3D Computer Vision
and Video Computing

3D Vision

CSc I6716
Fall 2010

Topic 2 of Part II
Calibration

Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu

Lecture Outline

- Calibration: Find the intrinsic and extrinsic parameters
 - Problem and assumptions
 - Direct parameter estimation approach
 - Projection matrix approach

- Direct Parameter Estimation Approach
 - Basic equations (from Lecture 5)
 - Homogeneous System
 - Estimating the Image center using vanishing points
 - SVD (Singular Value Decomposition)
 - Focal length, Aspect ratio, and extrinsic parameters
 - Discussion: Why not do all the parameters together?

- Projection Matrix Approach (…after-class reading)
 - Estimating the projection matrix M
 - Computing the camera parameters from M
 - Discussion

- Comparison and Summary
 - Any difference?
3D Computer Vision and Video Computing

Problem and Assumptions

- Given one or more images of a calibration pattern,
- Estimate
 - The intrinsic parameters
 - The extrinsic parameters, or
 - BOTH

- Issues: Accuracy of Calibration
 - How to design and measure the calibration pattern
 - Distribution of the control points to assure stability of solution – not coplanar
 - Construction tolerance one or two order of magnitude smaller than the desired accuracy of calibration
 - e.g. 0.01 mm tolerance versus 0.1mm desired accuracy
 - How to extract the image correspondences
 - Corner detection?
 - Line fitting?
 - Algorithms for camera calibration given both 3D-2D pairs

- Alternative approach: 3D from un-calibrated camera

3D Computer Vision and Video Computing

Camera Model

- Coordinate Systems
 - Frame coordinates \((x_{im}, y_{im})\) pixels
 - Image coordinates \((x, y)\) in mm
 - Camera coordinates \((X, Y, Z)\)
 - World coordinates \((X_w, Y_w, Z_w)\)

- Camera Parameters
 - Intrinsic Parameters (of the camera and the frame grabber): link the frame coordinates of an image point with its corresponding camera coordinates
 - Extrinsic parameters: define the location and orientation of the camera coordinate system with respect to the world coordinate system
3D Computer Vision and Video Computing

Linear Version of Perspective Projection

- World to Camera
 - Camera: \(P = (X, Y, Z)^T \)
 - World: \(P_w = (X_w, Y_w, Z_w)^T \)
 - Transform: \(R, T \)

- Camera to Image
 - Camera: \(P = (X, Y, Z)^T \)
 - Image: \(p = (x, y)^T \)
 - Not linear equations

- Image to Frame
 - Neglecting distortion
 - Frame \((x_{im}, y_{im})^T\)

- World to Frame
 - \((X_w, Y_w, Z_w)^T \rightarrow (x_{im}, y_{im})^T\)
 - Effective focal lengths
 - \(f = f/x, f_y = f/y \)

Direct Parameter Method

- Extrinsic Parameters
 - \(R \), 3x3 rotation matrix
 - \(T \), 3-D translation vector
 - Three angles \(\alpha, \beta, \gamma \)

- Intrinsic Parameters
 - \(f_x, f_y \) : effective focal length in pixel
 - \(\alpha = f_x/f_y = s_y/s_x \), and \(fx \)
 - \((ox, oy) \): known image center \(\rightarrow (x, y) \) known
 - \(k_1 \), radial distortion coefficient: neglect it in the basic algorithm

- Same Denominator in the two Equations
 - Known: \((X_w, Y_w, Z_w)\) and its \((x, y)\)
 - Unknown: \(r_{pq}, T_x, T_y, f_x, f_y \)

\[
\frac{f_y (r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y)}{f_x (r_{11} X_w + r_{12} Y_w + r_{13} Z_w + T_x)} = x', \quad \frac{y'}{x'} = f_y (r_{11} X_w + r_{12} Y_w + r_{13} Z_w + T_x) / f_x (r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y)
\]

\[
x' = x_{im} - o_x x, \quad y' = y_{im} - o_y y
\]
Linear Equations

- Linear Equation of 8 unknowns $\mathbf{v} = (v_1, \ldots, v_8)$
 - Aspect ratio: $\alpha = \frac{f_x}{f_y}$
 - Point pairs $(X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i)$ drop the ' and subscript "w"

$$x'(r_1X_w + r_2Y_w + r_3Z_w + T_w) = y'\alpha(r_1X_w + r_2Y_w + r_3Z_w + T_w)$$

$x_iX_1r_21 + x_iY_1r_22 + x_iZ_1r_23 + x_iT_y - y_iX_1(\alpha r_{11}) - y_iY_1(\alpha r_{12}) - y_iZ_1(\alpha r_{13}) - y_i(\alpha T_x) = 0$

$$x_iX_1v_1 + x_iY_1v_2 + x_iZ_1v_3 + x_iy_4 - y_iX_1v_5 - y_iY_1v_6 - y_iZ_1v_7 - y_iy_8 = 0$$

Homogeneous System

- Homogeneous System of N Linear Equations
 - Given N corresponding pairs $((X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i), i=1,2,\ldots N$
 - 8 unknowns $\mathbf{v} = (v_1, \ldots, v_8)^T$, 7 independent parameters

$$x_iX_1v_1 + x_iY_1v_2 + x_iZ_1v_3 + x_iy_4 - y_iX_1v_5 - y_iY_1v_6 - y_iZ_1v_7 - y_iy_8 = 0$$

$$\mathbf{A} \mathbf{v} = 0$$

- The system has a nontrivial solution (up to a scale)
 - IF $N >= 7$ and N points are not coplanar \Rightarrow Rank $(\mathbf{A}) = 7$
 - Can be determined from the SVD of \mathbf{A}
Homework #3 online, due October 25 (Monday) before class

Homogeneous System

- Homogeneous System of N Linear Equations
 - Given N corresponding pairs \{ (X_i, Y_i, Z_i) <-> (x_i, y_i) \}, i=1,2,…N
 - 8 unknowns \(\mathbf{v} = (v_1, \ldots, v_8)^T \), 7 independent parameters

 \[
 x_i X_i v_1 + x_i Y_i v_2 + x_i Z_i v_3 + x_i v_4 - y_i X_i v_5 - y_i Y_i v_6 - y_i Z_i v_7 - y_i v_8 = 0
 \]

 \[
 \mathbf{A} \mathbf{v} = 0
 \]

 - The system has a nontrivial solution (up to a scale)
 - IF N >= 7 and N points are not coplanar => Rank (\(\mathbf{A} \)) = 7
 - Can be determined from the SVD of \(\mathbf{A} \)
3D Computer Vision
and Video Computing

SVD: definition

- Singular Value Decomposition:
 - Any mxn matrix can be written as the product of three
 matrices

\[
A = UDV^T
\]

- Singular values \(\sigma_i \) are fully determined by \(A \)
 - \(D \) is diagonal: \(d_{ij} = 0 \) if \(i \neq j; d_{ii} = \sigma_i \) (\(i = 1, 2, \ldots, n \))
 - \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0 \)
 - Both \(U \) and \(V \) are not unique
 - Columns of each are mutual orthogonal vectors

Appendix A.6

SVD: properties

- 1. Singularity and Condition Number
 - \(nxn \) A is nonsingular IFF all singular values are nonzero
 - Condition number: degree of singularity of \(A \)
 \(C = \sigma_1 / \sigma_n \)
 - \(A \) is ill-conditioned if \(1/C \) is comparable to the arithmetic
 precision of your machine; almost singular

- 2. Rank of a square matrix \(A \)
 - Rank \((A) = \) number of nonzero singular values

- 3. Inverse of a square Matrix
 - If \(A \) is nonsingular
 \(A^{-1} = VD^{-1}U^T \)
 - In general, the pseudo-inverse of \(A \)
 \(A^+ = VD_0^{-1}U^T \)

- 4. Eigenvalues and Eigenvectors (questions)
 - Eigenvalues of both \(A^TA \) and \(AA^T \) are \(\sigma_i^2 \) (\(\sigma_i > 0 \))
 - The columns of \(U \) are the eigenvectors of \(AA^T \) (\(mxm \))
 - The columns of \(V \) are the eigenvectors of \(A^TA \) (\(nxn \))

\[
\begin{align*}
AA^T u_i &= \sigma_i^2 u_i \\
A^T A v_j &= \sigma_j^2 v_j
\end{align*}
\]
SVD: Application 1

Least Square
- Solve a system of m equations for n unknowns $\mathbf{x}(m \geq n)$
- \mathbf{A} is a $m \times n$ matrix of the coefficients
- \mathbf{b} ($\neq 0$) is the m-D vector of the data
- Solution:
 $$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$
 $$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^+ \mathbf{A}^T \mathbf{b}$$

- How to solve: compute the pseudo-inverse of $\mathbf{A}^T \mathbf{A}$ by SVD
 - $(\mathbf{A}^T \mathbf{A})^+$ is more likely to coincide with $(\mathbf{A}^T \mathbf{A})^{-1}$ given $m > n$
 - Always a good idea to look at the condition number of $\mathbf{A}^T \mathbf{A}$

SVD: Application 2

Homogeneous System
- m equations for n unknowns $\mathbf{x}(m \geq n-1)$
- Rank $(\mathbf{A}) = n-1$ (by looking at the SVD of \mathbf{A})
- A non-trivial solution (up to an arbitrary scale) by SVD:
 - Simply proportional to the eigenvector corresponding to the only zero eigenvalue of $\mathbf{A}^T \mathbf{A}$ ($n \times n$ matrix)
 - Note:
 - All the other eigenvalues are positive because Rank $(\mathbf{A}) = n-1$
 - For a proof, see Textbook p. 324-325
 - In practice, the eigenvector (i.e. \mathbf{v}_n) corresponding to the minimum eigenvalue of $\mathbf{A}^T \mathbf{A}$, i.e. σ_n^2
Problem Statements
- Numerical estimate of a matrix A whose entries are not independent
- Errors introduced by noise alter the estimate to \hat{A}

Enforcing Constraints by SVD
- Take orthogonal matrix A as an example
- Find the closest matrix to \hat{A}, which satisfies the constraints exactly
 - SVD of \hat{A}: $\hat{A} = UDV^T$
 - Observation: $D = I$ (all the singular values are 1) if A is orthogonal
 - Solution: changing the singular values to those expected
 $$A = UIV^T$$

Homogeneous System
- Homogeneous System of N Linear Equations
 - Given N corresponding pairs $\{(X_i, Y_i, Z_i) \leftrightarrow (x_i, y_i)\}$, $i=1,2,...,N$
 - 8 unknowns $v = (v_1, v_8)^T$, 7 independent parameters
 - The system has a nontrivial solution (up to a scale)
 - IF $N \geq 7$ and N points are not coplanar \Rightarrow Rank (A) = 7
 - Can be determined from the SVD of A
 - Rows of V^T: eigenvectors $\{e_i\}$ of A^TA
 - Solution: the 8^{th} row e_8 corresponding to the only zero singular value $\lambda_8 = 0$
 $$v = ce_8$$
 - Practical Consideration
 - The errors in localizing image and world points may make the rank of A to be maximum (8)
 - In this case select the eigenvector corresponding to the smallest eigenvalue.
Scale Factor and Aspect Ratio

Equations for scale factor γ and aspect ratio α

$\vec{V} = \gamma \left(r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x \right)$

$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 \end{bmatrix}$

Knowledge: R is an orthogonal matrix

$R^T_i R_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

$R = \begin{pmatrix} \eta_1 & \eta_2 & \eta_3 \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} R_1^T \\ R_2^T \\ R_3^T \end{pmatrix}$

Second row ($i=j=2$):

$r_{21}^2 + r_{22}^2 + r_{23}^2 = 1$ \Rightarrow $|\gamma| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

First row ($i=j=1$):

$r_{11}^2 + r_{12}^2 + r_{13}^2 = 1$ \Rightarrow $|\gamma| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

Remaining Questions:
- How to find the sign s?
- Is R orthogonal?
- How to find T_z and f_x, f_y?
Facts:
- \(f_x > 0 \)
- \(Z_c > 0 \)
- \(x \) known
- \(X_w, Y_w, Z_w \) known

Solution

⇒ Check the sign of \(X_c \)
⇒ Should be opposite to \(x \)

\[
x = -f_x \frac{X_c}{Z_c} = -f_x \left(\eta_1 X_w + \eta_2 Y_w + \eta_3 Z_w + T_z \right)
\]
\[
y = -f_y \frac{Y_c}{Z_c} = -f_y \left(\eta_2 X_w + \eta_3 Y_w + \eta_3 Z_w + T_y \right)
\]

Rotation \(R \) : Orthogonality

Question:
- First 2 rows of \(R \) are calculated without using the mutual orthogonal constraint

\[
\hat{R}^T \hat{R} = I^?
\]

Solution:
- Use SVD of estimate \(\hat{R} \)

\[
\hat{R} = UDV^T \quad \rightarrow \quad R = UIV^T
\]

Replace the diagonal matrix \(D \) with the 3x3 identity matrix
3D Computer Vision
and Video Computing

Find Tz, Fx and Fy

Solution
- Solve the system of N linear equations with two unknowns T_x, f_x

$$x = -f_x \left(\frac{\eta_1 X_w + \eta_2 Y_w + \eta_3 Z_w + T_z}{r_31 X_w + r_32 Y_w + r_33 Z_w + T_z} \right)$$

- Least Square method

$$\begin{bmatrix} T_z \\ f_x \end{bmatrix} = (A^T A)^{-1} A^T b$$

- SVD method to find inverse

Direct Parameter Calibration Summary

Algorithm (p130-131)

1. Measure N 3D coordinates (X_i, Y_i, Z_i)
2. Locate their corresponding image points (x_i, y_i) - Edge, Corner, Hough
3. Build matrix A of a homogeneous system $Av = 0$
4. Compute SVD of A, solution v
5. Determine aspect ratio α and scale $|\gamma|$
6. Recover the first two rows of R and the first two components of T up to a sign
7. Determine sign s of γ by checking the projection equation
8. Compute the 3rd row of R by vector product, and enforce orthogonality constraint by SVD
9. Solve T_z and f_x using Least Square and SVD, then $f_y = f_x / \alpha$
Homework #3 online, due October 25 before class

Questions

- Can we select an arbitrary image center for solving other parameters?
- How to find the image center (ox, oy)?
- How about to include the radial distortion?
- Why not solve all the parameters once?
 - How many unknown with ox, oy? --- 20 ??? – projection matrix method

\[
\begin{align*}
x &= x_{im} - o_x = -f_x \left(\frac{r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z} \right) \\
y &= y_{im} - o_y = -f_y \left(\frac{r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z} \right)
\end{align*}
\]
Vanishing points:
- Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines.
Vanishing points:
- Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines.

Important property:
- Vector OV (from the center of projection to the vanishing point) is parallel to the parallel lines.
Orthocenter Theorem:

- Input: three mutually orthogonal sets of parallel lines in an image
- \(T \): a triangle on the image plane defined by the three vanishing points
- Image center = orthocenter of triangle \(T \)
- Orthocenter of a triangle is the common intersection of the three altitudes
Orthocenter Theorem:
- Input: three mutually orthogonal sets of parallel lines in an image
- T: a triangle on the image plane defined by the three vanishing points
- Image center = orthocenter of triangle T
- Orthocenter of a triangle is the common intersection of the three altitudes

Assumptions:
- Known aspect ratio
- Without lens distortions

Questions:
- Can we solve both aspect ratio and the image center?
- How about with lens distortions?
Direct parameter Calibration Summary

Algorithm (p130-131)
0. Estimate image center (and aspect ratio)
 1. Measure N 3D coordinates (Xi, Yi, Zi)
 2. Locate their corresponding image (xi, yi) - Edge, Corner, Hough
 3. Build matrix A of a homogeneous system
 \[Av = 0 \]
 4. Compute SVD of A, solution v
 5. Determine aspect ratio \(\alpha \) and scale \(|\gamma| \)
 6. Recover the first two rows of R and the first two components of T up to a sign
 7. Determine sign s of \(\gamma \) by checking the projection equation
 8. Compute the 3rd row of R by vector product, and enforce orthogonality constraint by SVD
 9. Solve Tz and fx using Least Square and SVD, then \(fy = fx / \alpha \)

Remaining Issues and Possible Solution

Original assumptions:
- Without lens distortions
- Known aspect ratio when estimating image center
- Known image center when estimating others including aspect ratio

New Assumptions
- Without lens distortion
- Aspect ratio is approximately 1, or \(\alpha = fx/fy = 4:3 \); image center about \((M/2, N/2)\) given a MxN image

Solution (?)
1. Using \(\alpha = 1 \) to find image center (ox, oy)
2. Using the estimated center to find others including \(\alpha \)
3. Refine image center using new \(\alpha \); if change still significant, go to step 2; otherwise stop

Projection Matrix Approach
- Homework #3 online, due October 25 before class

Linear Matrix Equation of perspective projection

- **Projective Space**
 - Add fourth coordinate
 - \(P_w = (X_w, Y_w, Z_w, 1)^T \)
 - Define \((u, v, w)^T\) such that
 - \(u/w = x_{im}, v/w = y_{im}\)
- **3x4 Matrix **\(\text{E}_{\text{ext}} \)
 - Only extrinsic parameters
 - World to camera
- **3x3 Matrix **\(\text{E}_{\text{int}} \)
 - Only intrinsic parameters
 - Camera to frame
- **Simple Matrix Product!** Projective Matrix \(M = \text{M}_{\text{int}} \text{E}_{\text{ext}} \)
 - \((X_w,Y_w,Z_w)^T -> (x_{im}, y_{im})^T\)
 - Linear Transform from projective space to projective plane
 - \(M\) defined up to a scale factor – 11 independent entries
3D Computer Vision and Video Computing

Projection Matrix M

- **World – Frame Transform**
 - Drop “im” and “w”
 - N pairs $(x_i, y_i) \leftrightarrow (X_i, Y_i, Z_i)$
 - Linear equations of m

- **Am = 0**

Linear Equations of m

Step 1: Estimation of projection matrix

- **World – Frame Transform**
 - Drop “im” and “w”
 - N pairs $(x_i, y_i) \leftrightarrow (X_i, Y_i, Z_i)$

- **Linear equations of m**
 - $2N$ equations, 11 independent variables
 - $N \geq 6$, SVD => m up to a unknown scale

- **Am = 0**

- **3x4 Projection Matrix M**
 - Both intrinsic (4) and extrinsic (6) – 10 parameters

- **Linear equations of m**
 - $N \geq 6$, SVD => m up to a unknown scale

- **Step 1: Estimation of projection matrix**

- **Linear equations of m**
 - $2N$ equations, 11 independent variables
 - $N \geq 6$, SVD => m up to a unknown scale

Mathematical Formulas

- **Projection Matrix M**

\[
\begin{bmatrix}
X_i \\
Y_i \\
Z_i
\end{bmatrix} = M \begin{bmatrix}
x_i \\
y_i \\
w_i
\end{bmatrix}
\]

- **Linear equations of m**

\[
x_i = \frac{u_i}{w_i} = \frac{m_{11}X_i + m_{12}Y_i + m_{13}Z_i + m_{14}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}
\]

\[
y_i = \frac{u_i}{w_i} = \frac{m_{21}X_i + m_{22}Y_i + m_{23}Z_i + m_{24}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}
\]

- **Matrix A**

\[
A = \begin{bmatrix}
X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -x_1X_1 & -x_1Y_1 & -x_1Z_1 & -x_1 \\
0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1X_1 & -y_1Y_1 & -y_1Z_1 & -y_1 \\
\cdots & \cdots
\end{bmatrix}
\]

- **Matrix m**

\[
m = \begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} & m_{21} & m_{22} & m_{23} & m_{24} & m_{31} & m_{32} & m_{33} & m_{34}
\end{bmatrix}^T
\]
3D Computer Vision
and Video Computing

Step 2: Computing camera parameters

- 3x4 Projection Matrix \(\mathbf{M} \)
 - Both intrinsic and extrinsic

\[
\mathbf{M} = \begin{bmatrix}
- f_x \xi_1 + o_x \xi_3 \\
- f_x \xi_2 + o_x \xi_3 \\
- f_x \xi_3 + o_x \xi_3 \\
- f_x \xi_1 + o_x \xi_3 \\
- f_x \xi_2 + o_x \xi_3 \\
- f_x \xi_3 + o_x \xi_3 \\
- f_y \xi_1 + o_y \xi_3 \\
- f_y \xi_2 + o_y \xi_3 \\
- f_y \xi_3 + o_y \xi_3 \\
\end{bmatrix}
\]

\[
\hat{\mathbf{M}} = \gamma \mathbf{M}
\]

- From \(\mathbf{M} \) to parameters (p134-135)
 - Find scale \(|\gamma| \) by using unit vector \(\mathbf{R}_3^T \)
 - Determine \(\mathbf{T}_z \) and sign of \(\gamma \) from \(m_{34} \) (i.e. \(q_{43} \))
 - Obtain \(\mathbf{R}_3^T \)
 - Find \((O_x, O_y) \) by dot products of Rows \(q_1, q_3, q_2, q_3 \), using the orthogonal constraints of \(\mathbf{R} \)
 - Determine \(f_x \) and \(f_y \) from \(q_1 \) and \(q_2 \) (Eq. 6.19) Wrong??)
 - All the rests: \(\mathbf{R}_1^T, \mathbf{R}_2^T, \mathbf{T}_x, \mathbf{T}_y \)
 - Enforce orthognoality on \(\mathbf{R} \)?

Comparisons

- Direct parameter method and Projection Matrix method

- Properties in Common:
 - Linear system first, Parameter decomposition second
 - Results should be exactly the same

- Differences
 - Number of variables in homogeneous systems
 - Matrix method: All parameters at once, 2N Equations of 12 variables
 - Direct method in three steps: N Equations of 8 variables, N equations of 2 Variables, Image Center – maybe more stable
 - Assumptions
 - Matrix method: simpler, and more general; sometime projection matrix is sufficient so no need for parameter decompostion
 - Direct method: Assume known image center in the first two steps, and known aspect ratio in estimating image center
Guidelines for Calibration

- Pick up a well-known technique or a few
- Design and construct calibration patterns (with known 3D)
- Make sure what parameters you want to find for your camera
- Run algorithms on ideal simulated data
 - You can either use the data of the real calibration pattern or using computer generated data
 - Define a virtual camera with known intrinsic and extrinsic parameters
 - Generate 2D points from the 3D data using the virtual camera
 - Run algorithms on the 2D-3D data set
- Add noises in the simulated data to test the robustness
- Run algorithms on the real data (images of calibration target)
- If successful, you are all set
- Otherwise:
 - Check how you select the distribution of control points
 - Check the accuracy in 3D and 2D localization
 - Check the robustness of your algorithms again
 - Develop your own algorithms → NEW METHODS?

3D reconstruction using two cameras

Stereo Vision

& project discussions

- Homework #3 online, due October 25 before class