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Abstract— We introduce three new results, which al-
low homographies of the ground plane to support vi-
sual navigation functions for mobile robots using un-
calibrated cameras. Firstly, we illustrate how, for pure
translation, a homography can be computed from just
two pairs of corresponding corner features. Secondly,
we show how, for pure translation, we can determine
the height of corner features above the ground plane
using the recovered homography and a construct based
on the cross ratio. This allows us to detect points which
can be driven over, as their height is measured to be
close to zero, and points which are sufficiently high to
drive under. Finally, we show how, in the case of gen-
eral planar motion, homographies can be used to deter-
mine the rotation of the camera and robot.

Keywords— Visual navigation, mobile robots, monoc-
ular vision, uncalibrated cameras.

I. Introduction

The aim of our work is to develop new algorithms for
visual navigation of mobile robots in indoor environ-
ments, with particular emphasis on achieving robust-
ness of operation. Our focus on indoor environments
means that planar regions in the scene will be com-
mon. In particular, floors which are planar to some
approximation is a fundamental assumption. Apart
from this ground planarity requirement, we impose no
further restrictions and ultimately aim to be able to
navigate in a broad range of indoor scenes.

This paper describes and experimentally validates
three new results related to planar homographies. The
first result, described in section III, relates to the com-
putation of the homography itself using just two point
pair correspondences. The next two results allow pla-
nar homographies to support mobile robot navigation
functions using uncalibrated cameras. Section IV de-
scribes computation of height above the ground plane
of corner features relative to the height of the camera
optical centre, while section V shows how camera and
robot rotation can be directly computed from planar
homographies.

II. Corner based approaches

The structural information that can be extracted by
tracking 2D features, such as corner points, is central
to our mobile robot navigation system. Therefore, we

briefly review two methods which use corner tracking
(or correspondences) to elicit structural information.

A. Navigation using F

The most common approach used to track corner
features through an image sequence is the so called
“F-based tracker”, where “F” represents the funda-
mental matrix. The fundamental matrix models the
epipolar geometry between two views taken by uncali-
brated cameras and the F-based tracker is an iterative
process which simultaneously estimates F and and the
correspondences consistent with that F. Once F is es-
timated, it may be used to reconstruct 3D position
of the points in the scene up to an ambiguity of a
projective transformation [1]. Furthermore, if camera
parameters are approximately known, the projective
skew can be “unwound” to give a “quasi-euclidean”
structure which may be used for navigation purposes.

It is well known that estimation of F is degenerate
when the scene points are coplanar. In indoor visual
navigation problems many scenarios are encountered
in which the ground plane is the dominant structural
feature and there are only a minimal set of non ground
plane features. For this reason we have aimed to use
primarily planar homography (H) relations in our mo-
bile robot navigation system.

B. Navigation using H

Early work on exploiting coplanar relations has been
presented by Tsai and Huang [2], Longuet-Higgins [3]
and Faugeras and Lustman [4]. We summarise the
coplanar relation as follows: If a set of corner features
in the scene lie in a plane, and they are imaged from
two viewpoints, then the corresponding points in the
two images (separated by k frames) are related by a
plane-to-plane projectivity or planar homography, H,
such that:

λxi = Hxi−k (1)

where x represents a homogenous image coordinate
(x, y, 1)T , H is a 3 by 3 matrix representing the ho-
mography and λ is a scalar. Since this equation is valid



2up to a scale factor, H has only eight degrees of free-
dom. Eight degrees of freedom requires that we have
four corresponding coplanar features in general posi-
tion (no three collinear), since each pair of correspond-
ing points then provides two independent constraints,
and H can be determined by standard linear methods.

Equation 1 suggests a method of grouping corner
features into coplanar sets. Namely, if we can select
a set of four coplanar corresponding point pairs which
are in a sufficiently general configuration in both im-
ages (each point is unique and no three are collinear),
then H can be computed and used to check whether
other points in the scene lie in the same plane [5].

Recent work concerning planar homographies in-
cludes that of Gurdjos and Payrissat [6] which dis-
cusses the conditions for recovering the 3D structures
of perpendicular planes in the scene, such as walls and
the floor, using homographies. Ha and Kweon [7] pro-
posed an approach for 3D structure recovery and cam-
era calibration using planar homographies and known
angles in the scene.

III. H from two corner matches

We have used a four point method in a sample con-
sensus approach to bootstrap our ground plane detec-
tion system. Once tracking of ground plane features
is initiated, we always have a good estimate of which
features are on the ground plane and which are not
[5]. Here, we present a new result which allows us to
compute H, the ground plane homography, using just
two ground plane corner matches, assuming that the
robot undergoes pure translation.

This approach yields a number of benefits.
• We don’t need to find four point correspondences in
general position i.e. no three (near) collinear.
• As the vanishing line is fixed in planar motion, we
don’t need to compute the vanishing line at each iter-
ation.
• We don’t need to solve an overdetermined system
to compute H at each iteration. If pure translation
is maintained, we only need to compute a scalar to
recover the H matrix as, in this case, the vanishing
point and the vanishing line are both fixed.
• Once the vehicle changes direction and returns back
to a pure translation motion, computation of the van-
ishing point can be applied both to check for pure
translation and to recover the H matrix.

Consider two camera centered coordinate systems,
frame 1 and frame 2, so that we can write

X2 = R X1 + T, (2)

where X1 and X2 are the coordinates of the same 3D
point, expressed in frames 1 and 2 respectively and
where R and T are the rotation and the translation

matrices encoding the relative position of the two co-
ordinate systems. Now assume that X1 is a point on
the plane defined by:

AX1 + B Y1 + C Z1 + 1 = 0. (3)

This is a plane which does not pass through the
origin (i.e. the optical center of the camera) and
N = (A,B,C)T is the plane normal. Thus we have
NT X1 = −1 and denoting T = kt, where k is a scalar
and t is a unit vector, we have:

X2 = R Xc1 − ktNT X1 (4)
= (R − ktNT ) X1.

The images of the scene point can be written as:

x2 = P(R − ktNT )P−1xc (5)
= Hxc.

where P is the (unknown) camera model. For a pure
translation, R = I, and so H has the form

H = P(I − ktNT )P−1

= I − kPtNTP−1. (6)

We note that Pt is the vanishing point, vp, and
NTP−1 is the vanishing line, vl

T , in the image. Thus,
we have

H = I− kvpvT
l (7)

As shown in Fig-1, two corresponding point pairs
fully define the vanishing line and the vanishing point.
Given that we know the vanishing point and vanishing
line, scalar k can be recovered by substituting any one
known corresponding point pair and thus the H matrix
can be recovered. From 7 we have

x2 = x1 − kvpvT
l x1 (8)

Since this equation is defined up to a scale factor we
have

λx2 = x1 − ksxt (9)

where sxt = vpvT
l x1 = [sxt, syt, s]T . Normalising

homogenous vector x2 gives

x2 =
x1 − ksxt

1− ks
, y2 =

y1 − ksyt
1− ks

(10)

Thus we have two estimates of the scalar k as

kx =
x2 − x1

s(x2 − xt)
, ky =

y2 − y1

s(y2 − yt)
(11)
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Fig. 1. Two corresponding point pairs fully define the vanishing
point and the vanishing line.

Now suppose there are n (n ≥ 2) sets of correspond-
ing point pairs, indexed as (0 ≤ i < n), then a least
squares fit can be applied to obtain the scalar k, as

k =
1

2n

n−1∑
i=0

(kxi + kyi) (12)

Once k has been computed, H can be recovered by
Eq-7. Compared with using 4 point correspondences
to compute H, this approach generates a “well formed”
H matrix. By this we mean that it encodes a motion
of pure translation and its eigenvectors are the points
on the vanishing line. This is valuable in terms of 3D
reconstruction relative to the ground plane.

In practice, the vanishing point can be computed
by using all corner correspondences, not just those on
the ground plane. Intersection of the two lines which
join each pair of end points of the loci of the co-planar
point pair is a point on the vanishing line (see fig 1).
These intersection points can generate the horizon line
using robust approaches such as RANSAC.

IV. Height above ground plane.

In this section, we present a method to compute the
height of features above the ground plane in terms of
units of the height of the camera optical center from
the ground plane. This uncalibrated method assumes
pure translation and uses the recovered H matrix and
a construction based on the cross ratio.

Our aim is to recover the height of corner point A
shown in figure 2, when the robot undergoes pure (for-
ward) translation, t. Point A is the actual position
of the corner point relative to the camera before the
translation and point C is the position of the corner
after the translation. Points A′ and C ′ are the projec-
tions of these actual corner positions onto the ground
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Fig. 2. Computation of height of point A.

plane. Points a and c are the image positions of the
corner at positions A and C respectively and b is the
predicted image position of the corner point, if the cor-
ner point were to lie in the ground plane. Image point
b is computed from the recovered H matrix as b = Ha.

Now the height of the corner point relative to the
height of the camera optical centre is

hr =
h

hc
= 1− D

hc
(13)

Using similar triangles we note that:

D

hc
=

OC

OC ′
=

AC

A′C ′
(14)

For pure translation, d(A,C) = d(B′, C ′), so that

hr = 1− B′C ′

A′C ′
(15)

Now, the four image points (a, b, c, v), where v is the
vanishing point, and the corresponding four ground
plane points (A′, B′, C ′,∞) are collinear. The cross
ratio for this set of points remains invariant under pro-
jection and so we can write:

d(B′, C ′)
d(A′, C ′)

=
d(b, c) d(a, v)
d(a, c) d(b, v)

. (16)

Where function d(x, y) denotes the distance between
points x and y. Hence we can compute relative height
as:

hr = 1− d(b, c) d(a, v)
d(a, c) d(b, v)

(17)

This can be interpreted as the height of point A
units of height hc.

Note that this approach only needs the ground plane
homography, H, and the tracked image correspon-
dences a and c of the feature to determine the height
above the ground plane. By thresholding the mea-
sured height above the plane, the method can be used
to check for ground plane points, which can be driven
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Fig. 3. Frame-11.

over, and for sufficiently high feature points which can
be driven under. Note that this is achieved without
camera calibration.

A. Height measurement validation

Fig-3 shows an example of height measurement from
a pure translation image sequence. A chess board
which has squares of dimension equal to 20% of the
height of the camera optical center is placed in the
front of the vehicle such that it is perpendicular to
the ground plane. Two more boards are placed on the
ground to obtain stable corner features for tracking.
The recovered vanishing line and vanishing point are
superimposed on the image and the H matrix is then
computed from Eq-7. The heights of corners extracted
on the chess board perpendicular to the ground are
listed in table I for frame 11 and table II for frame 21.
The columns are marked from left to right and the rows
from top to the bottom. Ideally, the measurement in
each row should increase by 0.2 units of the camera
height. Note that, due to errors in the measured cor-
ner positions and the radial distortion near the image
boundary, a number of measurements errors are ob-
served. The mean, x̄r, and variance, s2

r, for each row
and the increment mean ∆x̄r between adjacent rows
is shown in table III.

V. Robot rotation from H

A general planar motion includes both rotation and
translation. In this case, the translation vector is al-
ways perpendicular to the plane normal and the axis
of rotation (screw axis) is parallel to the plane normal.
The H matrix of a planar motion generally has one real
and two complex eigenvalues. We first prove that the
real eigenvalue is unity and its corresponding eigenvec-
tor is the image of the intersection of the screw axis

TABLE I

Measurement of height of corners on the chess board

(frame 11).

Column
1 2 3 4 5 6 7 8

1 1.73 1.75 1.73 1.81 1.75 1.79 1.77 x
2 1.63 1.63 1.62 1.60 1.71 1.59 1.63 1.58
3 1.49 1.44 1.46 1.39 1.40 x 1.40 1.42
4 1.28 1.28 1.22 1.23 1.21 1.23 1.23 1.20
5 1.03 1.02 1.03 x 1.02 1.01 1.01 1.02
6 0.81 0.79 0.84 0.80 0.82 0.81 0.79 0.79
7 0.60 0.59 0.59 0.58 0.59 0.59 0.59 0.61
8 x 0.31 0.33 0.41 0.44 0.45 0.43 0.38
9 0.18 0.17 0.15 0.16 0.21 0.17 0.17 0.20
10 x 0.01 0.01 0.01 0.01 0.03 0.03 0.04

TABLE II

Measurement of height of corners on the chess board

(frame 21).

Column
1 2 3 4 5 6 7 8

1 1.67 1.67 1.65 1.68 1.67 1.67 1.67 x
2 1.49 1.50 1.48 1.50 1.52 1.48 1.48 1.48
3 1.34 1.31 1.32 1.32 1.32 x 1.31 1.33
4 1.14 1.15 1.14 1.15 1.14 1.14 1.14 1.13
5 0.97 0.97 0.97 x 0.97 0.96 x 0.97
6 0.82 0.81 0.82 0.79 0.80 0.79 0.76 0.76
7 0.66 0.62 0.63 0.63 0.61 0.60 0.60 0.60
8 x 0.43 0.41 0.43 0.43 0.42 0.42 0.39
9 0.28 0.23 0.20 0.23 0.26 0.24 0.22 0.23
10 x 0.09 0.05 0.08 0.08 0.03 0.09 0.04

and the plane of motion. We then show that the two
complex conjugate eigenvalues have unity amplitude
and their phase angles are equal to the actual angle of
rotation that the robot (or camera) undergoes. Thus
we can measure the robot’s rotation, independent of
any camera calibration.

First, a provisional coordinate system, Cp1 is chosen
such that its x−y plane describes the plane of motion
i.e the plane parallel to the ground plane, whose origin
coincides with the optical centre i.e. the origin of a
camera-centered coordinate system. Then, a general

TABLE III

Statistical results of table I and table II.

Frame 11 Frame 21
Row x̄r s2r ∆x̄r x̄r s2r ∆x̄r

1 1.761 0.0008 0.137 1.669 0.0001 0.178
2 1.624 0.0014 0.195 1.491 0.0002 0.170
3 1.429 0.0012 0.194 1.321 0.0001 0.180
4 1.235 0.0008 0.215 1.141 0.0000 0.173
5 1.020 0.0001 0.214 0.968 0.0000 0.174
6 0.806 0.0003 0.214 0.794 0.0005 0.175
7 0.592 0.0001 0.199 0.619 0.0004 0.200
8 0.393 0.0026 0.217 0.419 0.0002 0.183
9 0.176 0.0003 0.156 0.236 0.0005 0.170
10 0.020 0.0001 0.000 0.066 0.0005 0.000



5planar motion from Cp1 to Cp2 is given by,

Xp2 = RθXp1 + t, (18)

where Rθ describes a rotation about the z axis over
an angle θ and can be written as,

Rθ =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (19)

and t is a translation matrix with the form

t = (tx, ty, 0)T . (20)

As the the ground plane does not pass through the
origin and its unit normal is a0 = (0, 0, 1)T , we can
write equation 18 in the form of equation 5 to give:

Xp2 = (Rθ − ktaT0 )Xp1, (21)

Provisional

(R,       t) Working Working 
Coordinate System

Coordinate System Coordinate System
Provisional

Coordinate System
X

p2C
p1C

θ(R  , t)

1

aR

aR

X2

Ra

Fig. 4. Relations between provisional and working coordinate
systems.

Fig-4 illustrates that the two camera-centered work-
ing coordinate systems, X1 and X2, which are the co-
ordinate systems before and after the planar motion,
are obtained by the same rotation Ra from their pro-
visional coordinate systems, Cp1 and Cp2. Thus, for
all points on the ground plane, we have,

X2 = Ra(Rθ − ktaT0 )R−1
a X1

= RaH1R−1
a X1, (22)

where H1 = Rθ − ktaT0 . Applying the (unknown)
camera projection matrix P, the image of points on
the ground plane are given by.

xc2 = PRaH1R−1
a P−1xc1, (23)

Hence, the H matrix for a general planar motion is
written as:

H = PRaH1R−1
a P−1, (24)

Clearly, H and H1 have the same eigenvalues and
the eigenvectors, ξ, of H are related to the eigenvec-
tors, ξ1, of H1 by

ξ = PRaξ1, (25)

It is straightforward to show that the eigenvalues of H1

are 1 and e±iθ. The eigenvector of H1 corresponding
to the real (unity) eigenvalue is

ξ1a = (
1
2

(tx + tycot
θ

2
),

1
2

(txcot
θ

2
− ty),

1
k
, (26)

for all θ 6= 0. Geometrically, this can be interpreted
as the image of the intersection of the screw axis and
the plane of motion. The two conjugate eigenvectors
corresponding to the complex eigenvalues are,

ξ1a,b = (1,±i, 0)T . (27)

These are the two circular points [8]. As the conjugate
eigenvalues are invariant to projection, the angle of ro-
tation can be obtained directly from the eigenvalues of
the H matrix. There is no need to recover the cam-
era parameters. Notice that the H matrix is defined
up to a scale factor, and so the eigenvalues are also
defined up to the the same scale factor. It is neces-
sary to recover θ by the angle defined by both the real
and imaginary parts of the eigenvalues. The image of
the intersection point of the screw axis and the plane
of motion combines with one corresponding point pair
to define two equal length vectors which are the corre-
sponding vector rotated around this intersection point.
Hence, the sign of the rotation angle is defined by two
corresponding vectors and this can be determined by
evaluating the sign of their cross product.

Fig. 5. Image of the 50th frame.

An example of the recovery of the rotation angle is
now given. The movement of the tracked corners in



6

0 20 40 60 80 100 120
0

10

20

30

40

Frame number

R
ot

at
io

n 
an

gl
e 

(d
eg

re
es

)

Fig. 6. Accumulated angle of the motion.

the experiment is shown in figure 5. Our mobile robot
was programmed to move at a constant angular veloc-
ity and a set of corner features on the ground plane was
extracted and tracked through the image sequence.
(Note, however, that there are small variations in this
angular velocity.) The H matrix of the each frame rel-
ative to the first frame was computed. The rotation
angle from first frame to the current frame was then
recovered and plotted in Fig-6. A least squares regres-
sion fit to the data is also plotted in the figure. We
assess the method by checking the linear increment
of the rotation angle and the final angle made by the
vehicle positions before and after motion. The real an-
gle was measured to be 41 degrees, and our measured
angle was 45 degrees.

VI. Conclusions

For mobile robots operating in indoor environments,
the ground plane is often the most dominant struc-
tural feature in the robot’s field of view. Therefore,
we have argued that using multi-view relations of the
ground plane, in particular the planar homography,
is a rational approach to take. We have shown how
planar homographies can be extracted from two point
pair correspondences. We have then shown how the
height above the ground plane can be computed using
homographies when the camera undergoes pure trans-
lation. For general planar motion, we have shown how
to extract camera rotation from homographies. Our
initial experimental results have validated that these
techniques can support mobile robot visual navigation
functions.
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