Topic 2 of Part II
Calibration

Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu

Lecture Outline

- Calibration: Find the intrinsic and extrinsic parameters
 - Problem and assumptions
 - Direct parameter estimation approach
 - Projection matrix approach

- Direct Parameter Estimation Approach
 - Basic equations (from Lecture 5)
 - Homogeneous System
 - Estimating the Image center using vanishing points
 - SVD (Singular Value Decomposition)
 - Focal length, Aspect ratio, and extrinsic parameters
 - Discussion: Why not do all the parameters together?

- Projection Matrix Approach (…after-class reading)
 - Estimating the projection matrix M
 - Computing the camera parameters from M
 - Discussion

- Comparison and Summary
 - Any difference?
Problem and Assumptions

- Given one or more images of a calibration pattern, estimate the intrinsic parameters, the extrinsic parameters, or both.

- Issues: Accuracy of Calibration
 - How to design and measure the calibration pattern:
 - Distribution of control points to assure stability of solution, not coplanar
 - Construction tolerance one or two orders of magnitude smaller than desired accuracy of calibration
 - e.g., 0.01 mm tolerance versus 0.1 mm desired accuracy
 - How to extract the image correspondences:
 - Corner detection?
 - Line fitting?
 - Algorithms for camera calibration given both 3D-2D pairs

- Alternative approach: 3D from un-calibrated camera

Camera Model

- Coordinate Systems
 - Frame coordinates \((x_{im}, y_{im})\) pixels
 - Image coordinates \((x, y)\) in mm
 - Camera coordinates \((X, Y, Z)\)
 - World coordinates \((X_w, Y_w, Z_w)\)

- Camera Parameters
 - Intrinsic parameters (of the camera and the frame grabber): link the frame coordinates of an image point with its corresponding camera coordinates
 - Extrinsic parameters: define the location and orientation of the camera coordinate system with respect to the world coordinate system
3D Computer Vision
and Video Computing

Linear Version of Perspective Projection

- **World to Camera**
 - Camera: \(P = (X,Y,Z)^T \)
 - World: \(P_w = (X_w,Y_w,Z_w)^T \)
 - Transform: \(R, T \)

- **Camera to Image**
 - Camera: \(P = (X,Y,Z)^T \)
 - Image: \(p = (x,y)^T \)
 - Not linear equations

- **Image to Frame**
 - Neglecting distortion

- **World to Frame**
 - \((X_w,Y_w,Z_w)^T \rightarrow (xim, yim)^T\)
 - Effective focal lengths
 - \(f_x = f/sx, f_y = f/sy \)

Direct Parameter Method

- **Extrinsic Parameters**
 - \(R, 3x3 \) rotation matrix
 - Three angles \(\alpha, \beta, \gamma \)
 - \(T, 3-D \) translation vector

- **Intrinsic Parameters**
 - \(f_x, f_y \): effective focal length in pixel
 - \(\alpha = f_x/f_y = s_y/sx \), and \(f_x \)
 - \((ox, oy) \): known Image center \(\rightarrow (x,y) \) known
 - \(k_1 \), radial distortion coefficient: *neglect it in the basic algorithm*

- **Same Denominator in the two Equations**
 - Known: \((X_w,Y_w,Z_w)\) and its \((x,y)\)
 - Unknown: \(r, p, q, T_x, T_y, f_x, f_y \)
3D Computer Vision
and Video Computing

Linear Equations

- Linear Equation of 8 unknowns $v = (v_1, \ldots, v_8)$
 - Aspect ratio: $\alpha = f_x/f_y$
 - Point pairs, $\{(X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i)\}$ drop the ‘ and subscript ‘w’

$$x'(n_1X_w + n_2Y_w + n_3Z_w + T_w) = y'\alpha(n_1X_w + n_2Y_w + n_3Z_w + T_w)$$

$$x_1X_1 + x_2Y_1 + x_3Z_1 + x_4T_1 - y_1X_1 - y_2Y_1 - y_3Z_1 - y_4T_1 = 0$$

Homogeneous System

- Homogeneous System of N Linear Equations
 - Given N corresponding pairs $\{(X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i)\}$, $i=1,2,\ldots,N$
 - 8 unknowns $v = (v_1, \ldots, v_8)^T$, 7 independent parameters

$$x_1X_1 + x_2Y_1 + x_3Z_1 + x_4T_1 - y_1X_1 - y_2Y_1 - y_3Z_1 - y_4T_1 = 0$$

$$\begin{bmatrix}
 x_1X_1 & x_1Y_1 & x_1Z_1 & x_1 & -y_1X_1 & -y_1Y_1 & -y_1Z_1 & -y_1 \\
 x_2X_2 & x_2Y_2 & x_2Z_2 & x_2 & -y_2X_2 & -y_2Y_2 & -y_2Z_2 & -y_2 \\
 \vdots & \vdots \\
 x_NX_N & x_NY_N & x_NZ_N & x_N & -y_NX_N & -y_NY_N & -y_NZ_N & -y_N
\end{bmatrix} \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_7 \\
 v_8
\end{bmatrix} = 0$$

The system has a nontrivial solution (up to a scale)
 - If $N \geq 7$ and N points are not coplanar \Rightarrow Rank (A) = 7
 - Can be determined from the SVD of A
Homework #3 online, due October 25 (Monday) before class

Homogeneous System

Homogeneous System of N Linear Equations
- Given N corresponding pairs \((X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i)\), \(i=1, 2, ..., N\)
- 8 unknowns \(v = (v_1, ..., v_8)^T\), 7 independent parameters

\[
x_i X_i v_1 + x_i Y_i v_2 + x_i Z_i v_3 + x_i v_4 - y_i X_i v_5 - y_i Y_i v_6 - y_i Z_i v_7 - y_i v_8 = 0
\]

\[
A v = 0
\]

\[
A = \begin{bmatrix}
x_1 X_1 & x_1 Y_1 & x_1 Z_1 & x_1 & - y_1 X_1 & - y_1 Y_1 & - y_1 Z_1 & - y_1 \\
x_2 X_2 & x_2 Y_2 & x_2 Z_2 & x_2 & - y_2 X_2 & - y_2 Y_2 & - y_2 Z_2 & - y_2 \\
\vdots & \vdots \\
x_N X_N & x_N Y_N & x_N Z_N & x_N & - y_N X_N & - y_N Y_N & - y_N Z_N & - y_N
\end{bmatrix}
\]

The system has a nontrivial solution (up to a scale)
- IF \(N \geq 7\) and N points are not coplanar \(\Rightarrow \text{Rank}(A) = 7\)
- Can be determined from the SVD of A
SVD: definition

- **Singular Value Decomposition:**
 - Any mxn matrix can be written as the product of three matrices

 \[A = UDV^T \]

- Singular values \(\sigma_i \) are fully determined by \(A \)
 - \(D \) is diagonal: \(d_{ij} = 0 \) if \(i \neq j \); \(d_{ii} = \sigma_i \) (\(i = 1, 2, \ldots, n \))
 - \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0 \)
 - Both \(U \) and \(V \) are not unique
 - Columns of each are mutual orthogonal vectors

SVD: properties

1. Singularity and Condition Number
 - nxn \(A \) is nonsingular IFF all singular values are nonzero
 - Condition number: degree of singularity of \(A \)
 - \(A \) is ill-conditioned if \(1/C \) is comparable to the arithmetic precision of your machine; almost singular

2. Rank of a square matrix \(A \)
 - Rank (\(A \)) = number of nonzero singular values

3. Inverse of a square Matrix
 - If \(A \) is nonsingular \(A^{-1} = VD^{-1}U^T \)
 - In general, the pseudo-inverse of \(A \) \(A^+ = VD_0^{-1}U^T \)

4. Eigenvalues and Eigenvectors (questions)
 - Eigenvalues of both \(A^TA \) and \(AA^T \) are \(\sigma_i^2 \) (\(\sigma_i > 0 \))
 - The columns of \(U \) are the eigenvectors of \(AA^T \) (nxm)
 - The columns of \(V \) are the eigenvectors of \(A^TA \) (nxn)
SVD: Application 1

Least Square
- Solve a system of \(m \) equations for \(n \) unknowns \(x(m \geq n) \)
- \(A \) is a \(m \times n \) matrix of the coefficients
- \(b \neq 0 \) is the \(m \)-D vector of the data
- Solution:

 \[
 A^T A x = A^T b
 \]

 \[
 x = (A^T A)^+ A^T b
 \]

- **How to solve:** compute the pseudo-inverse of \(A^T A \) by SVD
 - \((A^T A)^+\) is more likely to coincide with \((A^T A)^{-1}\) given \(m > n \)
 - Always a good idea to look at the condition number of \(A^T A \)

SVD: Application 2

Homogeneous System
- \(m \) equations for \(n \) unknowns \(x(m \geq n-1) \)
- Rank \((A) = n-1 \) (by looking at the SVD of \(A \))
- A non-trivial solution (up to an arbitrary scale) by SVD:
 - Simply proportional to the eigenvector corresponding to the only zero eigenvalue of \(A^T A \) (\(n \times n \) matrix)

 \[
 A^T A v_i = \sigma_i^2 v_i
 \]

- **Note:**
 - All the other eigenvalues are positive because \(\text{Rank} (A) = n-1 \)
 - For a proof, see Textbook p. 324-325
 - In practice, the eigenvector (i.e. \(v_n \)) corresponding to the minimum eigenvalue of \(A^T A \), i.e. \(\sigma_n^2 \)
Problem Statements
- Numerical estimate of a matrix A whose entries are not independent
- Errors introduced by noise alter the estimate to \hat{A}

Enforcing Constraints by SVD
- Take orthogonal matrix A as an example
- Find the closest matrix to \hat{A}, which satisfies the constraints exactly
 - SVD of \hat{A}: $\hat{A} = UDV^T$
 - Observation: $D = I$ (all the singular values are 1) if A is orthogonal
 - Solution: changing the singular values to those expected

$$A = UIV^T$$

Homogeneous System

- Homogeneous System of N Linear Equations
 - Given N corresponding pairs $\{(X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i)\}$, $i=1,2,\ldots,N$
 - 8 unknowns $v = (v_1, \ldots, v_8)^T$, 7 independent parameters
- The system has a nontrivial solution (up to a scale)
 - IF $N \geq 7$ and N points are not coplanar \Rightarrow Rank $(A) = 7$
 - Can be determined from the SVD of A
 - Rows of V^T: eigenvectors $\{e_i\}$ of A^TA
 - Solution: the 8^{th} row e_8 corresponding to the only zero singular value $\lambda_8 = 0$

$$A = UDV^T$$

$$\overline{v} = c e_8$$

- Practical Consideration
 - The errors in localizing image and world points may make the rank of A to be maximum (8)
 - In this case select the eigenvector corresponding to the smallest eigenvalue.
Equations for scale factor γ and aspect ratio α

$$\mathbf{V} = \gamma \left(r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x \right)$$

Knowledge: \mathbf{R} is an orthogonal matrix

$$\mathbf{R}^T_i \mathbf{R}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Second row ($i=j=2$):

$$r_{21}^2 + r_{22}^2 + r_{23}^2 = 1$$

First row ($i=j=1$)

$$r_{11}^2 + r_{12}^2 + r_{13}^2 = 1$$

Equations for first 2 rows of \mathbf{R} and \mathbf{T} given α and $|\gamma|$

$$\mathbf{V} = s |\gamma| \left(r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x \right)$$

First 2 rows of \mathbf{R} and \mathbf{T} can be found up to a common sign s (+ or -)

$$s \mathbf{R}^T_1, s \mathbf{R}^T_2, s \mathbf{T}_X, s \mathbf{T}_Y$$

The third row of the rotation matrix by vector product

$$\mathbf{R}^T_3 = \mathbf{R}^T_1 \times \mathbf{R}^T_2 = s \mathbf{R}^T_1 \times s \mathbf{R}^T_2$$

Remaining Questions:
- How to find the sign s?
- Is \mathbf{R} orthogonal?
- How to find T_z and f_x, f_y?
Find the sign \(s\)

- **Facts:**
 - \(f_x > 0\)
 - \(Z_c > 0\)
 - \(x\) known
 - \(X_w, Y_w, Z_w\) known
- **Solution**
 - Check the sign of \(X_c\)
 - Should be opposite to \(x\)

\[
x = -f_x \frac{X_c}{Z_c} = -f_x \left(\frac{\eta_1 X_w + \eta_2 Y_w + \eta_3 Z_w + T_x}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \right)
\]

\[
y = -f_y \frac{Y_c}{Z_c} = -f_y \left(\frac{r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \right)
\]

Rotation \(R\): Orthogonality

- **Question:**
 - First 2 rows of \(R\) are calculated without using the mutual orthogonal constraint

\[
\hat{R}^T \hat{R} = I?
\]

- **Solution:**
 - Use SVD of estimate \(R\)

\[
\hat{R} = UDV^T \quad \Rightarrow \quad R = UIV^T
\]

Replace the diagonal matrix \(D\) with the 3x3 identity matrix.
Find T_z, F_x and F_y

Solution
- Solve the system of N linear equations with two unknowns T_x, F_x

$$x = -F_x \left(n_1X_w + n_2Y_w + n_3Z_w + T_x \right)$$

$$r_3X_w + r_2Y_w + r_1Z_w + T_z$$

- Least Square method

$$\begin{bmatrix} T_z \\ F_x \end{bmatrix} = \left(A^T A \right)^{-1} A^T b$$

- SVD method to find inverse

Direct parameter Calibration Summary

Algorithm (p130-131)
1. Measure N 3D coordinates (X_i, Y_i, Z_i)
2. Locate their corresponding image points (x_i, y_i) - Edge, Corner, Hough
3. Build matrix A of a homogeneous system $Av = 0$
4. Compute SVD of A, solution v
5. Determine aspect ratio α and scale $|\gamma|$
6. Recover the first two rows of R and the first two components of T up to a sign
7. Determine sign s of γ by checking the projection equation
8. Compute the 3rd row of R by vector product, and enforce orthogonality constraint by SVD
9. Solve T_z and F_x using Least Square and SVD, then $F_y = F_x / \alpha$
Homework #3 online, due October 25 before class

Questions

- Can we select an arbitrary image center for solving other parameters?

- How to find the image center \((ox, oy)\)?

- How about to include the radial distortion?

- Why not solve all the parameters once?

 - How many unknown with \(ox, oy\)? --- 20 ??? – projection matrix method

\[
x = x_{im} - o_x = -f_x \left(\eta_1 X_w + \eta_2 Y_w + \eta_3 Z_w + T_x \right)
= r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z
\]

\[
y = y_{im} - o_y = -f_y \left(\eta_1 X_w + \eta_2 Y_w + \eta_3 Z_w + T_y \right)
= r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z
\]
Vanishing points:

- Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines.
Vanishing points:

- Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines.

Important property:

- Vector OV (from the center of projection to the vanishing point) is parallel to the parallel lines.
Orthocenter Theorem:
- Input: three mutually orthogonal sets of parallel lines in an image
- T: a triangle on the image plane defined by the three vanishing points
- Image center = orthocenter of triangle T
- Orthocenter of a triangle is the common intersection of the three altitudes
Orthocenter Theorem:
- Input: three mutually orthogonal sets of parallel lines in an image
- T: a triangle on the image plane defined by the three vanishing points

- Image center = orthocenter of triangle T
- Orthocenter of a triangle is the common intersection of the three altitudes

Assumptions:
- Known aspect ratio
- Without lens distortions

Questions:
- Can we solve both aspect ratio and the image center?
- How about with lens distortions?
Direct parameter Calibration Summary

Algorithm (p130-131)

1. Estimate image center (Xi, Yi, Zi)
2. Measure N 3D coordinates (Xi, Yi, Zi)
3. Build matrix A of a homogeneous system Av = 0
4. Compute SVD of A, solution v
5. Determine aspect ratio α and scale |γ|
6. Recover the first two rows of R and the first two components of T up to a sign
7. Determine sign s of γ by checking the projection equation
8. Compute the 3rd row of R by vector product, and enforce orthogonality constraint by SVD
9. Solve Tz and fx using Least Square and SVD, then fy = fx / α

Remaining Issues and Possible Solution

Original assumptions:
- Without lens distortions
- Known aspect ratio when estimating image center
- Known image center when estimating others including aspect ratio

New Assumptions
- Without lens distortion
- Aspect ratio is approximately 1, or α = fx/fy = 4:3; image center about (M/2, N/2) given a MxN image

Solution (?)
1. Using α = 1 to find image center (ox, oy)
2. Using the estimated center to find others including α
3. Refine image center using new α; if change still significant, go to step 2; otherwise stop

Projection Matrix Approach
- Homework #3 online, due October 25 before class

Linear Matrix Equation of perspective projection

- **Projective Space**
 - Add fourth coordinate
 - Define \((u,v,w)\) such that \(u/w = x_{im}, v/w = y_{im}\)
- **3x4 Matrix \(E_{\text{ext}}\)**
 - Only extrinsic parameters
 - World to camera
- **3x3 Matrix \(E_{\text{int}}\)**
 - Only intrinsic parameters
 - Camera to frame

- **Simple Matrix Product!**
 - Projective Matrix \(M = M_{\text{int}}M_{\text{ext}}\)
 - Linear Transform from projective space to projective plane
 - \(M\) defined up to a scale factor – 11 independent entries
3D Computer Vision

and Video Computing

Projection Matrix M

- **World – Frame Transform**
 - Drop “im” and “w”
 - N pairs $(x_i, y_i) \leftrightarrow (X_i, Y_i, Z_i)$
 - Linear equations of m

$$\begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} = M \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$Am = 0$

- **3x4 Projection Matrix M**
 - Both intrinsic (4) and extrinsic (6) – 10 parameters

$$M = \begin{bmatrix} -f_x r_1 + o_x r_3 & -f_x r_2 + o_y r_3 & -f_x n_3 + o_x n_3 & -f_x T_x + o_x T_z \\ -f_y r_2 + o_y r_3 & -f_y r_2 + o_y r_3 & -f_y n_3 + o_y n_3 & -f_y T_y + o_y T_z \\ r_3 1 & r_3 2 & r_3 3 & T_z \end{bmatrix}$$

Step 1: Estimation of projection matrix

- **World – Frame Transform**
 - Drop “im” and “w”
 - N pairs $(x_i, y_i) \leftrightarrow (X_i, Y_i, Z_i)$

- **Linear equations of m**
 - $2N$ equations, 11 independent variables
 - $N \geq 6$, SVD => m up to a unknown scale

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -x_1X_1 & -x_1Y_1 & -x_1Z_1 & -x_1 \\ 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1X_1 & -y_1Y_1 & -y_1Z_1 & -y_1 \end{bmatrix}$$

$$m = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{21} & m_{22} & m_{23} & m_{24} & m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}^T$$
Step 2: Computing camera parameters

- 3x4 Projection Matrix \hat{M}
 - Both intrinsic and extrinsic

$$\hat{M} = \begin{bmatrix} q_1 & q_{41} \\ q_2 & q_{42} \\ q_3 & q_{43} \end{bmatrix}$$

- From \hat{M} to parameters (p134-135)
 - Find scale $|\gamma|$ by using unit vector R_3^T
 - Determine T_z and sign of γ from m_{34} (i.e. q_{43})
 - Obtain R_3^T
 - Find (O_x, O_y) by dot products of Rows q_1, q_3, q_2, q_3, using the orthogonal constraints of R
 - Determine f_x and f_y from q_1 and q_2 (Eq. 6.19) Wrong??)
 - All the rests: R_1^T, R_2^T, T_x, T_y
 - Enforce orthogonality on R?

Comparisons

- Direct parameter method and Projection Matrix method

- Properties in Common:
 - Linear system first, Parameter decomposition second
 - Results should be exactly the same

- Differences
 - Number of variables in homogeneous systems
 - Matrix method: All parameters at once, 2N Equations of 12 variables
 - Direct method in three steps: N Equations of 8 variables, N equations of 2 Variables, Image Center – maybe more stable
 - Assumptions
 - Matrix method: simpler, and more general; sometime projection matrix is sufficient so no need for parameter decomposition
 - Direct method: Assume known image center in the first two steps, and known aspect ratio in estimating image center
Guidelines for Calibration

- Pick up a well-known technique or a few
- Design and construct calibration patterns (with known 3D)
- Make sure what parameters you want to find for your camera
- Run algorithms on ideal simulated data
 - You can either use the data of the real calibration pattern or using computer generated data
 - Define a virtual camera with known intrinsic and extrinsic parameters
 - Generate 2D points from the 3D data using the virtual camera
 - Run algorithms on the 2D-3D data set
- Add noises in the simulated data to test the robustness
- Run algorithms on the real data (images of calibration target)
- If successful, you are all set
- Otherwise:
 - Check how you select the distribution of control points
 - Check the accuracy in 3D and 2D localization
 - Check the robustness of your algorithms again
 - Develop your own algorithms

3D reconstruction using two cameras

Stereo Vision

& project discussions

- Homework #3 online, due October 25 before class