
Matlab

Carlo Tomasi

MATLAB is a simple and useful high-level language for matrix manipulation.
It is often convenient to use MATLAB even for programs for which this language
is not the ideal choice in terms of data structures and constructs. This is because
MATLAB is an interpreted language, which makes program development very easy,
and includes extensive tools for displaying matrices and functions, printing them
into several different formats like Postscript, debugging, and creating graphical
user interfaces. In addition, the MATLAB package provides a huge amount of
predefined functions, from linear algebra to PDE solvers to image processing and
much more. The majority of these functions are available as MATLAB source code,
which can be read by typing type f to the MATLAB prompt, where f is the
desired function.

This note is a quick primer for MATLAB version 5. This version of MATLAB

differs from previous ones most importantly because of the introduction of multi-
dimensional arrays and record-type data structures. By far the best way to learn
about the various features of Matlab is to run the program by typingmatlab5. At
the prompt, type helpdesk, which starts Netscape and initializes it with the top-
level MATLAB documentation page. Under MATLAB topics, click on “Getting
started” and read on. It is a good idea to keep Netscape running while working
with MATLAB, so you have an online manual handy.

1 Example Application: Images

Since images are matrices of numbers, many vision algorithms are naturally im-
plemented in MATLAB. Because images must be read and written from and to
files, and color images are three-dimensional arrays, images are good examples
of many of the features of MATLAB. In this note, we develop a sample program
for reading images, thereby introducing you to MATLAB by example. Because
of the simplicity of the basic MATLAB constructs, playing with an example is an

1



effective way to learn the language. It is a good idea to read these notes in front
of a terminal, so you can try out the examples.

It is useful to see images as functions I(x) from Rm to Rn. For instance, with
m = 2 and n = 1 we have a regular black-and-white image, while color images
have m = 2 and n = 3. Thus, for these images, the vector x is two-dimensional
and represents image position. For each value of x, a color image has three values
that identify the color of the image at that point, so for a fixed x the quantity I(x)
is a vector with three components, say, the red, green, and blue components of
the desired color. A color image sequence is a function from R3 to R3; the only
difference with respect to a single color image is the presence of a third component
in x, which denotes time.

Of course, for digital images, these functions are represented by discrete values,
and become functions that are typically from integers to integers. For instance, a
color frame grabber may output an array of 480 rows by 640 columns of three-byte
pixels, so the color values are in [0 255]3. The pixel at position (120; 215) may
contain, say, color (35; 201; 96), which represents a bright, bluish green.

As soon as we start working on images, however, they become functions from
integers to reals. For instance, if we average two images, the result is not an integer
image any more, since for instance (105 + 110)=2 = 107:5. For values, MATLAB

makes no distinction between integers and reals: numbers are numbers1, and are
represented as double-precision floating-point numbers. For subscripts (our x), on
the other hand, MATLAB wants positive integers. We stress that subscripts must be
positive integers. If you are used to C, this is a novelty, since in C a subscript of
zero is ok, but for MATLAB it is not. This convention is consistent with standard
conventions in linear algebra, where the first entry of a matrix A is a11, not a00.

How should we represent an image? A color image sequence, as we saw, is a
function from N3 to R3 (here, N represents natural numbers), but this does not by
itself determine how it should be stored and represented. For instance, to store a
10-frame color image sequence where each image has 480 rows and 640 columns
with three real-valued color bands we could use

� ten 480 � 640 arrays, where each entry contains a 3D vector;

� one 480 � 640 � 10 array, where each entry contains a 3D vector;

� thirty 480 � 640 arrays, each entry corresponding to one color band (red,
green, or blue) for each pixel of each frame;

1Internally, however, MATLAB is smart about the distinction between reals and integers.

2



� one 480 � 640 � 10 � 3 array, each entry corresponding to one color band
(red, green, or blue) for each pixel of each frame.

For generality and simplicity, we use the last convention, where all subscripts,
both in the domain (x; y; t) and in the range (red, green, blue) are treated uniformly.
The user must know what the subscripts mean, and how many are needed.

1.1 Variables and Arrays

In MATLAB, with this convention, a 480�640 color image with all zero entries can
be created by the command (here and elsewhere, ’>>’ is the MATLAB interpreter
prompt)

>> image = zeros(480, 640, 3);

If you terminate an instruction with a semicolon the instruction is executed, but the
result is not displayed. Omitting the semicolon causes the result to be displayed.
When calling a function that returns an image, it is important to type the semicolon
to avoid hundreds of thousands of numbers to scroll on your screen2. A sequence
with ten color images, all zero, is created as follows:

>> sequence = zeros(480, 640, 10, 3);

Generally, MATLAB variables need not be initialized. The command

>> a(2, 3) = 4

a =

0 0 0
0 0 4

>>

creates the smallest possible array for which a(2, 3) makes sense, puts the
number 4 in the proper place, and fills the rest with zeros. If we then type

2However, Ctrl-D will harmlessly abort any command.

3



>> a(4, 2) = 1

a =

0 0 0
0 0 4
0 0 0
0 1 0

>>

the array a is resized so that a(4, 2) addresses a valid location. Every time
an array is resized, however, the space for it is reallocated, causing a call to the
operating system through the C function realloc. This dynamic allocation
takes time, so for large arrays it is a good idea to preallocate the array by a call to
the builtin function zeros as in the examples above.

The variable sequence defined above is rather large, because it refers to
480 � 640 � 10 � 3 = 9; 216; 000 double-precision floating point numbers, for a
total of about 74 MBytes of storage. To obtain 9,216,000 bytes instead, we can
use the conversion function uint8 (8-bit unsigned-integer:

sequence = uint8(zeros(480, 640, 10, 3));

The builtin function size returns a vector with all the dimensions of an array:

>> size(sequence)

ans =

[480 640 10 3]

>>

The functionwhos shows the sizes and storage requirements of all the variables in
the workspace, which is the space of variables known by the MATLAB interpreter.

MATLAB has a rather rich, though simple, mechanism for referring to parts of
an array. Consider for instance the following array:

>> a = 10*(1:5)’ * ones(1, 4) + ones(5,1) * (1:4)

4



a =

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54

>>

We created this array by taking the vector 1:5, which is a row vector of the
integers between 1 and 5, that is, [1 2 3 4 5], transposing it with the prime,
and multiplying it by ten; this yields the column vector

2
6666664

10
20
30
40
50

3
7777775

or in MATLAB notation [10; 20; 30; 40; 50], where the semicolon starts
a new row. The call ones(1, 4) to the builtin function ones creates a 1 � 4
matrix of ones, so 10*(1:5)’ * ones(1, 4) is

2
6666664

10 10 10 10
20 20 20 20
30 30 30 30
40 40 40 40
50 50 50 50

3
7777775

and similarly ones(5,1) * (1:4) is
2
6666664

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

3
7777775

and adding the two together yields the 5� 4 matrix a shown in the example. The
following commands refer to parts of a. This should be self-explanatory. If not,
type help colon to find out.

5



>> a(3,2)

ans =

32

>> a(:, 3)

ans =

13
23
33
43
53

>> a(1, :)

ans =

11 12 13 14

>> a(2:4, 1:3)

ans =

21 22 23
31 32 33
41 42 43

>> a(1:2:5, 1:3)

ans =

11 12 13
31 32 33
51 52 53

6



>>

The ans variable is where MATLAB puts results from an expression unless we
specify some other destination. This is a variable like any other. However, its
value is redefined by every command that returns a value, so be careful in its use.

In MATLAB, variables are not declared. If you say a = 5 or a = [1 2],
then a is an array of numbers (a scalar is a 1 � 1 array). If you say a =
’quaternion’, then a is a string, that is, an array of characters, in this case
of length 10, and a(6) is the character ’r’. Variables can also refer to more
complex objects called cell lists and structures. These data types are described in
the online manual.

Functions and Scripts

The following program reads an image from a file in either pgm (“portable gray
map”) or ppm (“portable pixel map”) format. Gray maps are black-and-white
images, pixel maps are color images. Here is a description of these formats:

� A “magic number” for identifying the file type. The two characters ’P5’ are
used for pgm and ’P6’ for pgm.

� Whitespace (blanks, TABs, carriage returns, line feeds).

� The image width in pixels, formatted as ASCII characters in decimal.

� Whitespace.

� The image height in pixels, again in ASCII decimal.

� Whitespace.

� The maximum value for each component, again in ASCII decimal. The only
value allowed here is 255.

� Whitespace.

� Width � height gray values for pgm, or width � height � 3 color values
for ppm. These values are raw bytes, with no separators. For ppm images,
the three values for each pixel are adjacent to each other, and correspond to
red, green, and blue values. Values (or triples of values for ppm) start at the
top-left corner of the image, proceeding in normal English reading order.

7



� Characters from a ’#’ to the next end-of-line are ignored (comments) if they
appear before the pixel values.

A possible source of program errors is that these image formats specify image
width first and image height second. MATLAB, on the other hand, specifies matrix
dimensions by giving the number of rows first, and the number of columns second.

To write a function to read an image in either format, we create a file called
pnmread.m. The second character,n, stands for “any,” meaning that this function
will read either pgm or ppm (this is a rather narrow notion of “any”). All MATLAB

functions are files with the same name as the function and extension .m. Here is
most of pnmread:

function i = pnmread(filename)

% open file
[fid, msg] = fopen(filename, ’r’);
if fid == -1,

error(msg)
end

% read magic number
magic = readstring(fid);
if length(magic) ˜= 2,

error(’Unknown image format’)
end
if any(magic ˜= ’P5’) & any(magic ˜= ’P6’),

error(’Unknown image format’)
else

w = readnumber(fid);
h = readnumber(fid);
maxvalue = readnumber(fid);
fgetl(fid);
if all(magic == ’P5’),
% read pgm image; we will complete this later

else % must be P6
% read ppm image; we will complete this later

end
end

8



% close file
fclose(fid);

The functions readstring and readnumber are not predefined, so we
will need to write those as well. They essentially skip comment lines, which start
with a ’#’, and return the next string or number in the file.

The first thing to notice in the function definition above is a little redundancy:
the base of the file name, pnmread, is repeated in the function declaration, the
line starting with the word function. What counts for MATLAB is the file name.
You could replace pnmread in the declaration with any other name, and this
function would still be called pnmread, because this is the name of the file in
which the function resides.

After the word function there is either no variable, a single variable, or
a comma-separated bracketed list of variables, as in function [a,b,c] =
f(d). Thus, functions in MATLAB can return any number of arguments, including
zero. When more than one argument is returned, not all arguments need be read
by the caller. Inside the function, a builtin variable nargout specifies how many
arguments are actually being requested by the caller for the particular function
invocation. So if the function [a,b,c] = f(d) is being called as follows:

[q,r] = f(3)

then nargout will have a value of 2 within that invocation of f. A variable
nargin similarly holds the number of arguments actually passed to the func-
tion, which cannot exceed the number of formal parameters in the function
declaration.

Notice that the return arguments are simply listed in the function declara-
tion, and no explicit return statement is needed in the function body. When the
function returns to the caller, the values of the return variables are the last values
these variables were assigned within the function body. For early returns from the
middle of a function body, MATLAB provides a return statement, which takes
no arguments.

If the function declaration is omitted, the file becomes a script. This has two
important consequences: first, no input or output arguments can be passed to and
from a script. Second, all variables defined inside the function are also visible in
the workspace. Consider for instance the rather silly function

function a = add(b, c)
a = b+c;

9



defined in a file add.m. Here is what happens when we call this function and we
try to examine b.

>> n = add(2,3)
n =

5
>> b
??? Undefined function or variable ’b’

because b is not known in the workspace. If we now comment out or remove
the line function a = add(b, c) from the file add.m, this file becomes
a script and can be used as follows:

>> b = 2;
>> c = 3;
>> n = add

n =

5

>> b

b =

2

Because add.m is a script, the variables b and c are global, and can be
examined from the interpreter: typing b at the prompt, as shown above, displays
2.

Whenever you find yourself doing the same thing over and over again in
MATLAB, it is a good idea to write a script. Another use for scripts is when you are
debugging a function. Although MATLAB provides a complete set of debugging
constructs (type help debug to find out), it is often easier to comment out the
function declaration of the broken function, define values for the arguments
by hand, and run the headerless function, which is now a script. This causes all
the intermediate variables to be visible to the interpreter, and you just need to type
their names to inspect their values.

10



1.2 File I/O

MATLAB has extensive input/output constructs, includingfopen,fclose,fscanf,
fprintf, sscanf, read, write, fread, fwrite, input. Some of these
behave similarly to the homonymous C functions, but with small and important
differences in how matrix arguments are handled. Use the help command or
the online documentation to see the details. In our function pnmread, we use a
rather minimal subset. The first line in

[fid, msg] = fopen(filename, ’r’);
if fid == -1,

error(msg)
end

opens the filename whose name is in the argument string filename. The result
is a file identifier fid, just like in C, and an error message stored in the string
msg. This string is empty (’’) if no error has occurred. On error, fid is set to
-1. The command error(msg) displays the message in msg and aborts the
function, returning control to the interpreter. If this call to error is deep within
a call stack, the entire stack is aborted.

Assuming that things went well with fopen, we can now read from the
file through its integer identifier fid. Let us define the two simple functions
readstring and readnumber, which we write in files readstring.m and
readnumber.m3. Here are the contents of readstring.m:

function s = readstring(fid)

s = fscanf(fid,’%s’,1);
while s(1) == ’#’,

fgetl(fid);
s = fscanf(fid,’%s’,1);

end

This function assumes that we are starting to read from a new line, and reads
one blank-space separated string from fid via the fscanf command, whose
syntax is similar to the equivalent C function. The result is placed in the variable

3It is a littleannoying that every function must have its own file. The advantage of this, however,
is that MATLAB keeps checking if function definitions have changed, and if so reloads the newest
definition. This is very convenient during program development.

11



s, which is a MATLAB vector of characters. Thus, the expression s(1) refers
to the first character in s. If this character is a pound sign #, it means that the
current line is a comment; the commandfgetl(fid) then gets an entire line (the
comment) and puts it nowhere: the comment is ignored. The next string is read by
the fscanf in the while loop. This continues until some non-comment string
is found. Since the variable s is in the function declaration as a return value,
the last string found is passed back to the caller when readstring returns.

The function readnumber does something similar to readstring, but
looks for a number rather than a generic string. Rather than repeating most of the
body of readstring in readnumber, we observe that a number is a string
when it is in the image file. Thus, readnumber can simply call readstring
and do a string-to-number conversion:

function n = readnumber(fid)

s = readstring(fid);
n = sscanf(s,’%d’);

Rather than using sscanf for the conversion, we could have used the builtin
function str2num with the same effect.

Conditional Constructs

Going back to our function pnmread, the command

magic = readstring(fid);

reads a string from fid and assigns it to the variable magic. This string is
expected to contain the magic number P5 for pgm images, or P6 for ppm. We
check if this is the case with an if statement

if length(magic) ˜= 2,
error(’Unknown image format’)

end
if any(magic ˜= ’P5’) & any(magic ˜= ’P6’),

error(’Unknown image format’)
else

...
end

12



The comma at the end of the if is optional. It is required when the statement
after the condition is written on the same line. Let us consider the second if first.
Notice that the logical ’and’ operator in MATLAB is a single ampersand, &, unlike
C. Similarly, ’or’ is a single vertical bar, |. Negation is expressed by a tilde, �,
so magic �= ’P5’ means “magic is not equal to ’P5’”. To understand the
expression any(magic �= ’P5’), notice that in MATLAB equality (==) or
inequality (�=) can be applied to arrays, which must be of equal sizes. This is the
reason for the first if above,

if length(magic) ˜= 2,
error(’Unknown image format’)

end

Without this check, the comparisonmagic �= ’P5’ could generate a MATLAB

error if magic has a length different from 2. The builtin functionlength returns
the length of a vector, or the maximum dimension of an array.

When applied to vectors, the equality or inequality operator returns a vector
of zeros and ones, corresponding to an element-by-element comparison between
the two vectors. Thus, magic �= ’P5’ returns [0 0] if and only if the two
strings are equal. The builtin function any returns 1 if any of the elements of
the vector are non-zero. Otherwise it returns 0. Type help any to see what
any does with arrays. Thus, any corresponds to the existential quantifier. The
MATLAB function all corresponds to the universal quantifier.

The rest of our sketch of pnmread is obvious:

w = readnumber(fid);
h = readnumber(fid);
maxvalue = readnumber(fid);
fgetl(fid);
if all(magic == ’P5’),
% read pgm image

else % must be P6
% read ppm image

end

We read the image width w, the image height h, the maximum pixel value
maxvalue, and go the the beginning of a new line with fgetl(fid). Without
this, the ASCII code of the newline character itself would be interpreted as the
first pixel value.

13



Reading and Reshaping Matrices

We are now ready to do the real work of reading a pgm or a ppm image. Here
MATLAB has a small inconsistency, which is caused by the fact that old versions of
MATLAB only allowed vectors and matrices, and no arrays with more dimensions.
The low-level fread function, even in MATLAB 5, reads into either a vector or a
matrix, but not into an array with more dimensions. Thus, for the case of a ppm
image, we first read into a matrix, and then convert this matrix into an array with
three dimensions. Here is the complete code:

function i = pnmread(filename)

% open file
[fid, msg] = fopen(filename, ’r’);
if fid == -1,

error(msg)
end

% read magic number
magic = readstring(fid);
if length(magic) ˜= 2,

error(’Unknown image format’)
end
if any(magic ˜= ’P5’) & any(magic ˜= ’P6’),

error(’Unknown image format’)
else

w = readnumber(fid);
h = readnumber(fid);
maxvalue = readnumber(fid);
fgetl(fid);
if all(magic == ’P5’),
% read pgm image
i = fread(fid, [w h], ’uint8’)’;

else % must be P6
% read ppm image
pixels = uint8(fread(fid, [3 w*h], ’uint8’));
i = uint8(zeros(h, w, 3));
i(:, :, 1) = reshape(pixels(1,:), w, h)’; % red
i(:, :, 2) = reshape(pixels(2,:), w, h)’; % green

14



i(:, :, 3) = reshape(pixels(3,:), w, h)’; % blue
end

end

% close file
fclose(fid);

When the image is a pgm (magic code P5), the instruction

i = fread(fid, [w h], ’uint8’)’;

reads the image into an array of size w � h, rather than h � w. In fact, fread
reads data into matrices in column-major order, while pgm images are stored in
row-major order. The prime at the end of the instruction above then transposes the
result to obtain the correct image orientation.

If MATLAB 5 were completely consistent, the statements in the else part of
the if statement, where the ppm image is being read, could be replaced by a
single statement that instructs MATLAB to read w � h � 3 8-bit unsigned integers
(uint8s) from file fid, and arrange them into an array with dimensions [h w
3] (modulo proper transpositions to account for the different ordering conventions
in MATLAB and in the ppm format).

Since this is not (yet) allowed, we first read the image into a 3�wh array called
pixels. In this way, each row of pixels is devoted to a different color band:
byte 1 in the image goes to pixels(1,1); byte 2 goes to pixels(2,1); byte
3 goes to pixels(3,1). We have now read the first pixel (red, green, blue),
and we go back to row 1, entry pixel(1, 2), for the red entry of pixel 2, and
so forth. We then use the builtin function reshape to reshape the three rows
of pixels into arrays of size w � h, transpose the results, place these into the
h�w�3 arrayi, which is preallocated both for efficiency and to obtain the proper
data type uint8 (MATLAB would make i double floating-point by default). The
function reshape reads the input array in lexicographic order (column-major
order for matrices) and returns an array with the specified dimensions. The
number of elements in the input array must be equal to the product of the specified
dimensions.

Finally, closing the file with fclose(fid) makes the file descriptor fid
available for other files.

15



Writing an Image

At this point you should know almost enough about MATLAB to write a function
pnmwrite that writes a black-and-white image to a file in pgm format, and a
color image to a file in ppm format. On one hand, writing an image is easier than
reading it because writing to a file requires no parsing. On the other hand, writing
is slightly trickier than reading in that the values in the input array need to be
normalized to 0�255. Also, the image must be converted to double by something
like

i = double(i)

both because subtraction make no sense for unsigned integer values and because
the MATLAB function fwrite only works on arrays of double-precision floating-
point numbers. For the normalization, it is useful to know the MATLAB functions
min and max (type help min...).

Try to write pnmwrite yourself before looking at the following code.

% linearly maps the values in the given array to
% [0 255], quantizes to integers, and stores the
% result in the specified file as a raw pgm or ppm
% image; returns the number of bytes written; the
% input array must be either of size [h w] or of
% size [h w 3]

function count = pnmwrite(i, filename)

fid=fopen(filename,’w’);
h = size(i, 1);
w = size(i, 2);

if size(i, 3) == 1,
bands = 1;
magic = ’P5’;
pgm = 1;

elseif size(i, 3) == 3,
bands = 3;
magic = ’P6’;
pgm = 0;

16



else
error(’Third array dimension must be either 1 or 3’)

end

% convert input to double if necessary, so arithmetic
% operations make sense; also, fwrite only works on
% doubles
i = double(i);

% scale pixel values; grays should not change to
% blacks, hence the outermost min
minvalue = min(0, min(min(min(i))));
maxvalue = max(max(max(i)));
i = uint8(round((i - minvalue) * 255 / maxvalue));

% put pixels into a 3 x (w*h) or a 1 x (w*h) array of
% 8-bit integers, one row per color band
a = zeros(bands, w*h);
for b = 1:bands,

a(b, :) = reshape(i(:, :, b)’, 1, w*h);
end

% write header
fprintf(fid,’%s\n%d %d\n%d\n’, magic, w, h, 255);

% write pixels (a is read in column-major order’)
count = fwrite(fid, a, ’uint8’);

fclose(fid);

Notice that because of the grey-level normalization in pnmwrite, typing

i = pnmread(’a.pgm’);
pnmwrite(i, ’b.pgm’);
j = pnmread(’b.pgm’);
pnmwrite(j, ’c.pgm’);

may result in an image b.pgm different from a.pgm. However, the images in
b.pgm and c.pgm should be equal to each other. The same holds for color
images.

17



Displaying and Printing Images

One of the most useful features of MATLAB is its extensive set of display functions.
To display an image, type

img = pnmread(filename);
imagesc(img);
axis(’square’)

The call axis(’square’) adjusts the aspect ratio of the display appropriately.
The image appears with axis tickmarks that are often useful to identify rows and
columns. Both tickmarks and the frame around the picture can be turned off with
the command

axis(’off’)

There is also a function image, which is simpler than imagesc. However,
image does not scale the image values to use the colormap of the display appro-
priately, so using image is not recommended. If the image is black-and-white, it
will still be displayed with a color colormap. To obtain a proper display, type

colormap(gray)

which installs a gray-value colormap. Colormaps can be manipulated in many
ways in MATLAB. Type help colormap to find out how to use them.

To print an image to a postscript file named f.eps, type

print -deps f.eps

This will print a black-and-white copy of the picture in the current figure, which
is either the last figure you worked on or the one you select with the figure
command. A color postscript file can be generated with

print -depsc f.eps

Many other options exist. Type help print for details. The print command
prints anything in the current figure, including plots.

A single scanline of a black-and-white image can be plotted by a command
like

plot(i(100, :))

and a patch of the image can be displayed by

18



mesh(i(100:150, 80:120))

which draws a surface as a mesh. The mesh can be filled, shaded, lit in very many
different ways by using the surf command (for “surface”) instead of mesh.
Again, the help command or the online documentation gives all the details.

2 Going Ahead

MATLAB has a very rich set of builtin functions. Some are written as MATLAB

code, and can be examined by using the type command, which displays the code
itself. The help command or the online documentation give details.

While MATLAB is perhaps too inefficient to be used for production code for
computer vision or graphics, once you start using it you will realize that the very
modest learning time it requires pays off handsomely in terms of increased code
productivity and ease of use when developing a program prototype or tinkering
with an idea that is not yet fully developed.

19


