 2001) to cases with large deformations.
was performed with optimal values ofDu50.6 ands53 as The joint intensity probability of the images to be
derived in Section 3.1. Registration converged after typi- matched is estimated using Parzen windowing and is
cally 40 iterations. The result of CSF segmentation ob- differentiable with respect to the deformation field. The
tained with the method of (Van Leemput et al., 1999) with size of the Parzen windowing kernel needs to be properly
affine and with viscous fluid atlas-to-patient matching is chosen such that the criterion is a more or less smooth
shown in Fig. 6. Note how the segmentation of the function of the deformation field. This choice is related to

the image noise. The extension of the Parzen estimator is
T able 6 automatically computed using a leave-k-out cross valida-
Sensitivity (SE) and specificity (SP) of the proposed method in recover-

tion technique maximizing an empirical likelihood of theing WM GM and CSF, for T1/T1, T1/T2 and T1/PD registration of
marginal densities (Hermosillo, 2002; Turlach, 1993).BrainWeb simulated MR brain images in three cases with different

ground-truth deformations Another relevant implementation parameter is the time
stepDt or the maximal displacementDu allowed at eachT1/T1 T1/T2 T1/PD
iteration that is specified to update the displacements after

SE SP SE SP SE SP
solving the Navier–Stokes equation. Selecting a larger

Case 1 value forDt will result in larger displacement steps and a
WM 0.932 0.973 0.884 0.922 0.925 0.895 more frequent regridding of the template as the Jacobian of
GM 0.962 0.893 0.874 0.818 0.848 0.854

the transformation is more likely to become non-positive.CSF 0.957 0.985 0.928 0.935 0.922 0.930
A smaller value ofDt on the other hands implies a larger

Case 2
number of iterations for convergence. An appropriateWM 0.928 0.984 0.894 0.936 0.928 0.905
choice for the parameterDt is related to the widths of theGM 0.969 0.900 0.867 0.837 0.861 0.826

CSF 0.967 0.981 0.938 0.913 0.891 0.939 spatial smoothing kernel used to compute the velocities,
given the driving forces. Optimal values forDu50.6 andCase 3
s53 were experimentally determined for the BrainWebWM 0.935 0.977 0.891 0.920 0.945 0.888

3GM 0.951 0.909 0.832 0.828 0.837 0.789 simulated MR images (1283128380 grid, 2 mm voxels).
CSF 0.971 0.969 0.935 0.886 0.848 0.936 Experiments with actual patient images as illustrated in

Noise level was 3% in each case. Section 3.3 showed that these values where also generally
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Fig. 4. Mismatched WM (left), GM (middle) and CSF (right) voxels of atlas-based segmentation using the recovered versus the ground truth deformation
for the images inFig. 3. Top: T1/T1 registration; middle: T1/T2; bottom: T1/PD. Voxels are identified using different colors as true negatives (TN, light
gray), true positives (TP, dark gray), false positives (FP, white) and false negatives (FN, black). For each classc, these are defined, respectively, as: TP5

¯ ¯ ¯ ¯ ¯c & c*, TN5c & c* FP5c & c* and FN5c & c*, where * indicates the ground truth andc is the complement to classc.

appropriate for real T1, T2 and PD brain images with different realistic ground truth deformations generated by
similar dimensions and voxel sizes, yielding quick and registration of the simulated image with real patient
stable convergence to a visually accurate registration images. Although the RMS error was found to be subvoxel
result. small in all cases, T1/T1 registration gave more accurate

We validated our algorithm using simulated T1, T2 and results than T1/T2 or T1/PD registration. The contrast
PD images from BrainWeb with different noise levels and between GM and WM especially is much better in T1 than

 

Fig. 5. Left: T1-weighted PVL patient brain MR image, showing enlarged ventricles (target image); middle: original T2-weighted BrainWeb atlas image
(template image); right: atlas image warped to patient image (iteratively deformed template image). The blurring of the deformed template image is caused
by repeated trilinear interpolation in subsequent iterations of the algorithm.
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Fig. 6. Left: T1 MPRAGE patient image; middle: CSF segmented by atlas-guided intensity-based tissue classification using the method of (Van Leemput et
al., 1999) with affine atlas-to-patient registration; right: CSF segmented after viscous fluid matching of the atlas.

in T2 or PD and the algorithm succeeds better at recover- viscous fluid scheme presented here and the linear elastic
ing the interface between both tissues in T1 than in T2 or model of (Christensen et al., 1996a). The elastic model is

¢PD. We also compared T1-with-T2 versus T2-with-T1 obtained by replacing the deformation velocityv in (1) by
¢ ¢ ¢registration and found that somewhat better results are the displacementu and smoothingu instead ofv at each

obtained using T1 as the template image. This can be iteration using a similar Gaussian kernel. As shown inFig.
explained by the fact that the forces driving the registration 7, the deformation obtained with the elastic regularizer is
depend on the gradient of the template image, which is clearly much more smooth than that obtained with the
better defined in T1 than in T2 at the interface between viscous fluid scheme, especially around the ventricles and
white and GM. the brain surface. A comparative evaluation of the per-

In this paper, we focussed on non-rigid inter-subject MR formance of various regularization schemes in different
brain image registration for which the viscous fluid applications is outside the scope of this paper.
regularization scheme is well suited because of its ability
to recover large deformations. Nevertheless, the same
mutual information force field may be combined with other 5 . Conclusions
regularizers, such as elastic or curvature-based kernels
(Hermosillo et al., 2001; D’Agostino et al., 2003). Fig. 7 We have presented a multimodal free-from registration
shows the result for warping the T1-weighted BrainWeb algorithm based on MMI that models the images as a
images shown on the top row ofFig. 3 using both the viscous fluid. The forces deforming the images are defined

 

Fig. 7. Top: original template image (a) deformed to target image (b) using the viscous fluid regularizer (c) presented here and the elastic regularization
scheme of (Christensen et al., 1996a) (d). Bottom, deformation fields obtained with viscous fluid (left) and elastic (right) regularizers.



E. D’ Agostino et al. / Medical Image Analysis 7 (2003) 565–575 575

M aintz, J., Viergever, M., 1998. A survey of medical image registration.as the gradient of mutual information with respect to the
Medical Image Analysis 2 (1), 1–36.deformation field, using Parzen windowing to estimate the

M eyer, C., Boes, J., Kim, B., Bland, P., Wahl, R., Zasadny, K., Kison, P.,
joint intensity probability. We have validated our method Koral, K., Frey, K., 1997. Demonstration of accuracy and clinical
for matching simulated T1/T1, T1/T2 and T1/PD MR versatility of mutual information for automatic multimodality image
brain images, showing that the method performs quite well fusion using affine and thin plate spline warped geometric deforma-

tions. Medical Image Analysis 1 (3), 195–206.in both mono and multi-modal conditions. We illustrated
P luim, J., Maintz, J., Viergever, M., 2000. Image registration by maxi-the benefit of viscous fluid inter-subject MR brain image

mization of combined mutual information and gradient information.
registration for atlas-based brain tissue segmentation in IEEE Transactions on Medical Imaging 19 (8), 809–814.
case of gross morphological differences between patientR ohde, G., Aldroubi, A., Dawant, B., 2001. Adaptive free-form deforma-
and atlas images. Future work includes the introduction of tion for interpatient medical image registration. In: Sonka, M., Hanson,

K. (Eds.). Medical Imaging 2001: Image Processing. Proceedings ofmore spatial information and more specific intensity
the SPIE, vol. 4322. SPIE Press, Bellingham, WA; San Diego, CA,models into the similarity criterion in order to make the
USA, pp. 1578–1587.

registration more robust. R ueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.,
1999. Nonrigid registration using free-form deformations: application
to breast MR images. IEEE Transactions on Medical Imaging 18 (8),
712–721.R eferences

S chnabel, J., Rueckert, D., Quist, M., Blackall, J., Castellano-Smith, A.,
Hartkens, T., Penney, G., Hall, W., Liu, H., Truwit, C., Gerritsen, F.,

B ro-Nielsen, M., Gramkow, C., 1996. Fast fluid registration of medical Hill, D., Hawkes, D., 2001. A generic framework for non-rigid
images. In: Kikinis, R., Hoehne, K. (Eds.).Visualization in Biomedical registration based on non-uniform multi-level free-form deformations.
Computing (VBC’96). Lecture Notes in Computer Science, vol. 1131. In: Niessen, W., Viergever, M. (Eds.). Medical Image Computing and
Springer, Hamburg, Germany, pp. 267–276. Computer-Assisted Intervention (MICCAI ’01). Lecture Notes in

C hristensen, G., Miller, M., Grenander, U., Vannier, M., 1996a. In- Computer Science, vol. 2208. Springer, Berlin, Utrecht, Netherlands,
dividualizing neuroanatomical atlases using a massively parallel pp. 573–581.
computer. IEEE Computer 29 (1), 32–38. S tudholme, C., Hill, D., Hawkes, D., 1999. An overlap invariant entropy

C hristensen, G., Rabbitt, R., Miller, M., 1996b. Deformable templates measure of 3D medical image alignment. Pattern Recognition 32 (1),
using large deformation kinetics. IEEE Transactions on Image Pro- 71–86.
cessing 5 (10), 1435–1447. T hirion, J.-P., 1998. Image matching as a diffusion process: an analogy

C ocosco, C., Kollokian, V., Kwan, R.-S., Evans, A., 1997. Brainweb: with Maxwell’s demons. Medical Image Analysis 2 (3), 243–260.
online interface to a 3d MRI simulated brain database. NeuroImage 5 T urlach, B., 1993. Bandwidth selection in kernel density estimation: a
(4, part 2 /4), S425, Proceedings of Third International Conference on review. Discussion paper 9317, Institut de Statistique, UCL, Louvain
Functional Mapping of the Human Brain. Copenhagen, May 1997. la Neuve, Belgium.

D ’Agostino, E., Modersitzki, J., Maes, F., Vandermeulen, D., Fischer, B., V an Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., 1999.
Suetens, P., June 2003. Free-form registration using mutual infor- Automated model-based tissue classification of MR images of the
mation and curvature regularization. In: Workshop on Biomedical brain. IEEE Transactions on Medical Imaging 18 (10), 897–908.
Image Registration (WBIR’03). Philadelphia, PE, USA, in press. W ang, Y., Staib, L., 2000. Physical model-based non-rigid registration

G aens, T., Maes, F., Vandermeulen, D., Suetens, P., 1998. Non-rigid incorporating statistical shape information. Medical Image Analysis 4
multimodal image registration using mutual information. In: Wells, W., (1), 7–20.
Colchester, A., Delp, S. (Eds.). Medical Image Computing and W ells, III W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R., 1996.
Computer-Assisted Intervention (MICCAI’98). Lecture Notes in Com- Multi-modal volume registration by maximization of mutual infor-
puter Science, vol. 1496. Springer, Berlin, Cambridge, MA, pp. 1099– mation. Medical Image Analysis 1 (1), 35–51.
1106. W est, J., Fitzpatrick, J., Wang, M., Dawant, B., Maurer, Jr C., Kessler, R.,

H ermosillo, G., May 2002. Variational methods for multimodal image Maciunas, R., Barillot, C., Lemoine, D., Collignon, A., Maes, F.,
´matching. Ph.D. thesis. Universite de Nice (INRIA-ROBOTVIS), Suetens, P., Vandermeulen, D., van den Elsen, P., Napel, S.,

Sophia Antipolis, France. Sumanaweera, T., Harkness, B., Hemler, P., Hill, D., Hawkes, D.,
H ermosillo, G., Chef d’Hotel, C., Faugeras, O., February 2001. A Studholme, C., Maintz, J., Viergever, M., Malandain, G., Pennec, X.,

variational approach to multi-modal image matching. Tech. Rep. 4117, Noz, M., Maguire, Jr G., Pollack, M., Pellizari, C., Robb, R., Hanson,
INRIA-ROBOTVIS, Sophia Antipolis, France. D., Woods, R., 1997. Comparison and evaluation of retrospective

M aes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P., intermodality brain image registration techniques. Journal of Computer
1997. Multi-modality image registration by maximization of mutual Assisted Tomography 21, 554–566.
information. IEEE Transactions on Medical Imaging 16 (2), 187–198.


	A viscous fluid model for multimodal non-rigid image registration using mutual information
	Introduction
	Method
	The viscous fluid model
	Force field definition
	Joint probability estimation
	Implementation issues
	Example

	Results
	Influence of parameters on registration performance
	Validation of accuracy
	Application: atlas-based segmentation in case of gross morphological differences

	Discussion
	Conclusions
	References


