Matlab

Carlo Tomasi

MATLAB is asimple and useful high-level language for matrix manipulation.
It is often convenient to use MATLAB even for programs for which this language
is not the ideal choice in terms of data structures and constructs. Thisis because
MATLAB isan interpreted language, which makes program devel opment very easy,
and includes extensive tools for displaying matrices and functions, printing them
into several different formats like Postscript, debugging, and creating graphical
user interfaces. In addition, the MATLAB package provides a huge amount of
predefined functions, from linear algebrato PDE solversto image processing and
much more. The majority of these functions are available as MATLAB source code,
which can be read by typing t ype f to the MATLAB prompt, where f is the
desired function.

This note is a quick primer for MATLAB version 5. This version of MATLAB
differsfrom previous ones most importantly because of the introduction of multi-
dimensional arrays and record-type data structures. By far the best way to learn
about the variousfeatures of Matlab isto runthe program by typing mat | ab5. At
the prompt, type hel pdesk, which starts Netscape and initializes it with the top-
level MATLAB documentation page. Under MATLAB topics, click on “Getting
started” and read on. It is a good idea to keep Netscape running while working
with MATLAB, so you have an online manual handy.

1 ExampleApplication: Images

Since images are matrices of numbers, many vision algorithms are naturally im-
plemented in MATLAB. Because images must be read and written from and to
files, and color images are three-dimensional arrays, images are good examples
of many of the features of MATLAB. In this note, we develop a sample program
for reading images, thereby introducing you to MATLAB by example. Because
of the smplicity of the basic MATLAB constructs, playing with an example is an

effective way to learn the language. It is a good idea to read these notes in front
of aterminal, so you can try out the examples.

It is useful to see images as functions | (x) from R™ to R". For instance, with
m = 2 andn = 1 we have aregular black-and-white image, while color images
have m = 2 and n = 3. Thus, for these images, the vector x is two-dimensional
and represents image position. For each value of x, a color image has three values
that identify the color of the image at that point, so for a fixed x the quantity 1(x)
is a vector with three components, say, the red, green, and blue components of
the desired color. A color image sequence is a function from R® to R?; the only
differencewith respect to asingle color imageisthe presence of athird component
in X, which denotes time.

Of course, for digital images, thesefunctionsarerepresented by discretevalues,
and become functionsthat are typically from integers to integers. For instance, a
color frame grabber may output an array of 480 rows by 640 columns of three-byte
pixels, so the color values arein [0 255]°. The pixel at position (120, 215) may
contain, say, color (35,201, 96), which represents a bright, bluish green.

As soon as we start working on images, however, they become functions from
integerstoreals. For instance, if we average two images, theresult isnot aninteger
image any more, since for instance (105 4+ 110)/2 = 107.5. For values, MATLAB
makes no distinction between integers and reals: numbers are numbers', and are
represented as double-precision floating-point numbers. For subscripts (our x), on
the other hand, MATLAB wants positive integers. We stress that subscripts must be
positive integers. If you are used to C, thisis a novelty, since in C a subscript of
zero is ok, but for MATLAB it is not. This convention is consistent with standard
conventionsin linear algebra, where the first entry of amatrix A is a1, NOt ago.

How should we represent an image? A color image sequence, aswe saw, isa
function from N° to R® (here, N represents natural numbers), but this does not by
itself determine how it should be stored and represented. For instance, to store a
10-frame color image sequence where each image has 480 rows and 640 columns
with three real-valued color bands we could use

e ten 480 x 640 arrays, where each entry contains a 3D vector;
e 0ne480 x 640 x 10 array, where each entry contains a 3D vector;

e thirty 480 x 640 arrays, each entry corresponding to one color band (red,
green, or blue) for each pixel of each frame;

LInternally, however, MATLAB is smart about the distinction between reals and integers.

e 0ne 430 x 640 x 10 x 3 array, each entry corresponding to one color band
(red, green, or blue) for each pixel of each frame.

For generality and simplicity, we use the last convention, where all subscripts,
bothinthedomain (z, y, t) and intherange (red, green, blue) aretreated uniformly.
The user must know what the subscripts mean, and how many are needed.

1.1 Variablesand Arrays

In MATLAB, with thisconvention, a480 x 640 color imagewith all zero entriescan
be created by the command (here and elsewhere, '>>’ is the MATLAB interpreter
prompt)

>> image = zeros(480, 640, 3);

If you terminate an instruction with a semicolon the instruction is executed, but the
result is not displayed. Omitting the semicolon causes the result to be displayed.
When calling afunction that returnsan image, it isimportant to type the semicolon
to avoid hundreds of thousands of numbersto scroll on your screen’. A sequence
with ten color images, all zero, is created as follows:

>> sequence = zeros(480, 640, 10, 3);
Generaly, MATLAB variables need not be initialized. The command

>> a(2, 3) =4

a =

o o
o o
O

>>

creates the smallest possible array for which a(2, 3) makes sense, puts the
number 4 in the proper place, and fills the rest with zeros. If we then type

2However, Ct r | - Dwill harmlessly abort any command.

[eoNeNelNe)
R OOOo
O h~O

>>

the array a isresized so that a(4, 2) addresses a valid location. Every time
an array is resized, however, the space for it is reallocated, causing a call to the
operating system through the C function r eal | oc. This dynamic allocation
takestime, so for large arraysit isa good ideato preallocate the array by a call to
the builtin function zer os asin the examples above.

The variable sequence defined above is rather large, because it refers to
480 x 640 x 10 x 3 = 9,216,000 double-precision floating point numbers, for a
total of about 74 MBytes of storage. To obtain 9,216,000 bytes instead, we can
use the conversion function ui nt 8 (8-bit unsigned-integer:

sequence = uint8(zeros(480, 640, 10, 3));
The builtinfunction si ze returnsavector with al the dimensions of an array:

>> size(sequence)
ans =
[480 640 10 3]

>>

Thefunctionwhos showsthe sizes and storage requirementsof all thevariablesin
the workspace, which is the space of variables known by the MATLAB interpreter.

MATLAB has arather rich, though simple, mechanism for referring to parts of
an array. Consider for instance the following array:

>> a = 10*(1:5)" * ones(1l, 4) + ones(5,1) * (1:4)

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54

>>

We created this array by taking the vector 1: 5, which is a row vector of the
integers between 1 and 5, thatis, [1 2 3 4 5], transposing it with the prime,
and multiplying it by ten; this yields the column vector

10
20
30
40
50

or in MATLAB notation[10; 20; 30; 40; 50], wherethe semicolon starts
anew row. Thecall ones(1, 4) tothe builtinfunction ones createsal x 4
matrix of ones, s0 10*(1: 5)" * ones(1, 4) is

10 10 10 10
20 20 20 20
30 30 30 30
40 40 40 40
50 50 50 50

and similarly ones(5, 1) * (1:4) is

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

and adding the two together yields the 5 x 4 matrix a shown in the example. The
following commands refer to parts of a. This should be self-explanatory. If not,
typehel p col on to find out.

>> a(3,2)
ans =

32
>> a(:, 3)
ans =

13

23

33

43

53
>> a(1, :)
ans =

11
>> a(2:4,
ans =

21

31
41

>> a(1:2:5,

ans =

11
31
51

12 13
1:3)

22 23
32 33
42 43

1:3)

12 13
32 33
52 53

14

>>

Theans variableiswhere MATLAB puts results from an expression unless we
specify some other destination. This is a variable like any other. However, its
valueis redefined by every command that returns avalue, so be careful inits use.

In MATLAB, variables are not declared. Ifyousaya = 5ora = [1 2],
then a is an array of numbers (a scalar isal x 1 array). If you say a =
"quat erni on’ , then a isastring, that is, an array of characters, in this case
of length 10, and a(6) is the character ' r’ . Variables can also refer to more
complex objects called cell lists and structures. These data types are described in
the online manual.

Functionsand Scripts

The following program reads an image from afile in either pgm (* portable gray
map”) or ppm (“portable pixel map”) format. Gray maps are black-and-white
images, pixel maps are color images. Hereis a description of these formats:

¢ A “magic number” for identifying thefile type. The two characters’P5’ are
used for pgmand ' P&’ for pgm

e Whitespace (blanks, TABs, carriage returns, line feeds).

e Theimagewidth in pixels, formatted as ASCI| charactersin decimal.
e Whitespace.

e Theimage height in pixels, againin ASCII decimal.

e Whitespace.

e Themaximum valuefor each component, againin ASCII decimal. Theonly
value allowed hereis 255.

e Whitespace.

e Width x height gray values for pgm or width x height x 3 color values
for ppm These values are raw bytes, with no separators. For ppmimages,
the three values for each pixel are adjacent to each other, and correspond to
red, green, and blue values. Values (or triples of valuesfor ppm start at the
top-left corner of the image, proceeding in normal English reading order.

7

e Charactersfroma’# to the next end-of-line areignored (comments) if they
appear before the pixel values.

A possible source of program errors is that these image formats specify image
width first and image height second. MATLAB, on the other hand, specifies matrix
dimensions by giving the number of rowsfirst, and the number of columns second.

To write afunction to read an image in either format, we create a file called
pnnt ead. m Thesecond character, n, standsfor “any,” meaning that thisfunction
will read either pgmor ppm(thisisarather narrow notion of “any”). All MATLAB
functions are files with the same name as the function and extension . m Hereis
most of pnnr ead:

function i = pnnread(fil enane)

% open file
[fid, nmeg] = fopen(filename, 'r’);
if fid == -1,
error(nsg)
end

% read nmagi ¢ nunber
magi ¢ = readstring(fid);
if length(magic) "= 2,
error(’ Unknown i mage format’)

end

if any(magic "= 'P5") & any(magic "= 'P6"),
error(’ Unknown i mage format’)

el se

w = readnunber (fid);
h = readnunber (fid);
maxval ue = readnunber (fid);
fgetl (fid);
if all(magic == "P5"),
%read pgmimage; we will conplete this later
el se % nust be P6
%read ppmimage; we will conplete this later
end
end

% close file
fclose(fid);

The functions r eadst ri ng and r eadnunber are not predefined, so we
will need to write those as well. They essentially skip comment lines, which start
with a’#', and return the next string or number in thefile.

Thefirst thing to notice in the function definition above is a little redundancy:
the base of the file name, pnnr ead, is repeated in the function declaration, the
line starting with theword f unct i on. What countsfor MATLAB isthefile name.
You could replace pnnr ead in the declaration with any other name, and this
function would still be called pnnr ead, because this is the name of the filein
which the function resides.

After the word f unct i on there is either no variable, a single variable, or
a comma-separated bracketed list of variables, asinfunction [a, b,c] =
f (d) . Thus, functionsin MATLAB can return any number of arguments, including
zero. When more than one argument is returned, not all arguments need be read
by the caller. Inside the function, abuiltin variablenar gout specifies how many
arguments are actually being requested by the caller for the particular function
invocation. Soif thef unction [a, b,c] = f(d) isbeingcaledasfollows:

[g.r] = T(3)

then nar gout will have a value of 2 within that invocation of f. A variable
nar gi n similarly holds the number of arguments actually passed to the func-
tion, which cannot exceed the number of formal parameters in the f uncti on
declaration.

Notice that the return arguments are simply listed inthe f unct i on declara-
tion, and no explicit r et ur n statement is needed in the function body. When the
function returns to the caller, the values of the return variables are the last values
these variables were assigned within the function body. For early returnsfromthe
middle of a function body, MATLAB provides ar et ur n statement, which takes
no arguments.

If the function declaration is omitted, the file becomes a script. This has two
important consequences: first, no input or output arguments can be passed to and
from a script. Second, al variables defined inside the function are also visiblein
the workspace. Consider for instance the rather silly function

function a = add(b, c)
a = b+c;

defined in afileadd. m Hereiswhat happens when we call this function and we
try to examine b.

>> n = add(2, 3)
n =

5
>> Db

??? Undefined function or variable 'Db’

because b is not known in the workspace. If we now comment out or remove
thelinefunction a = add(b, c) fromthefileadd. m thisfile becomes
ascript and can be used as follows:

>> b = 2
>> ¢ = G
>> n = add
n =

5
>> b
b =

2

Because add. mis a script, the variables b and ¢ are global, and can be
examined from the interpreter: typing b at the prompt, as shown above, displays
2.

Whenever you find yourself doing the same thing over and over again in
MATLAB, itisagood ideato writeascript. Another usefor scriptsiswhen you are
debugging a function. Although MATLAB provides a complete set of debugging
constructs (type hel p debug to find out), it is often easier to comment out the
f unct i on declaration of the broken function, define values for the arguments
by hand, and run the headerless function, which is now a script. This causes all
the intermediate variables to be visible to the interpreter, and you just need to type
their names to inspect their values.

10

1.2 Filel/O

MATLAB hasextensiveinput/output constructs, includingf open,f cl ose,f scanf,
fprintf,sscanf,read,wite,fread,fwite,input. Someof these
behave similarly to the homonymous C functions, but with small and important
differences in how matrix arguments are handled. Use the hel p command or
the online documentation to see the details. In our function pnnr ead, we use a
rather minimal subset. Thefirst linein

[fid, nmeg] = fopen(filename, 'r’);
if fid == -1,

error(nsg)
end

opens the filename whose name s in the argument string f i | enane. The result
is afile identifier fi d, just likein C, and an error message stored in the string
nmsg. Thisstringisempty (' *) if no error has occurred. On error, fi d isset to
-1. The command err or (nsg) displays the message in nsg and aborts the
function, returning control to the interpreter. If thiscall to er r or isdeep within
acall stack, the entire stack is aborted.

Assuming that things went well with f open, we can now read from the
file through its integer identifier fi d. Let us define the two simple functions
readstringandr eadnunber ,whichwewriteinfilesr eadst ri ng. mand
readnunber . n¥. Here are the contentsof r eadst ri ng. m

function s = readstring(fid)

s = fscanf(fid, 9%’ ,1);

while s(1) =="#,

fgetl (fid);

s = fscanf(fid,” %’ ,1);
end

This function assumes that we are starting to read from a new line, and reads
one blank-space separated string from f i d viathe f scanf command, whose
syntax is similar to the equivalent C function. The result is placed in the variable

3Itisalittleannoyingthat every function must haveitsownfile. The advantageof this, however,
isthat MATLAB keeps checking if function definitions have changed, and if so reloads the newest
definition. Thisisvery convenient during program development.

11

S, which is a MATLAB vector of characters. Thus, the expression s(1) refers
to the first character in s. If this character is a pound sign #, it means that the
current lineisacomment; thecommandf get | (fi d) thengetsanentireline(the
comment) and putsit nowhere: thecomment isignored. The next string is read by
thef scanf inthewhi | e loop. This continues until some non-comment string
isfound. Sincethe variables isinthef uncti on declaration as a return value,
the last string found is passed back to the caller whenr eadst r i ng returns.

The function r eadnunber does something similar to r eadst ri ng, but
looks for a number rather than a generic string. Rather than repeating most of the
body of r eadstri ng inreadnunber , we observe that a number is a string
whenitisintheimagefile. Thus, r eadnunber cansimply call r eadstri ng
and do a string-to-number conversion:

function n = readnunber (fid)

S
n

readstring(fid);
sscanf(s,’ %l’);

Rather than using sscanf for the conversion, we could have used the builtin
function st r 2numwith the same effect.

Conditional Constructs
Going back to our function pnnr ead, the command
magi ¢ = readstring(fid);

reads a string from f i d and assigns it to the variable magi c. This string is
expected to contain the magic number P5 for pgmimages, or P6 for ppm We
check if thisisthe casewithani f statement

if length(magic) "= 2,
error(’ Unknown i mage format’)

end

if any(magic "= 'P5") & any(magic "= 'P6"),
error(’ Unknown i mage format’)

el se

end

12

The comma at the end of thei f isoptional. It is required when the statement
after the condition iswritten on the same line. Let us consider thesecond i f first.
Noticethat thelogical "and’ operator in MATLAB is asingle ampersand, &, unlike
C. Similarly, "or’ isasingle vertical bar, | . Negation is expressed by atilde, ~,
somagi ¢ ~= ' P5" means“magi c isnot equal to’ P5’ ”. To understand the
expression any(magi ¢ ~= ' P5"), notice that in MATLAB equality (==) or
inequality (~=) can be applied to arrays, which must be of equal sizes. Thisisthe
reason for thefirsti f above,

if length(magic) "= 2,
error(’ Unknown i mage format’)
end

Without this check, the comparisonmagi ¢ ~= * P5’ could generateaMATLAB
errorif magi ¢ hasalength differentfrom 2. The builtinfunction! engt h returns
the length of a vector, or the maximum dimension of an array.

When applied to vectors, the equality or inequality operator returns a vector
of zeros and ones, corresponding to an element-by-element comparison between
the two vectors. Thus, magi ¢ ~= ' P5’ returns[O O] if and only if the two
strings are equal. The builtin function any returns 1 if any of the elements of
the vector are non-zero. Otherwise it returns 0. Type hel p any to see what
any does with arrays. Thus, any corresponds to the existential quantifier. The
MATLAB function al | corresponds to the universal quantifier.

Therest of our sketch of pnnr ead isobvious:

w = readnunber (fid);
h readnunber (fid);
maxval ue = readnunber (fid);
fgetl (fid);
if all(mgic == "P5"),
% read pgm i mge
el se % nust be P6
% read ppm i mge
end

We read the image width w, the image height h, the maximum pixel value
maxval ue, and go the the beginning of anew linewithf get | (fi d) . Without
this, the ASCII code of the newline character itself would be interpreted as the
first pixel value.

13

Reading and Reshaping Matrices

We are now ready to do the real work of reading a pgmor appmimage. Here
MATLAB has asmall inconsistency, which is caused by the fact that old versions of
MATLAB only allowed vectors and matrices, and no arrays with more dimensions.
The low-level f r ead function, even in MATLAB 5, reads into either a vector or a
matrix, but not into an array with more dimensions. Thus, for the case of appm
image, we first read into a matrix, and then convert this matrix into an array with
three dimensions. Here is the complete code:

function i = pnnread(fil enane)

% open file
[fid, meg] = fopen(filename, 'r’);
if fid == -1,
error(nsg)
end

% read magi ¢ nunber
magi ¢ = readstring(fid);
if length(magic) "= 2,
error(’ Unknown i mage format’)

end

if any(magic "= 'P5") & any(magic "= 'P6"),
error (’ Unknown i mage format’)

el se

w = readnunber (fid);
h = readnunber (fid);
maxval ue = readnunber (fid);
fgetl (fid);
if all(mgic == "P5"),
% read pgm i mge
i = fread(fid, [wh], "uint8)’;
el se % nust be P6
% read ppm i mge
pixels = uint8(fread(fid, [3 wh], "uint8));
i = uint8(zeros(h, w, 3));
i(:, 1, 1) reshape(pixels(1,:), w, h)’; %red
i(:, 1, 2) reshape(pi xels(2,:), w, h)’; %green

14

i(:, :, 3) = reshape(pixels(3,:), w, h)"; % Dblue
end
end

% close file
fclose(fid);

When the image is apgm(magic code P5), the instruction
i = fread(fid, [wh], "uint8)’;

reads the image into an array of size w x h, rather than & x w. Infact, f r ead
reads data into matrices in column-major order, while pgmimages are stored in
row-major order. The prime at the end of theinstruction above then transposes the
result to obtain the correct image orientation.

If MATLAB 5 were completely consistent, the statements in the el se part of
thei f statement, where the ppmimage is being read, could be replaced by a
single statement that instructs MATLAB to read w x i x 3 8-bit unsigned integers
(ui nt 8s) fromfilefi d, and arrange them into an array with dimensions[h w
3] (modulo proper transpositionsto account for the different ordering conventions
in MATLAB and in the ppmformat).

Sincethisisnot (yet) allowed, wefirst read theimageinto a3 x wh array called
pi xel s. Inthisway, each row of pi xel s isdevoted to a different color band:
byte 1intheimagegoestopi xel s(1, 1) ; byte2 goestopi xel s(2, 1) ; byte
3 goesto pi xel s(3, 1). We have now read the first pixel (red, green, blue),
and we go back to row 1, entry pi xel (1, 2), for the red entry of pixel 2, and
so forth. We then use the builtin function r eshape to reshape the three rows
of pi xel s into arrays of size w x h, transpose the results, place these into the
h xw x 3arrayi ,whichispreallocated both for efficiency and to obtain the proper
data type ui nt 8 (MATLAB would make i double floating-point by default). The
function r eshape reads the input array in lexicographic order (column-major
order for matrices) and returns an array with the specified dimensions. The
number of elementsin the input array must be equal to the product of the specified
dimensions.

Finally, closing the file with f cl ose(fi d) makes the file descriptor fi d
available for other files.

15

Writing an Image

At this point you should know almost enough about MATLAB to write a function
pnmw i t e that writes a black-and-white image to a file in pgmformat, and a
color imageto afilein ppmformat. On one hand, writing an image is easier than
reading it because writing to afile requires no parsing. On the other hand, writing
is dightly trickier than reading in that the values in the input array need to be
normalized to 0 - 255. Also, theimage must be converted to double by something
like

i = doubl e(i)

both because subtraction make no sense for unsigned integer values and because
the MATLAB functionf wr i t e only works on arrays of double-precision floating-
point numbers. For the normalization, it is useful to know the MATLAB functions
m n and max (typehel p mn..).

Try towritepnmar i t e yourself before looking at the following code.

%linearly maps the values in the given array to
%[0 255], quantizes to integers, and stores the
%result in the specified file as a raw pgm or ppm
% i mage; returns the nunber of bytes witten; the
% i nput array nust be either of size [h w] or of
%size [h w 3]

function count = pnmwmite(i, filenane)

fid=fopen(filenanme,’ w);

h = size(i, 1);

w = size(i, 2);

if size(i, 3) == 1,
bands = 1;
magic = ' P5’;
pgm = 1;

el seif size(i, 3) == 3,
bands = 3;
magic = ' P6’;
pgm = U;

16

el se
error(’ Third array di nension nust be either 1 or 3')
end

% convert input to double if necessary, so arithnetic
% oper ati ons nmake sense; also, fwite only works on
% doubl es

i = double(i);

% scal e pi xel values; grays should not change to
% bl acks, hence the outernost mn

mnvalue = mn(0, mn(mn(mn(i))));

maxval ue = max(max(max(i)));

i = uint8(round((i - mnvalue) * 255 / maxval ue));

% put pixels intoa 3 x (wh) or a1 x (wh) array of
% 8-bit integers, one row per color band
a = zeros(bands, wth);
for b = 1: bands,
a(b, :) =reshape(i(:, :, b)y’, 1, wh);
end

% write header
fprintf(fid, %\n%d %\ n%l\n’, magic, w, h, 255);

%wite pixels (ais read in colum-nmajor order’)
count = fwite(fid, a, "uint8);

fclose(fid);
Notice that because of the grey-level normalizationin pnmwr i t e, typing
i = pnnread(’ a.pgm);
pnmwite(i, 'b.pgm);
] = pnnread(’b.pgm);
pnmarite(j, 'c.pgm);
may result in an image b. pgmdifferent from a. pgm However, the imagesin

b. pgmand c. pgmshould be equal to each other. The same holds for color
images.

17

Displaying and Printing I mages

One of the most useful features of MATLAB isits extensive set of display functions.
To display an image, type

img = pnnread(fil enane);

i mgesc(ing);
axi s(’square’)

Thecal axi s(’ squar e’) adjuststhe aspect ratio of the display appropriately.
The image appears with axis tickmarks that are often useful to identify rows and
columns. Both tickmarks and the frame around the picture can be turned off with
the command

axis(’off’)

There is adso a function i mage, which is ssimpler than i ragesc. However,
I mage does not scale the image values to use the colormap of the display appro-
priately, so using i mage isnot recommended. If theimageis black-and-white, it
will still be displayed with a color colormap. To obtain a proper display, type

col ormap(gray)

which installs a gray-value colormap. Colormaps can be manipulated in many
waysin MATLAB. Typehel p col or map to find out how to use them.
To print an image to a postscript file named f . eps, type

print -deps f.eps

This will print a black-and-white copy of the picture in the current figure, which
is either the last figure you worked on or the one you select with the fi gur e
command. A color postscript file can be generated with

print -depsc f.eps

Many other optionsexist. Typehel p pri nt fordetails. Thepri nt command
prints anything in the current figure, including plots.

A single scanline of a black-and-white image can be plotted by a command
like

pl ot (i (100, :))
and a patch of the image can be displayed by

18

mesh(i (100: 150, 80: 120))

which draws a surface as a mesh. The mesh can befilled, shaded, lit in very many
different ways by using the surf command (for “surface”) instead of mesh.
Again, the hel p command or the online documentation gives all the details.

2 Going Ahead

MATLAB has a very rich set of builtin functions. Some are written as MATLAB
code, and can be examined by using thet y pe command, which displays the code
itself. The hel p command or the online documentation give details.

While MATLAB is perhaps too inefficient to be used for production code for
computer vision or graphics, once you start using it you will realize that the very
modest learning time it requires pays off handsomely in terms of increased code
productivity and ease of use when developing a program prototype or tinkering
with an ideathat is not yet fully devel oped.

19

