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Image Metamorphosis with
Scattered Feature Constraints

Seungyong Lee, George Wolberg, Kyung-Yong Chwa, and Sung Yong Shin

Abstract —This paper describes an image metamorphosis technique to handle scattered feature constraints specified with points,
polylines, and splines. Solutions to the following three problems are presented: feature specification, warp generation, and transition
control. We demonstrate the use of snakes to reduce the burden of feature specification. Next, we propose the use of multilevel free-
form deformations (MFFD) to compute C 

2
-continuous and one-to-one mapping functions among the specified features. The resulting

technique, based on B-spline approximation, is simpler and faster than previous warp generation methods. Furthermore, it produces
smooth image transformations without undesirable ripples and foldovers. Finally, we simplify the MFFD algorithm to derive transition
functions to control geometry and color blending. Implementation details are furnished and comparisons among various
metamorphosis techniques are presented.

Index Terms —Image metamorphosis, morphing, snakes, multilevel free-form deformation, multilevel B-spline interpolation.

——————————  ✦  ——————————

1 INTRODUCTION

MAGE metamorphosis has proven to be a powerful tool
for visual effects. There are now many breathtaking ex-

amples in film and television depicting the fluid transfor-
mation of one digital image into another. This process,
commonly known as morphing, is realized by coupling im-
age warping with color interpolation. Image warping ap-
plies 2D geometric transformations on the images to retain
geometric alignment between their features, while color
interpolation blends their color.

Image metamorphosis between two images begins with
an animator establishing their correspondence with pairs of
feature primitives, e.g., mesh nodes, line segments, curves,
or points. Each primitive specifies an image feature, or
landmark. The feature correspondence is then used to
compute mapping functions that define the spatial relation-
ship between all points in both images. Since mapping
functions are central to warping, we shall refer to them as
warp functions in this paper. They will be used to interpo-
late the positions of the features across the morph se-
quence. Once both images have been warped into align-
ment for intermediate feature positions, ordinary color in-
terpolation (i.e., cross-dissolve) is performed to generate an
inbetween image.

The explosive growth of image morphing is due to the
compelling and aesthetically pleasing effects possible
through warping and color blending. The extent to which
artists and animators can effectively use morphing tools is

directly tied to solutions to the following three problems:
feature specification, warp generation, and transition con-
trol. Together, they influence the ease and effectiveness in
generating high-quality metamorphosis sequences. We
have already reported effective solutions towards these
problems in [1]. In this paper, we describe further insights
and implementation details.

Feature specification is the most tedious aspect of
morphing. Although the choice of allowable primitives
may vary, all morphing approaches require careful atten-
tion to the precise placement of primitives. In this paper,
we demonstrate the use of snakes to reduce this burden.
Snakes are energy minimizing splines that move under
the influence of image and constraint forces. They were
first adopted in computer vision as an active contour
model [2]. Derived from primitives, snakes assist us in
feature specification because we need only position them
near the features. Image forces push snakes toward salient
edges, thereby refining their final positions and making it
possible to capture the exact position of a feature easily
and precisely.

Given feature correspondence constraints between
both images, a warp function over the whole image
plane must be derived. This process, which we refer to
as warp generation, is essentially an interpolation prob-
lem. To derive warp functions from scattered feature
(positional) constraints, we propose the multilevel free-
form deformation (MFFD) as an extension to free-form
deformation (FFD) [3]. We take the bivariate cubic B-
spline tensor product as the deformation function of
FFD. A new direct manipulation technique for FFD,
based on 2D B-spline approximation, is developed in
this paper. We apply it to a hierarchy of control lattices
to exactly satisfy the feature constraints. Furthermore,
we present a sufficient condition for a 2D cubic B-spline
surface to be one-to-one. This guarantees that the re-
sulting warp is one-to-one, i.e., the distorted image does
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not fold back upon itself. The MFFD generates C2-
continuous and one-to-one warps which yield fluid im-
age distortions. It is much simpler and faster than a re-
lated energy minimization method [4]. We also present a
hybrid approach that combines the two methods.

Another interesting problem in image morphing is
transition control. If transition rates are allowed to vary
locally across inbetween images, more interesting anima-
tions are possible. An effective method for transition
control has been proposed in [4]. Transition rates on an
inbetween image are derived from transition curves by
constructing a smooth surface. The surface represents the
propagation of transition rates defined by the user at
sparse positions across the image. In this work, the MFFD
technique for warp generation is simplified and applied
to efficiently generate a C2-continuous surface. The sim-
plification is due to relaxation of the one-to-one property.

A tradeoff exists between the complexity of feature
specification and warp generation. As feature specifica-
tion becomes more convenient, warp generation becomes
more formidable. The recent introduction of spline curves
to feature specification raises a challenge to the warp gen-
eration process, making it the most critical component of
morphing. It influences the smoothness of the transfor-
mation and dominates the computational cost of the
morphing process. We shall comment on these tradeoffs
and describe their role in influencing recent progress in
this field.

This paper is organized as follows. Section 2 reviews
previous work. A general metamorphosis framework is
given in Section 3. The use of snakes for feature specifica-
tion is described in Section 4. Section 5 introduces the
MFFD technique for warp generation. Section 6 describes
a simple variation to the MFFD technique for obtaining
multilevel B-spline interpolation for transition control.
Examples and conclusions are given in Sections 7 and 8,
respectively.

2 PREVIOUS WORK

Before the development of morphing, image transitions
were generally achieved through the use of cross-dissolves,
e.g., linear interpolation to fade from one image to another.
Fig. 1 depicts this process applied over five frames. The
result is poor, owing to the double-exposure effect appar-
ent in misaligned regions. This problem is particularly ap-
parent in the middle frame, where both input images con-
tribute equally to the output. Morphing achieves a fluid
transformation by incorporating warping to maintain geo-
metric alignment throughout the cross-dissolve process.
The important role that warping plays is readily apparent
by comparing the morph sequence in Fig. 2 with the cross-
dissolve result in Fig. 1.

In this section, we review several morphing algorithms,
including those based on mesh warping, field morphing,
radial basis functions, thin plate splines, and energy mini-
mization. This review is intended to motivate the discussion
of progress in feature specification and warp generation.

2.1 Mesh Warping
Mesh warping was pioneered at Industrial Light & Magic
(ILM) by Douglas Smythe for use in the movie Willow in
1988. It has been successfully used in many subsequent
motion pictures. A full description of this method appears
in [5]. To illustrate the two-pass mesh warping algorithm,
consider the image sequence shown in Fig. 2. The five
frames in the figure represent a metamorphosis (or morph)
between the two faces at both ends of the row. We will re-
fer to these two images as I0 and I1, the source and the tar-
get images, respectively. The source image has mesh M0
associated with it that specifies the coordinates of control
points, or landmarks. A second mesh, M1, specifies their
corresponding positions in the target image. Meshes M0
and M1 are, respectively, shown overlaid on I0 and I1 in
Fig. 3. Notice that landmarks such as the eyes, nose, and
lips lie below corresponding grid lines in both meshes.

Fig. 1. Cross-dissolve. Image transitions are achieved by linearly interpolating pixel colors to fade from one image to another.

Fig. 2. Morph sequence. Warping maintains geometric alignment throughout the cross-dissolve to achieve fluid transformations.
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Together, M0 and M1 are used to define the spatial trans-
formation that maps all points in I0 onto I1. The meshes are
constrained to be topologically equivalent, i.e., no folding
or discontinuities are permitted. Therefore, the nodes in M1
may wander as far from M0 as necessary, as long as they do
not cause self-intersection. Furthermore, for simplicity, the
meshes are constrained to have frozen borders.

Fig. 3. The source and target images with overlaid meshes.

The use of meshes for feature specification facilitates a
straightforward solution for warp generation: bicubic
spline interpolation. The morph sequence in Fig. 2 was
produced using mesh warping with Catmull-Rom spline
interpolation to determine the correspondence of all pixels.
Fant’s algorithm was used to resample the image in a sepa-
rable implementation [6], [5].

2.2 Field Morphing
While meshes appear to be a convenient manner of speci-
fying pairs of feature points, they are, however, sometimes
cumbersome to use. In particular, a control mesh is always
required although the structure of the image features may
be arbitrary. The field morphing algorithm developed by
Beier and Neely [7] at Pacific Data Images grew out of the
desire to simplify the user interface to handle correspon-
dence by means of line pairs with arbitrary configurations.
A pair of corresponding lines in the source and target im-
ages defines a coordinate mapping between the two im-
ages. In addition to the straightforward correspondence
provided for all points along the lines, the mapping of
points in their vicinity can be determined by their distance
from the line. Since multiple line pairs are usually given,
the displacement of a point in the source image is actually a
weighted sum of the mappings due to each line pair, with
the weights attributed to distance and line length.

This approach has the benefit of being more expressive
than mesh warping. For example, rather than requiring the
correspondence points of Fig. 3 to all lie on a mesh, line
pairs can be drawn along the mouth, nose, eyes, and cheeks
of the source and target images. Therefore, only key feature
points need be given.

Although this approach simplifies the specification of
feature correspondence, it complicates warp generation.
This is due to the fact that all line pairs must be considered
before the mapping of each source point is known. This
global algorithm is slower than mesh warping, which uses
bicubic interpolation to determine the mapping of all
points not lying on the mesh. A more serious difficulty,
though, is that unexpected displacements may be gener-
ated after the influence of all line pairs are considered at a

single point. The resulting distortions, referred to as ghosts,
may prevent an animator from realizing a precise warp in a
complex metamorphosis. Additional line pairs must some-
times be supplied to counter the ill-effects of a previous set.
In the hands of talented animators, though, the mesh
warping and field morphing algorithms have both been
used to produce startling visual effects.

2.3 Radial Basis Functions / Thin Plate Splines
The most general form of feature specification permits the
feature primitives to consist of points, lines, and curves.
Since lines and curves can be point sampled, it is sufficient
to consider the features on an image to be specified by a set
of points. In that case, the x- and y-components of a warp
can be derived by constructing the surfaces that interpolate
scattered points. Consider, for example, n feature points
labeled (uk, vk) in the source image and (xk, yk) in the target
image, where 1 ≤ k ≤ n. Deriving warp functions that map
points from the target image to the source image is equiva-
lent to determining two smooth surfaces: one that passes
through points (xk, yk, uk) and the other that passes through
(xk, yk, vk) for 1 ≤ k ≤ n.

This formulation permits us to draw upon a large body
of work on scattered data interpolation to address the warp
generation problem. All subsequent morphing algorithms
have facilitated general feature specification by appealing
to scattered data interpolation.

Warp generation by this approach was extensively sur-
veyed in [8], [5]. Recently, two similar methods were inde-
pendently proposed using the thin plate surface model [9],
[10]. Another method using radial basis functions was de-
scribed in [11]. These techniques generate smooth warps
that exactly reflect the feature correspondence. Further-
more, they offer the most general form of feature specifica-
tion since any primitive (e.g., spline curves) may be sam-
pled into a set of points. Elastic Reality, a popular
morphing package from Avid Technology, uses curves to
enhance feature specification. Their warp generation
method, however, is unpublished.

2.4 Energy Minimization
All of the methods described above do not guarantee the
one-to-one property of the generated warp functions.
When a warp is applied to an image, the one-to-one prop-
erty prevents the warped image from folding back upon
itself. An energy minimization method has been proposed
for deriving one-to-one warp functions in [4]. That
method allows extensive feature specification primitives
such as points, polylines, and curves. Internally, all
primitives are sampled and reduced to a collection of
points. These points are then used to generate a warp,
interpreted as a 2D deformation of a rectangular plate. A
deformation technique is provided to derive C1-
continuous and one-to-one warps from the positional
constraints. The requirements for a warp are represented
by energy terms and satisfied by minimizing their sum.
The technique generates natural warps since it is based on
physically meaningful energy terms. The performance of
that method, however, is hampered by its high computa-
tional cost.
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2.5 Discussion
The progression of morphing algorithms has been marked
by more expressive and less cumbersome tools for feature
specification. A significant step beyond meshes was made
possible by the specification of line pairs in field morphing.
The complications that this brought to warp generation,
however, sometimes undermined the usefulness of the ap-
proach. For instance, the method sometimes demonstrated
undesirable artifacts (e.g., ghosts) due to the computed
warp function [7]. To counter these problems, the user is
required to specify additional line pairs, beyond the mini-
mal set that would otherwise be warranted. All subsequent
algorithms, including those based on radial basis functions,
thin plate splines, and energy minimization, formulated
warp generation as a scattered data interpolation problem
and sought to improve the quality (smoothness) of the
computed warp function. They do so at relatively high
computational cost.

This paper advances a new approach based on multi-
level free-form deformation (MFFD). It is much simpler and
faster than the related energy minimization method in [4].
The MFFD algorithm facilitates C2-continuous warp func-
tions and significantly improves performance by acceler-
ating warp generation. The method was first described in
[1]. In this paper, we have broadened the presentation to
include further insights and implementation details.

One important benefit of MFFD-based morphing is that
feature specification is more expressive and less cumber-
some. Rather than editing a mesh, for instance, only a small
set of features must be specified. Consider the features de-
picted in Fig. 4. They were used to generate a morph se-
quence that is visually indistinguishable from that of Fig. 2.
To further assist the user, snakes can be introduced to re-
duce the burden of feature specification. Snakes streamline
feature specification because primitives must only be posi-
tioned near the features. Image forces push snakes toward
salient edges, thereby refining their final positions and
making it possible to capture the exact position of a feature
easily and precisely.

Fig. 4. Feature specification for MFFD-based morphing.

3 METAMORPHOSIS FRAMEWORK

In this section, we summarize the general framework pre-
sented in [4], which encompasses the three components
shared by all morphing algorithms: feature specification,
warp generation, and transition control. The framework
serves to highlight the interaction of these components,
independent of implementation methodologies. The role
of the transition control function for enhancing morph

sequences is demonstrated for the uniform and nonuni-
form cases.

Let F0 and F1 be two sets of features specified by an ani-
mator on the source and target images I0 and I1, respec-
tively. For each feature f0 in F0, there exists a corresponding
feature f1 in F1. Let W0 and W1 be the warp functions that
specify the corresponding point in I1 and I0 for each point
in I0 and I1, respectively. When it is applied to I0, W0 gener-
ates a distorted image so that the features in F0 coincide
with their corresponding features in F1. W1 is required to
map features f1 onto f0 when it distorts I1. Although W1 is
the inverse of W0 at the features, this is not necessarily true
at other positions across the image. Together, W0 and W1
serve to retain geometric alignment of the features during
the morph.

Transition functions specify a transition rate for each
point on the given images over time. Let T0 be a transition
function defined for source image I0. For a given time t,
T0(p; t) is a real-valued function that determines how fast
each point p in I0 moves towards the corresponding point q
in target image I1. T0(p; t) also determines the color contri-
bution of each point p in I0 to the corresponding point in an
inbetween image I(t).

Let T1 be the transition function for target image I1. For
each point q in I1, T1(q; t) is defined to have the same transi-
tion rate as T0(p; t) if q corresponds to p in I0. Hence, T1(q; t)
can be derived from T0(p; t) using warp function W1. That
is, T1(q; t) = T0(W1(q); t). For simplicity, we treat the transi-
tion functions for both geometry and color to be identical,
although they may be different in practice.

Let W • I denote the application of warp function W to
image I. The procedure for generating an inbetween image
I(t) can be described as follows.

W p t T p t p T p t W p

W q t T q t q T q t W q

I p t W p t T p t I p

I q t W q t T q t I q
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Note that 0 ≤ T0, T1 ≤ 1, and 0 ≤ t ≤ 1. Transition rates zero
and one imply the source and target images, respectively.

Figs. 5 and 6 show examples of the use of uniform and
nonuniform transition functions, respectively. The upper
left and lower right images of Fig. 5 are the source and tar-
get images I0 and I1, respectively. The feature sets F0 and F1

used to define warp functions W0 and W1 are shown over-
laid on the two images. Functions W0  and W1  are generated

using uniform transition functions T0(p; t) = t and T1(p; t) = t

for all points p. Applying W0  to I0 yields the set of inbe-
tween images given in the top row of Fig. 5. Applying W1

to I1 yields the set of inbetween images given in the bottom

row of that figure. Those two rows are attenuated by T0 and

T1, respectively, and added together to yield the middle
row of inbetween images. Notice that geometric alignment
is maintained among the two sets of warped inbetween
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images before color blending merges them into the final
morph sequence.

The example in Fig. 6 demonstrates the effects of a non-
uniform transition function applied to the same source and
target images. In this example, a transition function was
defined that accelerated the deformation of the nose of the
source image, while leaving the shape of the head intact for
t ≤ 0.5. The deformation of the head begins at t = 0.5 and
continues linearly to t = 1. The same transition function was
used for T1. Notice that this use of nonuniform transition
functions is responsible for the dramatic improvement in
the morph sequence.

In the remainder of this paper, we address the following
three problems common to all metamorphosis techniques:

• how to specify feature sets F0 and F1,
• how to derive warp functions W0 and W1, and
• how to derive transition functions T0 and T1.

4 FEATURE SPECIFICATION

Feature specification plays an important role in morphing.
It permits us to identify those image landmarks that must
remain in geometric alignment as the morph proceeds from
the source image to the target image. This task is critical to
produce the warps that must precede color blending (see
Section 3). Failure to accurately match corresponding fea-
tures gives rise to the annoying double-exposure artifacts
typical of ordinary cross-dissolves.

The position of a feature is identified by the user with
feature primitives overlaid upon edges, where color values
change abruptly. Features on a facial image, for example,
may consist of the profile, eyes, nose, and mouth. Several
forms of primitives are popular, including meshes [5], [12],
line segments [7], points, polylines, and curves [9], [10], [4].

In this work, we also use points, polylines, and curves to
specify features. To further reduce the burden of an anima-
tor, we adopt snakes [2], an active contour model made
popular in computer vision. Snakes simplify feature specifi-
cation because the user need only position a primitive near
the feature. Large nearby image gradients refine the initial
placement of primitives, as they slither towards the precise
feature position. Furthermore, snakes permit us to define
primitives with fewer control points because they can be
made to lie on the underlying features with the guidance of
only a small set of well-placed control points.

4.1 Snakes
Snakes [2] are energy-minimizing splines under the influ-
ence of image and constraint forces. The spline energy
serves to impose a piecewise smoothness constraint on a
snake. The image forces push the snake toward salient im-
age features such as lines, edges, and subjective contours.
The constraint forces are used for pulling the snake to a
desired image feature among the nearby ones. Snakes have
proven to be useful for the interactive specification of image
features.

Representing the position of a snake in parametric form,
v(s) = (x(s), y(s)), where s ∈ [0, 1], its energy functional can
be written as

E v E v E v dssnake spline imagea f  a f  a f= +z .
0

1

Espline represents the spline energy due to bending, and

Eimage is the energy defined from the intensity distribution of
an image. We have removed the term related to the con-
straint forces because it is not used in this work. We also

simplify the spline energy to Espline
d v
ds

= b
2

2

2
, which makes a

snake act like a thin plate.

Fig. 5. Uniform metamorphosis. All pixels change uniformly between their positions and colors in the source and target images.
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For a grayscale image I, the gradient ∇I measures the
local changes of image values and can be computed by a
difference operator or the Sobel operator [13]. The image
energy functional can be defined by E Iimage = -— =2

- —I x y,b g 2
. It makes a snake precisely localize a feature at a

boundary having large image gradients. While minimizing
the energy functional Esnake, the snake slithers from its initial
position to a nearby feature.

A feature is allowed to attract a distant snake if image
gradients are convolved with a smoothing filter. For exam-
ple, the convolution results in an image energy functional,
Eimage= – (Gσ * ∇2I), where Gσ is a Gaussian of standard
deviation σ. Other image energy functionals can be
found in [2].

To derive the desired snake, the energy minimization
problem is converted to a differential equation. The equa-
tion is then discretized to a system of nonlinear equations
by the finite difference method. The solution of the system
is computed by iteratively solving the linear system until its
equilibrium is reached. Hence, a snake consists of a se-
quence of points that gets updated at each iteration in the
loop. The illusion of a moving snake can be rendered by
repeatedly drawing a polyline through the updated points.

4.2 Specification of Features and Their
Correspondence

In this paper, the feature specification primitives include
points, polylines, and curves. Snakes are provided as an
operation applicable to polyline or curve primitives. They
permit us to place a primitive near a feature and then sub-
ject it to image forces that refine its position. Snakes work
best when the feature has large image gradients.

When the snake operation is applied to a polyline or

curve, a sequence of points is uniformly sampled on it, e.g.,
20 points per segment. Then, a constant number of itera-
tions in the energy minimization loop is performed to move
the sampled points toward the features. While the snake
operation is applied several times, the points slither and
finally lock onto the feature by the image force.

To tailor the response of the snake operation, the user
may clamp any of the sampled points in place. Internally,
this is achieved by assigning a large value to the parameter
γ in [2] for the selected points. Since it is often tedious to
select among the many sampled points, we provide an op-
tion for fixing those that lie on the control points of the ini-
tial primitive.

If the results of the snake operation are not deemed satis-
factory, a polyline or curve can be recovered by the un-
snake operation. In that case, the polyline or curve is gener-
ated from those snake points that correspond to the control
points of the initial primitive. After editing the position of
these control points, the user can again apply the snake
operation to refine the position of the specified feature.

When there are several features near a snake, the snake
operation can sometimes fail to capture the desired feature.
In that case, the user can select any snake point and move it
toward the feature. Then, the following snake operation
may give a successful response because some parts of the
snake are now closer to the desired feature than others.

Once a feature specification primitive f0 is placed on im-
age I0, a primitive f1 is also deposited on the other image I1.
To guarantee that f0 and f1 have the same number of control
points, we let f1 be a copy of f0. We either move f0 repeat-
edly or use the snake operation to identify a feature on I0.
Primitive f1 must then be moved to designate the corre-
sponding feature on I1. Again, the snake operation may be
applied to f1, if necessary.

Fig. 6. Nonuniform metamorphosis. Each pixel may migrate at different rates between the source and target images.
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To derive the set of feature point pairs from the specified
features, a set of points are sampled on polylines or curves.
For the sampling, we apply the same method used for de-
riving snake points from polylines or curves. This makes all
nonpoint features have the same number of sampled points
on each segment. Feature point pairs between two images
are then derived from the sampled points on corresponding
feature primitives.

Fig. 7 shows an example. Fig. 7a is the input image. We
convert it to a grayscale image and apply the Sobel operator
[13] to compute image gradients. Fig. 7b shows the image
gradients convolved with a Gaussian filter, where bright in-
tensities denote large gradients. In Fig. 7c, we place a polyline
near the profile of the image. The snake starting from the
polyline exactly captures the profile, as in Fig. 7d. Fig. 7e il-
lustrates the specified feature primitives overlaid on the im-
age. The cyan points in Fig. 7f represent internally sampled
feature points on the primitives. We typically use the sam-
pling rate of 20 points per primitive segment, although only
four points per segment are shown in the figure.

4.3 Discussion
The snake operation presented in this section facilitates the
precise specification of image features with moderate user
interaction. The effectiveness of snakes drops when several
features are close to each other or when the image gradient
near a feature is low. Although editing snake points can be
useful in such cases, it is often necessary to repeatedly ap-
ply the edit and snake operations.

When two polylines or curves are used for feature corre-
spondence, their control points are placed on the matching
parts of the features. The feature point pairs derived by uni-
formly sampling the primitives properly reflect the corre-
spondence specified by the control points. When the snake
operation is applied to one or both of them, the sampled
points move freely and independently of each other. This
compromises the accuracy of feature correspondence because
the matching points may move to other parts of the features,
thereby, misregistering the user-specified point pairs.

The point clamp option makes the control points of a
polyline or curve stay in place when the snake operation is
applied. With this option, a snake operation does not ham-
per the feature correspondence information specified by the
control points. Furthermore, in that case, the points not
sampled from control points do not move arbitrarily be-
cause they are related to the fixed control points by the
spline force of a snake. Hence, the careful handling of the
control points alone is sufficient to derive precise feature
positions and their correspondence.

5 WARP GENERATION

Feature correspondence among images I0 and I1 is estab-
lished by two sets of points, P and Q. The points may either
be explicitly given constraints or, more commonly, they are
samples from user-specified feature primitives. In either
case, they provide correspondence information at a set of
sparse and irregular positions. The warp generation proc-
ess is responsible for smoothly propagating this informa-
tion to all points in the image plane to determine warp
functions W0 and W1 (see Section 3). In this work, we shall
be interested in deriving smooth and one-to-one functions.
The smoothness of a warp makes it possible to obtain a
distorted image with no discontinuities or abrupt deforma-
tions. The one-to-one property guarantees that the dis-
torted image does not fold back upon itself. Hence, the
warp generation problem requires us to find a smooth one-
to-one 2D mapping from positional constraints. It may be
formulated as follows:

Given a set of point pairs (P, Q) = {(pi, qi)}, find a smooth

one-to-one function w : R2 → R2 such that w(pi) = qi for each

point pi in P and the corresponding point qi in Q.

In this paper, we propose the multilevel free-form de-
formation (MFFD) to provide a solution to the warp gen-
eration problem. The MFFD method contains a new direct
manipulation technique for free-form deformation (FFD)
[3] and applies it to a hierarchy of control lattices. To
guarantee the one-to-one property, we present a sufficient
condition for a 2D cubic B-spline surface to be one-to-one.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Feature specification. (a) Input image; (b) image gradi-
ents; (c) polyline placed near profile; (d) snake locks onto pro-
file; (e) feature primitives; (f) internally sampled feature points.
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The MFFD generates C2-continuous and one-to-one warps
which yield fluid image distortions. It is much simpler and
faster than the energy minimization method [4]. We also
present a hybrid approach that combines the two methods.

5.1 Free-Form Deformation
Free-form deformation (FFD) was proposed by Sederberg
and Parry as a powerful modeling tool for 3D deformable
objects [3]. The basic idea of FFD is to deform an object by
manipulating a 3D parallelepiped lattice containing the
object. The manipulated lattice determines a deformation
function that specifies a new position for each point on the
object. Coquillart extended the FFD method to handle non-
parallelepiped lattices [14] and proposed a technique for
animating objects modeled by FFD [15]. Hsu et al. em-
ployed the FFD method to directly control the shape of an
object under complex deformations [16]. They took the tri-
variate cubic B-spline tensor product as the deformation
function instead of the Bernstein polynomials used by
Sederberg and Parry.

In this paper, we consider a 2D FFD to deform a rectan-
gular plate in the xy-plane by manipulating a regular lattice
overlaid on it. The bivariate cubic B-spline tensor product is
taken as the deformation function of FFD because a B-
spline has local control [17]. This property makes it possible
to locally manipulate the lattice when a point on the plate is
moved to the specified position. Therefore, the new lattice
producing this movement can be efficiently computed even
for a large number of control points.

Let Ω be a rectangular plate placed on the xy-plane. We
assume that Ω contains points p = (u, v) where 1 ≤ u ≤ m
and 1 ≤ v ≤ n. When plate Ω is deformed in the xy-plane, its
shape can be represented by a vector-valued function, w(p)
= (x(p), y(p)). Let Φ be an (m + 2) × (n + 2) lattice of control
points overlaid on plate Ω. In the initial configuration of Φ,
the ijth control point lies at its initial position, f ij

0  = (i, j).

With the FFD method, a desired deformation w of plate Ω
is derived by displacing the control points on lattice Φ from
their initial positions (Fig. 8).

Fig. 8. The initial arrangement of the plate and control lattice.

Let φij be the position of the ijth control point on lattice
Φ. The function w is defined in terms of φij by
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where i = u  – 1, j = v  – 1, s = u – u , and t = v – v .

Bk(s) and Bl(t) are the uniform cubic B-spline basis functions
evaluated at s and t, respectively. They are defined as
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where 0 ≤ t < 1.
Since a B-spline curve through collinear control points is

itself linear, the initial configuration of lattice Φ generates
the undeformed shape of the plate. That is,
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From (1), we know that the deformed position w(p) of point
p on plate Ω relates to the sixteen control points in its
neighborhood.

5.2 One-to-One Property of Free-Form Deformation
Function w defined in (1) can be regarded as a 2D uniform
cubic B-spline surface where plate Ω is the parameter space.
The one-to-one property of a 2D B-spline surface has not
been studied because B-spline surfaces are usually consid-
ered in three dimensions to model free-form surfaces.

Recently, Goodman and Unsworth presented a sufficient
condition for a 2D Bézier surface to be one-to-one [18].
They commented that the condition can also be applied to a
2D B-spline surface. For an m × n lattice of control points,
the condition contains 2m(m + 1) + 2n(n + 1) linear ine-
qualities. If the number of control points is large, the time
to check the condition becomes prohibitive. Moreover, if
the condition does not hold, there is no simple way for
manipulating the control lattice to satisfy the condition.

In this paper, we present a sufficient condition for the
function w to be one-to-one in terms of the displacements
of control points. With the following theorem, a 2D uni-
form cubic B-spline surface can be made one-to-one by
limiting the displacements of control points. Let ∆φij =

f ij  – f ij
0  be the displacement of the ijth control point from

its initial position. Let d d d• = max ,1 2d i , where δ = (δ1,

δ2).

THEOREM 1. The function w given in (1) is one-to-one if

Df ij •
£  0.48 for all i, j.

PROOF. Let ∆f ij  = f fij ij- 0  and w = (x, y). Suppose that
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zero at all points in Ω including the boundary, which
implies that function w is one-to-one [19]. Let f ij  =

(xij, yij), f ij
0  = (xij
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0 ), and ∆yij = yij – yij
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and only if ∂
∂
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u> - . In what follows, we

only show that ∂
∂

∂
∂

y
v

y
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From (1) and (2), we have
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Let ckl = Bk(s) ¢Bl (t) – ¢Bk (s)Bl(t). From the formulae

of B-spline basis functions, it holds that Bk(t) ≥ 0, for
i = 0, 1, 2, 3, ¢B0 (t) ≤ 0, ¢B1(t) ≤ 0, ¢B2 (t) ≥ 0, and ¢B3 (t)
≥ 0 when 0 ≤ t ≤ 1. Therefore, it immediately fol-
lows that c20, c30, c21, c31 ≤ 0 and c02, c12, c03, c13 ≥ 0.

If we let t = s + ∆t, then c10 = – (s + ∆t – 1)2((s – 2)2

+ (4s – 3s2)∆t)/12. Since ∆t ≥ –s and (4s – 3s2) ≥ 0

when 0 ≤ s ≤ 1, we get (4s – 3s2)∆t ≥ –s (4s – 3s2) ≥ –

1, which implies c10 ≤ 0. Similarly, it can be proved

that c32 ≤ 0, c01 ≥ 0, and c23 ≥ 0 when 0 ≤ s, t ≤ 1.

From the fact that c00 = (s – t)(s – 1)2(t – 1)2/12 and

c33 = (s – t)s2t2/12, it follows that if s ≥ t, then c00, c33 ≥ 0

and if s < t, then c00, c33 ≤ 0. By manipulating the for-

mula of c11, we get c11 = (s – t)(3(st + 1)(3st – 4s – 4t
+ 5) + 1)/12. Let f(s, t) = 3st – 4s – 4t + 5. Then,
∂
∂
f
s t= - <3 4 0  and ∂

∂
f
t s= - <3 4 0 when 0 ≤ s, t ≤ 1,

which implies that f has a global minimum at (1, 1).
Because f(1, 1) = 0, c11 ≥ 0 if s ≥ t and c11 < 0 if s < t.

Similarly, it can be shown that c22 ≥ 0 if s ≥ t and c22 < 0
if s < t.

In summary, ckl ≥ 0 if k < l and ckl ≤ 0 if k > l

when 0 ≤ s, t ≤ 1. Also, if s ≥ t, then ckk ≥ 0, and if

s < t, then ckk ≤ 0. We consider the case when s ≥ t.
Let
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C is a function of s and t defined on 0 ≤ s, t ≤ 1. From
the condition that –0.48 ≤ ∆yij ≤ 0.48 and the proper-
ties of the values of ckl, it holds that
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To derive a lower bound of C, we partition the
domain 0 ≤ s, t ≤ 1 to the grid in which the internode
distance ∆d is 0.0001. When C is evaluated at each
grid point by 64 bits double-precision arithmetic, the
minimum value is –2.0463927 at (s0, t0) = (0.7552,

0.2448). Let (sg, tg) be a grid point and D = C(sg + ∆s,

tg + ∆t) – C(sg, tg), where 0 ≤ ∆s, ∆t < ∆d. D consists of

terms s t s tg g
a b g dD D , where α, β, γ, δ = 0, 1, 2, 3. To sim-

plify the formula of D, we assign sg = tg = 0 and sg = tg

= 1 to the terms in D having positive and negative co-

efficients, respectively. Then, from ∆d > (∆s)γ and ∆d >

(∆t)δ, it holds that D > – ε∆d for e = 4 230
36
, .

Let (s, t) be a point on the domain 0 ≤ s, t ≤ 1. Let
s d s dg = D D  and t d t dg = D D . Let ∆s = s – sg and

∆t = t – tg. Then, C(s, t) = C(sg + ∆s, tg + ∆t) > C(sg, tg) –

ε∆d ≥ C(s0, t0) – ε∆d ≥ –2.0581427. Hence, 1 + 0.48 C > 0

on the domain 0 ≤ s, t ≤ 1, which implies that ∂
∂

∂
∂

y
v

y
u> .

The case when s < t can be treated similarly. �

Theorem 1 provides a tight, sufficient, although not nec-
essary, condition. From the proof of the theorem, an exam-
ple of a B-spline surface that violates the one-to-one prop-
erty can be constructed when all control points are dis-
placed by amounts less than 0.5.

Consider a single B-spline patch given by a 4 × 4 control
lattice. Let ∆f kl  = (0.49, –0.49) if k ≤ l and ∆f kl  = (–0.49, 0.49)
if k > l for k, l = 0, 1, 2, 3. Then, the Jacobian of the func-
tion w is less than zero at the point where u = 0.75519
and v = 0.24483. Since the Jacobian values are positive at
other points, this implies that w contains a foldover and so
is not one-to-one. Fig. 9 shows the single B-spline patch and
a magnification of the region near the foldover. In the fig-
ure, black and white rectangles denote the displaced and
original positions, respectively, of control points. This ex-
ample shows that a B-spline surface may violate the one-to-
one property even when control lattice gridlines do not
self-intersect.

5.3 Manipulation of Free-Form Deformation
Suppose that plate Ω should be deformed to place a point
p at the specified position q, that is, w(p) = q. Without loss
of generality, we may assume that p = (u, v), 1 ≤ u, v < 2.
Then, the displacements of the klth control points, k, l =
0, 1, 2, 3, on lattice Φ determine the deformed position
w(p) of point p. See Fig. 10a. Let ∆q = w(p) – w0(p) = q – p
be the movement of the point p from its original position.
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From (1) and (2), the displacements ∆f kl  must satisfy (3):
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where wkl = Bk(s)Bl(t) and s = u – 1, t = v – 1.
There are many values of ∆f kl  that are solutions to (3).

Since B-spline basis functions have the property that
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, one obvious solution is ∆f kl  = ∆q, for k,

l = 0, 1, 2, 3. However, this does not properly reflect the
movement of its neighboring point p. The resulting defor-
mation w is the same regardless of the undeformed posi-
tion of p for 1 ≤ u, v < 2. Another solution is to choose the
control point nearest to p and displace it until p reaches the
desired position q. This solution also generates an improper
deformation w because only the parts near the displaced
control point are deformed.

Hence, we choose the solution in the least-squared sense
such that
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Among all the solutions to (3), Hsu et al. showed that this
minimizes the squared sum of control point displacements
[16]. In this solution, the control points near point p gets
larger displacements than the others because wkl depends
on the distance between the klth control point and point p.
It generates the deformation w whereby the effect of the
movement of p tapers off smoothly.

Now, suppose that plate Ω should be deformed to place
a set of points P at a set of positions Q. That is, w(p) = q for
each point p in P and its position q in Q. A point p in P can
be moved to the specified position q if its surrounding con-
trol points are displaced by the amount ∆f kl  given in (4).
However, these displacements may mislead another point
in P to another position than the one specified in Q.

Let ¢P  = {(uc, vc)} be the set of points in P such that i – 2 ≤
uc < i + 2 and j – 2 ≤ vc < j + 2. Let f  be the ijth control point
of lattice Φ whose initial position is (i, j), as in Fig. 10b. The
displacements of control point f  influences the movement
of points in ¢P  when we evaluate the deformation function
w. For each point pc in ¢P , (4) gives the displacement ∆f c  of

control point f  required for moving pc to the specified po-
sition. Since the displacement ∆f c  may be different from
point to point in ¢P , the displacement ∆f  of control point
f  is chosen to minimize an error.

The error is defined as the squared sum of differences
between wc∆f c  and wc∆f c , where wc = Bk(s)Bl(t), k = (i + 1) –
u l j v s u uc c c c, ,= + = = -1b g , and t v vc c= - , for

each point p u vc c c= ,c h  in ¢P . That is, the error is

w wc c c
c

D Df f-Â c h2
.

wc∆f  is the movement of point pc due to the displacement

∆f  of control point f.  wc∆f c  represents the contribution of

control point f , determined by (4), for moving pc to its
specified position. By differentiating the error with respect
to ∆f  and equating the derived formula to zero, we get
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If the set ¢P  is empty, the control point f  does not play
a role in making the positional constraints hold. The dis-
placement ∆f  can have an arbitrary value without inter-
rupting movements of points in P to the positions in Q. We
define ∆f  to be zero in that case to keep the deformation of
plate Ω as small as possible.

(a) Surface patch

(b) Magnified foldover region

Fig. 9. A violation of the one-to-one property on a single B-spine sur-
face patch.

(a) single constraint (b) multiple constraints

Fig. 10. Examples of the positional constraints.
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When the necessary control point displacements have
been computed by (5), the resulting deformation function
w is not guaranteed to be one-to-one. To make w one-to-
one, we truncate the displacement ∆f  of a control point f
so that Df • £ 0 48. . Then, the condition of Theorem 1
holds and the derived function w is one-to-one. The fol-
lowing algorithm summaries the scheme to manipulate
control lattice Φ from point sets P and Q.

Algorithm FFD Manipulation
Input: point sets P and Q
Output: control point displacements ∆Φ = {∆f ij }
for all i, j do let δij = 0 and ωij = 0
for each point p = (u, v) in P do

let i = u  – 1 and j = v  – 1
let s = u – u  and t = v –  v
for k, l = 0, 1, 2, 3 do

compute ∆f kl  with (4)

add wkl
2  ∆f kl  to δ(i+k)(j+l)

add wkl
2  to w

i k j l+ +b fb g
end

end
for all i, j do

if ωij ≠ 0 then do
compute ∆f ij  = δij/ωij

truncate ∆f ij  so that Df ij •
£ 0 48.

else let ∆f ij  = 0

end

Hsu et al. presented a technique for manipulating con-
trol points so that the points on an object modeled by FFD
may be moved to the specified positions [16]. That tech-
nique calculates the pseudoinverse of a matrix to derive the
displacements of control points that minimize the squared
sum of distances between the specified and actually moved
positions. The matrix contains the values of B-spline basis
functions and its size depends on the number of positional
constraints. When a large number of points must be
moved, the computation for calculating the pseudoin-
verse is prohibitive.

On the other hand, the technique proposed in this sec-
tion runs very fast even when the number of moved points
is large. The deformation of plate Ω nicely reflects the
movements of points because the displacement of each
control point minimizes a reasonable error. Fig. 11 shows
examples. In the figures, black spots represent the positions
of the selected points in the undeformed and deformed
shapes. Thick curves show the control lattice Φ overlaid on
plate Ω. The control lattice is a rectangular grid in its initial
configuration. It is transformed when plate Ω is deformed.

5.4 Multilevel Free-Form Deformation
Let P be a set of points on plate Ω and Q be a set of corre-
sponding positions. An application of the FFD manipula-
tion presented in Section 5.3 cannot always deform plate Ω
to place each point in P at its specified position in Q. One
reason is that the displacement of a control point on lattice
Φ is the weighted average of the displacements required for

moving its neighboring points in P. The other reason is that
we limit the maximum displacement of a control point to
approximately a half of the spacing between control points
in order to make the deformation function one-to-one.

We may circumvent the first problem if we make the
control lattice finer until every point in P can be moved by
its surrounding control points without interfering with
other points in P. The second can be overcome if we repeat-
edly apply the FFD manipulation to plate Ω so that the ac-
cumulated movement of a point in P can be sufficiently
large. Hence, an obvious method for deriving a one-to-one
deformation function from the positional constraints is to
overlay a sufficiently fine control lattice over plate Ω and
iterate the FFD manipulation. However, in this case, the
resulting shape of plate Ω will show only sharp local de-
formations near the points in P. Moreover, a large number
of FFD manipulations may be required to satisfy the posi-
tional constraints because a point in P can only move a
short distance by the FFD manipulation when a fine control
lattice is used. In this section, we present the multilevel
free-form deformation (MFFD) technique that overcomes
the drawbacks of the straightforward method.

In MFFD, a hierarchy of control lattices, Φ0, Φ1, ..., Φm, is
used to derive a sequence of deformation functions with
the FFD manipulation. Let hk be the spacing between con-
trol points on the initial configuration of lattice Φk. We as-
sume that h0 and hm are given and that hk = 2hk+1. When
plate Ω is deformed with a coarse control lattice, the posi-
tional constraints merge with each other and result in a
smooth deformation, although they are not exactly satis-
fied. The remaining deviations between the deformed and
specified positions will be handled by subsequent defor-
mations with finer control lattices.

Let w0, w1, ..., wn be the sequence of deformation func-
tions derived in the MFFD. Then, the deformation of plate Ω
is defined by the composite function w = wn ° wn–1 ° ... ° w0.

(a) single positional constraint

(b) multiple positional constraints

Fig. 11. Examples of the FFD manipulation.
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That is, w(Ω) = wn(Ωn), where Ω0 = Ω and Ωi+1 = wi(Ωi).
w(Ω) and wi(Ωi) denote the resulting shapes when the de-
formation functions w and wi are applied to the plate Ω
and deformed plate Ωi, respectively. Let Pi+1 = wi(Pi), where
P0 = P. Pi is the set of points on the deformed plate Ωi that
lie at the deformed positions of the points in P. The defor-
mation function wi is computed to move the points in Pi to
their specified positions in Q. When the deformation func-
tion w is applied to plate Ω, we define the error as

err p q
c c cw wa f c h= -max

2
,

where qc is the position in Q specified for point pc in P.
When we deform a plate Ωi with a control lattice Φk, a

point in Pi can move at most (0.48hk, 0.48hk) if and only if all
16 surrounding control points are displaced by (0.48hk,
0.48hk). Note that this maximum movement follows from
Theorem 1 whereby the displacements of control points must
be truncated to keep the one-to-one property of the defor-
mation function. If each point in Pi moves by (0.48hk, 0.48hk),
the error decreases by at least (0.48hk)

2. In this case, more FFD
manipulations with the control lattice Φk may be helpful for
moving the points in Pi to their specified positions.

In MFFD, the FFD manipulation starts with the coarsest
control lattice Φ0. With a control lattice Φk, the FFD ma-
nipulation iterates until the change in error falls below
α(0.48hk)

2. Then, the next finer control lattice Φk+1 is used
for the successive FFD manipulation, as long as Φk is not
the finest control lattice. This process continues while the
error exceeds a user-specified threshold. The parameter α is
a real value between zero and one. A small α generates a
smooth deformation of plate Ω because FFD manipulations
tends to be performed on coarser control lattices. We usu-
ally use 0.5 as the value of α.

The following pseudocode outlines the MFFD algorithm.
In this algorithm, FFD manipulation (as outlined in the
previous algorithm) is successively applied with a hierar-
chy of control lattices to make the points in P gradually
approach their positions in Q. The deformation function w
from the MFFD algorithm is the composition of several
functions derived by FFD manipulations. Function w is C2-
continuous and one-to-one because FFD manipulation gen-
erates a C2-continuous and one-to-one function.

Algorithm MFFD
Input: point sets P = {pi} and Q = {qi}
Output: 2D function w such that w(pi) = qi
let w be the identity function
let Φ be the coarsest control lattice (e.g., 5 × 5)
let h be the initial control point spacing in Φ
compute error = err(w)
let oldError = error
while error > theshold do

compute ∆Φ from P and Q by FFD Manipulation
evaluate deformation function ffd from ¢F  = Φ+ ∆Φ
update function w = ffd ° w= ffd(w)
update point set P = ffd(P)
compute error = err(w)
let ∆error = error – oldError
if ∆error < α(0.48h)2 and Φ is not finest lattice
then do

let Φ be the next finer control lattice
let h be the initial control point spacing in Φ

end
let oldError = error

end

Fig. 12 gives an example in which the MFFD is ap-
plied to generate a deformation from positional con-
straints. Fig. 12a shows the selected points in the unde-
formed shape. Figs. 12b through 12e show a sequence of
deformations from successive FFD manipulations. In this
example, the FFD manipulations are performed no more
than twice at each level of the control lattice. The final
deformation is given in Fig. 12f with the specified posi-
tions of selected points. When the function w is evaluated
on a 64 × 64 grid, it takes 0.2 seconds for an SGI Crimson to
generate that final deformation. When the size of the grid is
512 × 512, the computation time is 9.2 seconds.

(a) (b)

(c) (d)

(e) (f)

Fig. 12. A sequence of deformations produced by the MFFD.

5.5 A Hybrid Approach
An energy minimization method has been proposed to de-
rive C1-continuous and one-to-one warps from positional
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constraints specified by point pairs [4]. It generates a natu-
ral warp by numerically solving a differential equation to
minimize the sum of physically meaningful energy terms.
The computational cost increases drastically with the size
of the grid on which warps are evaluated. The MFFD can
be combined with that method to obtain nice warps more
efficiently when the grid size is large.

Suppose that warps are to be evaluated on an m × n grid
W . Let ¢W  be a coarse grid of size ¢ ¥ ¢m n . The positional
constraints on grid Ω can be approximated onto grid ¢W  by
weighted averaging. We then use the energy minimization
method to obtain a warp we on grid ¢W  from the resulting
constraints. we gives a C1-continuous and one-to-one de-
formation of grid ¢W .

To propagate we onto the original grid Ω, we con-
struct a 2D uniform cubic B-spline surface with a ( ¢m  + 2)
× ( ¢n  + 2) control lattice. The control points are handled to
make the surface interpolate the value of function we at
each point of grid ¢W . A warp w0 is then derived by evalu-
ating the surface on the original grid W . w0 provides a C2-
continuous and one-to-one deformation of grid W . How-
ever, it does not exactly satisfy the given positional con-
straints specified on W .

To resolve the error, we use the MFFD method with w0
as its first deformation function on W . The size of the
coarsest control lattice is then chosen as ( ¢m  + 2) × ( ¢n  + 2).
Any control lattice coarser than that need not be consid-
ered because a smooth deformation of Ω has been a1ready
made by w0. The MFFD finally generates a C2-continuous
and one-to-one deformation of W  which exactly satisfy the
given positional constraints.

In the hybrid approach, the global shape of a warp is
determined by the energy minimization method. It can be
computed quickly by running the method on a coarse grid.
The MFFD on the original grid derives local deformations
near the selected points to move them exactly to the speci-
fied positions. Then, it is possible to avoid the excessive
computation required for energy minimization on a fine
grid. Hence, the hybrid approach generates a nice warp
similar to the energy minimization method in a computa-
tion time comparable to the MFFD.

Fig. 13 gives an example. Fig. 13a shows the selected
points in the undeformed shape of the plate. Figs. 13b, 13c,
and 13d show the deformations of the plate derived by en-
ergy minimization, MFFD, and the hybrid method, respec-
tively. In the figures, warps are evaluated on a 512 × 512
grid. For the hybrid approach, the energy minimization
method is applied to a 128 × 128 grid. The computation
times for Figs. 13b, 13c, and 13d on an SGI Crimson are
26.7, 6.4, and 7.5 seconds, respectively.

5.6 Discussion
Positional constraints from sets P and Q specify the linear
movement of points to their final positions. In the MFFD
method, the deformation reflects the virtual forces due to
these movements. In general, if positional constraints per-
mit the paths to self-intersect, the resulting warp may vio-
late the one-to-one property and give rise to foldovers.

The MFFD guarantees the one-to-one property of a warp
even when positional constraints are prone to foldovers.
This is achieved by simply relaxing the requirement to ex-

actly satisfy the positional constraints. Fig. 14 shows an
example of the resulting deformation when two points
swap their positions.

Warp w from the MFFD method is the composition of a
sequence of deformation functions derived by FFD. Algo-
rithm MFFD iteratively updates warp w by composing it
with a new deformation function ffd. When warp w is
evaluated on a large grid, it takes time to obtain a new
value of w at each grid point, which is transformed by
function ffd. This repeated step dominates the computation
time of Algorithm MFFD.

To accelerate this step, we evaluate function ffd on a
regular grid and use bilinear interpolation to compute the
function composition ffd ° w. Values of function ffd on the
grid can be derived efficiently by the forward difference
method [5], [17] and a lookup table. The forward difference
method is used for a coarse control lattice where the func-
tion values can be obtained by simple addition at a large
number of grid points. When the control lattice gets finer,

(a) undeformed shape (b) energy minimization

(c) MFFD (d) hybrid method

Fig. 13. Comparison of the deformed shapes of a plate.

(a) undeformed shape (b) resulting deformation

Fig. 14. A deformation from foldover-prone positional constraints.
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the forward difference method slows down because a setup
is required for each control patch. Then, a table is used to
compute B-spline basis functions in evaluating function ffd.
In that case, function ffd is initialized to an identity function
and the function values are updated only for grid points
near control points with nonzero displacements.

6 TRANSITION CONTROL

Transition behavior in a metamorphosis sequence can be
controlled by a set of transition curves defined along
primitives [4]. These primitives may differ from those used
to specify features. Again, there are no restrictions on their
placement. The transition rate for each pixel is computed
by propagating the transition control information specified
at sparse positions. This process is analogous to that of
warp generation.

Let P be a set of points on the source image I0 for which
transition curves are assigned. The curves specify a transi-
tion rate to each point in P over time t. For a given time t,
transition function T0(t) is a real-valued function defined on
I0. At each point p in P, T0(t) must have the transition rate
specified by the assigned curve. T0(t) is also required to be
smooth so that an inbetween image does not contain an
abrupt change of transition rates. Transition function T1(t)
can be derived from T0(t) using warp W1, as described in
Section 3. Hence, the transition control problem can be
formulated as follows

Given points {(uc, vc)} on a plane and real values {tc}, find a
smooth function f : R2 → R such that f (uc, vc) = tc.

This problem reduces to surface interpolation, where
function f is a surface that interpolates scattered constraints,
each denoted by a surface height value. In a previous method
[4], the thin plate surface model was employed to construct
C1-continuous surfaces through given points. To solve the
same problem, we simplify the MFFD to obtain multilevel B-
spline interpolation. It generates a C2-continuous surface
more efficiently than the previous method.

6.1 Manipulation of a B-Spline Surface
B-spline surfaces are widely used to model free-form sur-
faces because they offer nice properties such as continuity
and local control. In this section, we consider uniform cubic
B-splines to generate a surface that interpolates a scattered
set of 3D height field points.

Let W  be a rectangular region in the uv-plane which
contains points p = (u, v) such that 1 ≤ u ≤ m and 1 ≤ v ≤ n.
Let Φ be an (m + 2) × (n + 2) lattice of control points over-
laid on the region W . In the initial configuration of Φ, the
ijth control point lies at its initial position (i, j) in the uv-
plane. When the control points on lattice Φ are displaced
only in the direction perpendicular to the uv-plane, the re-
sulting B-spline surface can be represented by a real-valued
function f. The function value f (p) for a point p = (u, v) on
W  implies that the point p is placed at the position (u, v, f (p))
when the surface is generated.

Let f ij  be the height of the ijth control point from the uv-

plane. Then, the function f is given by

f u v B s B tk l i k j l
lk

, ,a f a f a f b fb g= + +
==
ÂÂ f

0

3

0

3

where i u j v s u u= - = - = -1 1, , , and t v v= - .

Bk(s) and Bl(t) are the uniform cubic B-spline basis functions
evaluated at s and t, respectively. The above formula for f is
in the same form as (1) for the deformation function w in
Section 5.1.

Suppose that a B-spline surface is required to interpolate
a set of scattered points (uc, vc, tc), where (uc, vc) is a point in
the region W . That is, f (uc, vc) = tc for each point in the set.
A surface that approximately satisfies the positional con-
straints can be obtained by following the same approach
for FFD manipulation described in Section 5.3. The re-
quired heights of control points from the uv-plane are de-
rived by (4) and (5), replacing ∆q with tc. The computed
heights of control points are not truncated in this case be-
cause it is not necessary to consider the one-to-one property.

6.2 Multilevel B-Spline Interpolation

Let P be a set of points (uc, vc, tc) in 3D space, where (uc, vc)
is a point in the region W . As in the case for a warp, the B-
spline surface derived by (4) and (5) does not necessarily
interpolate the points in P. A straightforward solution is to
use a sufficiently fine control lattice so that every point in P
can be interpolated without interfering with other points.
However, the resulting surface will show only sharp local
deformations near the points in P. Thus, we introduce mul-
tilevel B-spline interpolation to overcome this drawback.

In multilevel B-spline interpolation, a hierarchy of con-
trol lattices, Φ0, Φ1, ..., Φm, is overlaid over the region Ω to

derive a sequence of functions, f0, f1, ..., fm. Let hi be the
spacing between control points in the initial configuration
of lattice Φi. We assume that h0 and hm are given and that

hi = 2hi+1. The final function f is defined by the sum of the

functions fi, that is, f p f pii
b g b g= Â , for each point p on W .

The manipulation of a B-spline surface starts with the
coarsest control lattice Φ0. The heights of control points on

lattice Φ0 are derived to generate the surface f0 that inter-

polates the points in P. Sometimes, however, surface f0 only

passes near the points in P, leaving the deviation ∆0tc = tc –

f0(uc, vc) for each point (uc, vc, tc) in P. Then, the next finer

control lattice Φ1 is used to obtain the B-spline surface f1

that interpolates the set of points (uc, vc, ∆
0tc).

In general, we manipulate the control points on lattice
Φk+1 to derive the B-spline surface fk+1 that interpolates the

set of points (uc, vc, ∆ktc), where Dk
c c i c ci

k
t t f u v= -

=Â ,c h
0

.

This process continues to the finest control lattice Φm until
err(f ) falls below a given threshold, where err(f ) is the
maximum difference between the points in P and the final
surface f. Unlike the MFFD for warp generation, we do
not enforce the one-to-one property. Consequently, the B-
spline surface manipulation is applied only once on each
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control lattice because the heights of the control points are
not truncated.

The following pseudocode outlines the multilevel B-
spline interpolation algorithm. It resembles the MFFD
algorithm except for the following key differences. First,
the final surface f is not due to function composition but
rather it is derived from the sum of a sequence of surfaces.
Second, the computed heights of the control lattice are not
truncated in the B-spline manipulation. Finally, the B-
spline manipulation is applied only once on each con-
trol lattice. A surface generated by the algorithm is C2-

continuous because it is the sum of C2-continuous B-
spline surfaces. The input to the algorithm consists of
point set P = {(uc, vc)} and value set Q = {tc}. The output

is a real-valued, C2-continuous, interpolation function f

such that f(uc, vc) = tc.

Algorithm Multilevel B-Spline Interpolation
Input: point set P and value set Q
Output: real-valued interpolation function f
let f = 0 at all points
let Φ be the coarsest control lattice (e.g., 5 × 5)
compute error = err(f )
while error > theshold do

compute the values for Φ from sets P and Q
evaluate the B-spline surface bss from Φ
update function f = f + bss
update point set P = P – bss(P)
compute error = err(f)
if Φ is not the finest control lattice then

let Φ be the next finer control lattice
else exit

end

Fig. 15 shows an example. Black spots in the figure rep-
resent the interpolated points. Most of the computation
time is spent evaluating function f in the region Ω. For a 64
× 64 grid, it takes 0.1 seconds for an SGI Crimson to gener-
ate the surface given in Fig. 15. For a 512 × 512 grid, the
surface is generated in 1.5 seconds. As in the MFFD
method, we used the forward difference method and a
lookup table to efficiently evaluate a B-spline surface.

Fig. 15. An example of multilevel B-spline interpolation.

6.3 Discussion
In multilevel B-spline interpolation, the coarsest control
lattice Φ0 determines the area of the resulting surface on
which an interpolated point has influence. When Φ0 is
coarse, large spacing between control points merges the
effects of interpolated points and generates smooth hills.

On the other hand, with a fine Φ0, the surface tends to
contain local bumps near interpolated points. Fig. 16
shows the surface from the same constraints as Fig. 15
when Φ0 is 19 × 19. In Fig. 15, Φ0 is 5 × 5. The density of
the finest control lattice Φm controls the precision to
which the constructed surface interpolates the given
points.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 17. Metamorphosis examples.

Fig. 16. A surface when the coarsest lattice is fine.
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7 METAMORPHOSIS EXAMPLES

Fig. 17 gives metamorphosis examples. Figs. 17a and 17b
show source and target images, Melissa and Tiffany, re-
spectively. Figs. 17c and 17d show the specified features
overlaid on the input images. In feature specification,
snakes are used to capture the precise positions of features
around the eyes, mouth, and profiles. Fig. 17e is the inbe-
tween image at t = 0.5 in which the same transition rate is
applied over all pixels. The image demonstrates that the
features are accurately interpolated. For example, the

mouth and eyes of the inbetween image are blended
smoothly. A drawback with applying the same transition
function across the image is evident in the dark region on
the ear. The problem is due to the uniform blending be-
tween corresponding ear and hair pixels. Nonuniform tran-
sition functions are necessary to correctly blend regions to
get the desired effect.

To relate a transition behavior in a morph sequence, we
assign transition curves at primitives specified on the
source image. Fig. 19a shows those primitives used to ob-
tain the transition effects shown in Fig. 17f. Each primitive

(a) (b)

Fig. 18. Procedural transition control. A sinusoidal function varies the transformation along the (a) vertical and (b) radial directions.
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may have a different transition curve, with all points along
a primitive sharing the same transition rate. Figs. 19b and
19c depict the transition curves for the left and right primi-
tives of Fig. 19a, respectively. Fig. 17f is the resulting inbe-
tween image at t = 0.5. The eyes and left ear are taken from
Melissa, while the mouth and the right ear are from Tiffany.

In Figs. 17g and 17h, the transition rate of a pixel is de-
termined procedurally, i.e., based on its position. Fig. 17g
shows an inbetween image in which the transition func-
tion varied linearly across the scanlines to change Melissa
to Tiffany from left to right. A sinusoid transition function
along the columns was used to generate the image in
Fig. 17h. Note that the differences between Figs. 17f and
17h are prominent near the eyes and eyebrows.

Fig. 20a illustrates the warp function generated for
transforming Melissa to Tiffany in Fig. 17. Dark lines rep-
resent the new positions of feature points that have been
internally sampled on the source image. Fig. 20b shows
the surface interpolating through the transition rates that
are evaluated from the transition curves along the primi-
tives in Fig. 19.

Fig. 18 demonstrates the use of a sinusoidal transition
control function to vary the transformation between the
source and target images in the upper left and lower right
corners of the figure. In Fig. 18a, the sinusoid moves verti-
cally along the image while its amplitude and base offset
vary over time. The source (target) image dominates the out-
put at pixels that correspond to sinusoidal valleys (peaks) in
the transition function. In Fig. 18b, the sinusoid moves along
concentric circles emanating from the image center.

All images shown in Fig. 17 are 720 × 486 and were
generated on a SUN SPARCsystem 10. We used the hybrid
method to derive the warp functions and multilevel B-
spline interpolation to compute the surfaces for transition
control. It took 22.0 and 1.0 seconds, respectively, to gen-
erate the warp function and surface in Fig. 20.

8 CONCLUSIONS

This paper has presented solutions to the following three
problems in image morphing: feature specification, warp
generation, and surface generation for transition control.
The features in an image can be specified with snakes [2], a
popular computer vision technique. Snakes help an ani-
mator to easily and precisely capture the exact position of
a feature. They also may reduce the work of an animator
in establishing the feature correspondence between two
image sequences. We presented a detailed description of
MFFD, a new deformation technique, which derives C2-
continuous and one-to-one warps from feature point pairs.
The technique is fast, even when the number of features is
large. The resulting warps provide visually pleasing im-
age distortions. The issue of foldover prevention was dis-
cussed and implementation details were furnished. We
also presented multilevel B-spline interpolation to con-
struct smooth surfaces that are used to control geometry
and color blending. The method efficiently generates a C2-
continuous transition control surface that interpolates a
set of scattered points.

The warp and surface generation techniques in this pa-
per may be applied to other areas of computer graphics.
The MFFD can be readily extended to 3D and used to di-
rectly manipulate the shape of deformable objects. Multi-
level B-spline interpolation can be used to rapidly generate
free-form surfaces from positional constraints.

(a)

(b) (c)

Fig. 19. Primitives with transition curves.

(a)

(b)

Fig. 20. Warp function and surface.
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