
.

Widgets
and
Layouts

Qt in Education

© 2012 Digia Plc.

The enclosed Qt Materials are provided under the Creative Commons
Attribution-Share Alike 2.5 License Agreement.

The full license text is available here:
http://creativecommons.org/licenses/by-sa/2.5/legalcode.

Digia, Qt and the Digia and Qt logos are the registered trademarks
of Digia Plc. in Finland and other countries worldwide.

User Interface
Components

� User interfaces are built from individual widgets

� 46 widgets in Designer

� 59+ direct descendants from QWidget

QLabel

QPushButton

QLineEdit

QDoubleSpinBox

QScrollBar

Widgets in Widgets

� Widgets are placed in hierarchies

� Container classes provide visual structure...

� ...but also functional (e.g. QRadioButton)

QGroupBox
QTabWidget

Traits of a Widget

� Occupies a rectangular area of the screen

� Receives events from input devices

� Emits signals for “notable” changes

� Are structured in a hierarchy

� Can contain other widgets

An Example Dialog

� Widgets are placed in layouts – to make the
user interface elastic

Why is Elastic Good?

� Lets widgets adapt to contents

� Lets widgets adapt to translations

� Lets widgets adapt to user settings

Layouts

� There are several possible layouts available

� Layouts and widgets “negotiate” for sizes and
positions

� Spacer springs can be used to fill voids

QGridLayout
QVBoxLayout

QHBoxLayout

An Example Dialog

� Dialogs are built from multiple layers of
layouts and widgets

Note that layouts are not
parents of the widgets that

they manage.

An Example Dialog
QVBoxLayout *outerLayout = new QVBoxLayout(this);

QHBoxLayout *topLayout = new QHBoxLayout();
topLayout->addWidget(new QLabel("Printer:"));
topLayout->addWidget(c=new QComboBox());
outerLayout->addLayout(topLayout);

QHBoxLayout *groupLayout = new QHBoxLayout();

...

outerLayout->addLayout(groupLayout);

outerLayout->addSpacerItem(new QSpacerItem(...));

QHBoxLayout *buttonLayout = new QHBoxLayout();
buttonLayout->addSpacerItem(new QSpacerItem(...));
buttonLayout->addWidget(new QPushButton("Print"));
buttonLayout->addWidget(new QPushButton("Cancel"));
outerLayout->addLayout(buttonLayout);

An Example Dialog
QVBoxLayout *outerLayout = new QVBoxLayout(this);

QHBoxLayout *topLayout = new QHBoxLayout();
topLayout->addWidget(new QLabel("Printer:"));
topLayout->addWidget(c=new QComboBox());
outerLayout->addLayout(topLayout);

QHBoxLayout *groupLayout = new QHBoxLayout();

...

outerLayout->addLayout(groupLayout);

outerLayout->addSpacerItem(new QSpacerItem(...));

QHBoxLayout *buttonLayout = new QHBoxLayout();
buttonLayout->addSpacerItem(new QSpacerItem(...));
buttonLayout->addWidget(new QPushButton("Print"));
buttonLayout->addWidget(new QPushButton("Cancel"));
outerLayout->addLayout(buttonLayout);

An Example Dialog
QVBoxLayout *outerLayout = new QVBoxLayout(this);

QHBoxLayout *topLayout = new QHBoxLayout();
topLayout->addWidget(new QLabel("Printer:"));
topLayout->addWidget(c=new QComboBox());
outerLayout->addLayout(topLayout);

QHBoxLayout *groupLayout = new QHBoxLayout();

...

outerLayout->addLayout(groupLayout);

outerLayout->addSpacerItem(new QSpacerItem(...));

QHBoxLayout *buttonLayout = new QHBoxLayout();
buttonLayout->addSpacerItem(new QSpacerItem(...));
buttonLayout->addWidget(new QPushButton("Print"));
buttonLayout->addWidget(new QPushButton("Cancel"));
outerLayout->addLayout(buttonLayout);

An Example Dialog
QVBoxLayout *outerLayout = new QVBoxLayout(this);

QHBoxLayout *topLayout = new QHBoxLayout();
topLayout->addWidget(new QLabel("Printer:"));
topLayout->addWidget(c=new QComboBox());
outerLayout->addLayout(topLayout);

QHBoxLayout *groupLayout = new QHBoxLayout();

...

outerLayout->addLayout(groupLayout);

outerLayout->addSpacerItem(new QSpacerItem(...));

QHBoxLayout *buttonLayout = new QHBoxLayout();
buttonLayout->addSpacerItem(new QSpacerItem(...));
buttonLayout->addWidget(new QPushButton("Print"));
buttonLayout->addWidget(new QPushButton("Cancel"));
outerLayout->addLayout(buttonLayout);

An Example Dialog
QVBoxLayout *outerLayout = new QVBoxLayout(this);

QHBoxLayout *topLayout = new QHBoxLayout();
topLayout->addWidget(new QLabel("Printer:"));
topLayout->addWidget(c=new QComboBox());
outerLayout->addLayout(topLayout);

QHBoxLayout *groupLayout = new QHBoxLayout();

...

outerLayout->addLayout(groupLayout);

outerLayout->addSpacerItem(new QSpacerItem(...));

QHBoxLayout *buttonLayout = new QHBoxLayout();
buttonLayout->addSpacerItem(new QSpacerItem(...));
buttonLayout->addWidget(new QPushButton("Print"));
buttonLayout->addWidget(new QPushButton("Cancel"));
outerLayout->addLayout(buttonLayout);

An Example Dialog

� Horizontal box, contains group
boxes, contains vertical boxes,
contains radio buttons

QHBoxLayout *groupLayout = new QHBoxLayout();

QGroupBox *orientationGroup = new QGroupBox();
QVBoxLayout *orientationLayout = new QVBoxLayout(orientationGroup);
orientationLayout->addWidget(new QRadioButton("Landscape"));
orientationLayout->addWidget(new QRadioButton("Portrait"));
groupLayout->addWidget(orientationGroup);

QGroupBox *colorGroup = new QGroupBox();
QVBoxLayout *colorLayout = new QVBoxLayout(colorGroup);
colorLayout->addWidget(new QRadioButton("Black and White"));
colorLayout->addWidget(new QRadioButton("Color"));
groupLayout->addWidget(colorGroup);

An Example Dialog

� You can build the same structure using
Designer

Cross Platform Styles

� Widgets are drawn using a platform specific
style to ensure a native look

Cross Platform Issues

� Comparing user interfaces tells us that there is more
to it than just changing the style of the widgets

� Form layout

� Dialog button ordering

� Standard dialogs

Cross Platform Issues

� Comparing user interfaces tells us that there is more
to it than just changing the style of the widgets

� Form layout

� Dialog button ordering

� Standard dialogs

Plastique ClearLooks Windows MacOS X

Cross Platform Issues

� Comparing user interfaces tells us that there is more
to it than just changing the style of the widgets

� Form layout

� Dialog button ordering

� Standard dialogs

Cross Platform Issues

� Comparing user interfaces tells us that there is more
to it than just changing the style of the widgets

� Form layout

� Dialog button ordering

� Standard dialogs

Common Widgets

� Qt contains numerous
widgets for all common
situations.

� Designer has a good
overview of the widget
groups

Common Widgets
Buttons

� All buttons inherit the
QAbstractButton base class.

� Signals
� clicked() - emitted when the button is clicked (button released).

� toggled(bool) – emitted when the check state of the button is changed.

� Properties
� checkable – true if the button can be checked. Makes a push button toggle.

� checked – true when the button is checked.

� text – the text of the button.

� icon – an icon on the button (can be displayed together with text).

QAbstractButton

QPushButton QCheckBox QRadioButton

Common Widgets
Item Widgets

� QListWidget is used to show lists of items

� Adding items

� addItem(QString) – appends an item to the end of the list

� insertItem(int row, QString) – inserts an item at the specified row

� Selection

� selectedItems – returns a list of QListWidgetItems used
QListWidgetItem::text to determine the text

� Signals

� itemSelectionChanged – emitted when the selection is changed

� QComboBox shows a list with a single selection in a more
compact format.

QListWidget

QComboBox

Common Widgets
Containers

� Container widgets are used to
structure the user interface

� They can be considered passive (not entirely true)

� A plain QWidget can be used as a container

� Designer: Place widgets in the container and
apply a layout to the container

� Code: Create a layout for the container and add
widgets to the layout

QGroupBox *box = new QGroupBox();
QVBoxLayout *layout = new QVBoxLayout(box);
layout->addWidget(...);
...

QGroupBox

QTabWidget

QFrame

Common Widgets
Input Widgets

� Use QLineEdit for single line text entries

� Signals:
� textChanged(QString) - emitted when the text is altered

� editingFinished() - emitted when the widget is left

� returnPressed() - emitted when return is pressed

� Properties
� text – the text of the widget

� maxLength – limits the length of the input

� readOnly – can be set to true to prevent editing (still allows copying)

QLineEdit

Common Widgets
Input Widgets

� Use QTextEdit or QPlainTextEdit for multi line text entries

� Signals

� textChanged() - emitted when the text is altered

� Properties

� plainText – unformatted text

� html – HTML formatted text

� readOnly – can be set to prevent editing

� QComboBox can be made editable through the editable property

� Signals

� editTextChanged(QString) – emitted while the text is being edited

� Properties

� currentText – the current text of the combo box

QComboBox

QTextEdit

Common Widgets
Input Widgets

� There is a large choice of widgets for editing integer values

� There are more for doubles, time and dates

� Signals:
� valueChanged(int) - emitted when the value is updated

� Properties
� value – the current value

� maximum – the maximum value

� minimum – the minimum value

QSlider

QScrollBar

QDial

QSpinBox

QAbstractSlider

Common Widgets
Display Widgets

� The QLabel displays a text or a picture

� Properties

� text – a text for the label

� pixmap – a picture to show

� QLCDNumber is used to display integer values

� Properties

� intValue – the value shown (set using display(int))

QLabel

QLCDNumber

QLabel

Common Widget
Properties

� All widgets have a set of common properties
inherited from the QWidget base class

� enabled – enable or disable user interaction

� visible – shown or not (alter with show and hide)

� These properties affect child widgets as
well. For instance, enable or disable a
container widget.

Break

Size Policies

� Layout is a negotiation process between
widgets and layouts

� Layouts bring structure
� horizontal and vertical boxes

� grid

� Widgets supply
� size policies for each direction

� minimum and maximum sizes

Size Policies

� The example was not complete!

printerList->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Fixed)

Size Policies

� Each widget has a size hint that is combined
with a policy for each direction
� Fixed – the hint specifies the size of the widget

� Minimum – the hint specifies the smallest possible size

� Maximum – the hint specifies the largest possible size

� Preferred – the hint specifies preferred, but not required

� Expanding – as preferred, but wants to grow

� MinimumExpanding – as minimum, but wants to grow

� Ignored – the size hint is ignored, widget gets as much
space as possible

Size Policies

� Each widget has a size hint that is combined
with a policy for each direction
� Fixed – fixed to size hint

� Minimum – can grow

� Maximum – can shrink

� Preferred – can grow, can shrink

� Expanding – can grow, can shrink, wants to grow

� MinimumExpanding – can grow, wants to grow

� Ignored – the size hint is ignored, can grow, can shrink

What If?

� Two preferred next to each other

� One preferred, one expanding

� Two expanding next to each other

� Not enough widget to fill the space (fixed)

More on Sizes

� Widget sizes can be further controlled
using the properties for maximum and
minimum size

� maximumSize – largest possible size

� minimumSize – smallest possible size

ui->pushButton->setMinimumSize(100, 150);
ui->pushButton->setMaximumHeight(250);

Introducing Designer

� Designer was historically a separate tool, but is
now part of Qt Creator

� A visual editor for forms

� Drag-and-drop widgets

� Arrange layouts

� Make connections

Introducing Designer

sources
*.cpp executablesobject files

*.o

headers
*.h

generated
moc_*.cpp

user
interfaces

*.ui

includes

compiles links

compiles

mocs

Introducing Designer

sources
*.cpp executablesobject files

*.o

headers
*.h

generated
moc_*.cpp

generated
ui_*.h

user
interfaces

*.ui

includes

compiles links

compiles

mocs

uics

Using the Code

#ifndef WIDGET_H
#define WIDGET_H

#include <QWidget>

namespace Ui {
class Widget;

}

class Widget : public QWidget {
Q_OBJECT

public:
Widget(QWidget *parent = 0);
~Widget();

private:
Ui::Widget *ui;

};

#endif // WIDGET_H

Forward declaration
of the Ui::Widget class

A Ui::Widget pointer,
ui, refers to all widgets

Basically a
standard QWidget
derived class

Using the Code

#include "widget.h"
#include "ui_widget.h"

Widget::Widget(QWidget *parent) :
QWidget(parent),
ui(new Ui::Widget)

{
ui->setupUi(this);

}

Widget::~Widget()
{

delete ui;
}

Instanciates the
Ui::Widget class
as ui

Deletes the ui
object

Calls setupUi,
creating all the

widgets as children
to the given parent

(this).

Using Designer

� Basic working order
1. Place widgets roughly

2. Apply layouts from the inside out, add spacers as needed

3. Make connections

4. Use from code

� Throughout the process, alter and edit properties

� Practice makes perfect!

Using Designer

drag-and-drop

Place widgets roughly

Using Designer

Apply layouts from the inside out, add spacers as needed

1

2

1. Select each group box, 2. apply a vertical box layout

Using Designer

Apply layouts from the inside out, add spacers as needed

1

1. Select the label (click), 2. Select the combobox (Ctrl+click)

2

Using Designer

Apply layouts from the inside out, add spacers as needed

1

1. Apply a horizontal box layout

Using Designer

Apply layouts from the inside out, add spacers as needed

1

3

1. Select both group boxes and lay them out, 2. add a horizontal spacer,
3. place the buttons and spacer in a layout

2

Using Designer

Apply layouts from the inside out, add spacers as needed

1

3

1. Add a vertical spacer, 2. select the form itself, 3. apply a vertical box layout

2

Using Designer

Make connections (between widgets)

1

2

3

4

1. Switch to signals and slot editing mode, 2. drag from one widget to another,
3. pick the signal and slot, 4. see the result in the connections' dock

Using Designer

Make connections (to your code)

1

23

1. Use the widget editing mode, 2. right click on a widget and pick Go to slot...
3. pick the signal to connect to your code

Using Designer

Use from code

� Access all widgets through the ui class member

class Widget : public QWidget {
...

private:
Ui::Widget *ui;

};

void Widget::memberFunction()
{

ui->pushButton->setText(...);
}

Top-level Windows

� Widgets without a parent widget
automatically become windows

� QWidget – a plain window, usually non-modal

� QDialog – a dialog, usually expecting a result
such as OK, Cancel, etc

� QMainWindow – an application window with
menus, toolbars, statusbar, etc

� QDialog and QMainWindow inherit QWidget

Using QWidget as
Window

� Any widget can be a window

� Widgets without a parent are automatically windows

� Widgets with a parent have to pass the Qt::Window
flag to the QWidget constructor

� Use setWindowModality to make modal

� NonModal – all windows can be used at once

� WindowModal – the parent window is blocked

� ApplicationModal – all other windows are blocked

Window Properties

� Set the window title using setWindowTitle

� The QWidget constructor and window flags
QWidget::QWidget(QWidget *parent, Qt::WindowFlags f=0)

� Qt::Window – creates a window

� Qt::CustomizeWindowHint – clear defaults
− Qt::WindowMinimizeButtonHint

− Qt::WindowMaximizeButtonHint

− Qt::WindowCloseButtonHint

− etc

The word hint is important

Different platforms and
window managers affect

the effect of these settings

Using QDialog

� A search dialog is a typical custom dialog

� Inherited from QDialog

� User interface created using Designer or code

� QLabel and QRadioButton are “outputs”

� Buttons for accepting or rejecting

The Programming
Interface

class SearchDialog : public QDialog
{

Q_OBJECT
public:

explicit SearchDialog(const QString &initialText,
bool isBackward, QWidget *parent = 0);

bool isBackward() const;
const QString &searchText() const;

private:
Ui::SearchDialog *ui;

};

Initialize the dialog
in the constructor

Getter functions for
clean access of data

The Implementation
SearchDialog::SearchDialog(const QString &initialText,

bool isBackward, QWidget *parent) :
QDialog(parent), ui(new Ui::SearchDialog)

{
ui->setupUi(this);

ui->searchText->setText(initialText);
if(isBackward)

ui->directionBackward->setChecked(true);
else

ui->directionForward->setChecked(true);
}

bool SearchDialog::isBackward() const
{

return ui->directionBackward->isChecked();
}

const QString &SearchDialog::searchText() const
{

return ui->searchText->text();
}

Getter functions

Initialize dialog
according
to settings

Using the Dialog

� The software interface has been defined to
make it easy to use the dialog

void MyWindow::myFunction()
{

SearchDialog dlg(settings.value("searchText","").toString(),
settings.value("searchBackward", false).toBool(), this);

if(dlg.exec() == QDialog::Accepted)
{

QString text = dlg.searchText());
bool backwards = dlg.isBackward());
...

}
}
QDialog::exec shows

a modal (blocking)
dialog and returns the
result as accepted or

rejected

Using QMainWindow

� A QMainWindow is the document window of the
average desktop application

� Menus

� Toolbar

� Statusbar

� Docks

� Central widget

Introducing QAction

� Many user interface elements refer to the same user action

� A QAction object can represent all these access ways – and
hold tool tips, statusbar hints, etc too

Ctrl+S

Action

Introducing QAction

� A QAction encapsulates all settings needed for
menus, tool bars and keyboard shortcuts

� Commonly used properties are

� text – the text used everywhere

� icon – icon to be used everywhere

� shortcut – shortcut

� checkable/checked – whether the action is
checkable and the current check status

� toolTip/statusTip – tips text for tool tips (hover
and wait) and status bar tips (hover, no wait)

Introducing QAction

� Or use the editor
in Designer

QAction *action = new QAction(parent);

action->setText("text");

action->setIcon(QIcon(":/icons/icon.png"));

action->setShortcut(QKeySequence("Ctrl+G"));

action->setData(myDataQVariant);

Creating a new action

Setting properties
for text, icon and

keyboard short-cut

A QVariant can be
associated with each
action, to carry data
associated with the

given operation

Adding actions

� Adding actions to different parts of the user interface is as
easy as calling add Action

� In Designer, simply drag and drop
each action into place on a
tool bar or menu

myMenu->addAction(action);
myToolBar->addAction(action);

Dock widgets

� Dock widgets are detachable
widgets placed around the
edges of a QMainWindow
� Great for multi-head setups

� Simply place your widget
inside a QDockWidget

� QMainWindow::addDockWidget

adds the docks to the window

Dock widgets

void MainWindow::createDock()
{

QDockWidget *dock = new QDockWidget("Dock", this);

dock->setFeatures(QDockWidget::DockWidgetMovable |
QDockWidget::DockWidgetFloatable);

dock->setAllowedAreas(Qt::LeftDockWidgetArea |
Qt::RightDockWidgetArea);

dock->setWidget(actualWidget);

...

addDockWidget(Qt::RightDockWidgetArea, dock);
}

A new dock
with

a title

Can be docked
along the sides

Finally, add it to the window

The actual
widget is what

the user
interacts with

Can be moved
and floated
(not closed!)

Icon resources

� Putting icons in a resource file lets Qt embed
them into the executable
� Avoid having to deploy multiple files

� No need to try to determine the path for the icons
for each specific install type

� All fits neatly into the build system

� ...

� You can add anything into resources, not only icons

Icon resources

� You can easily manage resource files in Qt Creator

� Prefix path and filenames with : to use a resource

� Or simply pick an icon from the list in Designer

QPixmap pm(":/images/logo.png");

Style sheets

� For highlighting and cross platform styling, all
QWidget classes have a styleSheet property

� Style sheets are inspired from CSS

� They can be used for highlighting and for
various small alternations

� As well as a total overhaul of the entire user
interface

Style sheets

� The easiest way to apply a
style sheet to an individual
widget is to use Designer

Stylesheet

� To style an entire application, use
QApplication::setStyleSheet

QLineEdit { background-color: yellow }
QLineEdit#nameEdit { background-color: yellow }

QTextEdit, QListView {
background-color: white;
background-image: url(draft.png);
background-attachment: scroll;

}

QGroupBox {
background-color: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,

stop: 0 #E0E0E0, stop: 1 #FFFFFF);
border: 2px solid gray;
border-radius: 5px;
margin-top: 1ex;

}

Use images

Build these in
Designer's editor

Select a class

Select an
object by

name

