
Image metamorphosis has proven to be a
powerful visual effects tool. Many breath-

taking examples now appear in film and television,
depicting the fluid transformation of one digital image
into another. This process, commonly known as mor-
phing, couples image warping with color interpolation.
Image warping applies 2D geometric transformations

on images to align their features
geometrically, while color interpo-
lation blends their colors. Details 
of various image morphing tech-

niques can be found in several
recent papers.1-4

Traditional image morphing con-
siders only two input images at a
time—the source and target images.
In that case, morphing among mul-
tiple images involves a series of
transformations from one image to
another. This limits any morphed
image to the features and colors
blended from just two input images.
Given morphing’s success using this
paradigm, it seems reasonable to
consider the benefits possible from

a blend of more than two images at a time. For instance,
consider generating a facial image with blended char-
acteristics of eyes, nose, and mouth from several input
faces. In this case, morphing among multiple images
involves a blend of several images at once—a process
we call polymorphing.

Rowland and Perrett considered a special case of poly-
morphing to obtain a prototype face from several tens
of sample faces.5 They superimposed feature points on
input images to specify the different positions of fea-
tures in sample faces. Averaging the specified feature
positions determined the shape of a prototype face. A
prototype face resulted from image warping each input

image and then performing a cross-dissolve operation
among the warped images. In performing predictive
gender and age transformations, they used the shape
and color differences between prototypes from differ-
ent genders and ages to manipulate a facial image.

In this article, we present a general framework for poly-
morphing by extending the traditional image morphing
paradigm that applies to two images. We formulate each
input image as a vertex of an (n − 1)-dimensional sim-
plex, where n equals the number of input images. Note
that an (n − 1)-dimensional simplex is a convex polyhe-
dron having n vertices in (n −1)-dimensional space, such
as a triangle in 2D or a tetrahedron in 3D. An arbitrary in-
between (morphed) image can be specified by a point in
the simplex. The barycentric coordinates of that point
determine the weights used to blend the input images
into the in-between image. When considering only two
images, the simplex degenerates into a line. Points along
the line correspond to in-between images in a morph
sequence. This case is identical to conventional image
morphing. When considering more than two images, a
path lying anywhere in the simplex constitutes the in-
between images in a morph sequence.

In morphing between two images, nonuniform blend-
ing was introduced to derive an in-between image in
which blending rates differ across the image.3,4 This lets
us generate more interesting animations, such as a
transformation of the source image to the target from
top to bottom. Nonuniform blending was also consid-
ered in volume metamorphosis to control blending
schedules.6,7 In this article, the framework for poly-
morphing includes nonuniform blending of features in
several input images. For instance, a facial image can be
generated to have its eyes, nose, mouth, and ears
derived from four different input faces.

Polymorph is ideally suited for image composition
applications. It treats a composite image as a metamor-
phosis of selected regions in several input images. The
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regions seamlessly blend together with respect to geom-
etry and color. The technique produces high-quality
composites with considerably less effort than conven-
tional image composition techniques. In this regard,
polymorphing brings to image composition what image
warping has brought to cross-dissolve in deriving mor-
phing: a richer, more sophisticated class of visual effects
achieved with intuitive and minimal user interaction.

First we’ll look at the mathematical framework for
polymorph, followed by warp function generation and
propagation, blending function generation, and the
implemented polymorph system. Metamorphosis
examples demonstrate the use of polymorph for image
composition.

Mathematical framework
This section presents the mathematical framework for

polymorph. We extend the metamorphosis framework
for two images3,4 to generate an in-between image from
several images. The framework is further optimized by
introducing the notion of a central image. Finally, we
introduce preprocessing and postprocessing steps to
enhance the usefulness of the polymorphing technique.

Image representation
Consider n input images I1, I2, …, In. We formulate each

input image to be a vertex of an (n−1)-dimensional sim-
plex. An in-between image is considered a point in the
simplex. All points are given in barycentric coordinates
in Rn−1 by b = (b1, b2, …, bn), subject to the constraints 
bi ≥ 0 and Σn

i =1 bi=1. Each input image Ii corresponds to
the ith vertex of the simplex, where only the ith barycen-
tric coordinate is 1 and all the others are 0. An in-between
image I is specified by a point b, where each coordinate
bi determines the relative influence of input image Ii on I.

In conventional morphing between two images, tran-
sition rates 0 and 1 imply the source and target images,
respectively.3,4 An in-between image is then represent-
ed by a real number between 0 and 1, which determines
a point in 2D barycentric coordinates. The image rep-
resentation in polymorph can be considered a general-
ization of that used for morphing between two images.

In the conventional approach, morphing among n
input images implies a sequence of animations between
two images, for example, I0 → I1 → … → In. The anima-
tion sequence corresponds to a path visiting all vertices
along the edges of the simplex. In contrast, polymorph-
ing can generate an animation corresponding to an arbi-
trary path inside the simplex. The animation contains a
sequence of in-between images that blends all n input
images at a time. In the following, we consider the pro-
cedure to generate the in-between image associated
with a point along the path. The procedure can be read-
ily applied to all other points along the path to generate
an animation.

Basic metamorphosis framework
Suppose that we want to generate an in-between image

I at point b =(b1, b2, …, bn) from input images I1, I2, …, In.
Let Wij be the warp function from image Ii to image Ij. Wij

specifies the corresponding point in Ij for each point in Ii.
When applied to Ii, Wij generates a warped image where-

by the features in Ii coincide with their corresponding fea-
tures in Ij. Note that Wii is the identity warp function, and
Wji is the inverse function of Wij.

To generate an in-between image I, we first derive a
warp function Wi by linearly interpolating Wij for each i.
Each image Ii is then distorted by Wi to generate an inter-
mediate image Ii. Images Ii have the same in-between
positions and shapes of corresponding features for all i.
In-between image I is finally obtained by linearly inter-
polating the pixel colors among Ii.

Each coordinate bi of I is used as the relative weight for
Ii in the linear interpolation of warps and colors. We call
b a blending vector. It determines the blending of geom-
etry and color among the input images to generate an
in-between image. For simplicity, we treat the blending
vectors for both geometry and color as identical,
although they may differ in practice.

Figure 1 shows the warp functions used to generate an
in-between image from three input images. Each warp
function in the figure distorts one image toward the
other so that the corresponding features coincide in
their shapes and positions. Note that warp function Wij

is independent of the specified blending vector b, while
Wi is determined by b and Wij. Since no geometric dis-
tortions exist between intermediate image Ii and the
final in-between image I, it is sufficient for Figure 1 to
depict warps directly from Ii to I, omitting any reference
to -Ii. In this manner, the figure considers only the warp
functions and neglects color blending.

Given images Ii and warp functions Wij, the following
equations summarize the steps for generating an in-
between image I from a blending vector b. Wi •Ii denotes
the application of  warp function 

––
Wi to image I i. p and

r represent points in Ii and I, respectively, related by 
r= Wi(p). Color interpolation is achieved by attenuat-
ing the pixel colors of the input images and adding the
warped images.
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The image on the left in Figure 2 results from ordi-
nary cross-dissolve of input images Ii. Notice that the
image appears triple-exposed due to the blending of
misaligned features. The images on the right of Ii illus-
trate the process to generate an in-between image I using
the proposed framework. Although the intensities of
intermediate images Ii should appear attenuated, we
show the images in full intensity to clearly demonstrate
the distortions. The blending vector used for the figure
is b = (1/3, 1/3, 1/3). The resulting image I equally
blends the shapes, positions, and colors of the eyes,
nose, and mouth of the input faces.

General metamorphosis framework
The framework presented above generates a uniform

in-between image on which we use the same blending vec-
tor across the image. We can obtain a more visually com-
pelling in-between image by applying different blending
vectors to its various parts. For example, consider a facial
image that has its eyes, ears, nose, and mouth derived
from four different input images. We introduce a blending
function to facilitate a nonuniform in-between image that
has different blending vectors over its points.

A blending function specifies a blending vector for
each point in an image. Let 

–
Bi be a blending function

defined on image Ii. For each point p in Ii ,  
–
Bi(p) is a blend-

ing vector that determines the weights used for linearly
interpolating Wij(p) to derive 

––
Wi (p). Also, the ith coor-

dinate of 
–
Bi(p) determines the color contribution of point

p to the corresponding point in in-between image I.

The metamorphosis characteristics of a nonuniform
in-between image are fully specified by one blending
function 

–
Bi defined on any input image Ii. This is analo-

gous to using one blending vector to specify a uniform
in-between image. From the correspondence between
points in input images, the blending information spec-
ified by 

–
Bi can be shared among all input images. The

blending functions 
–
Bj for the other images Ij can be

derived by composing 
–
Bi and warp functions Wji. That

is, 
–
Bj=

–
Bi° Wji, or equivalently, Bj(p)=

–
Bi(Wji (p)). For all

corresponding points in the input images, the resulting
blending functions specify the same blending vector.

Given images Ii, warp functions Wij, and blending func-
tions 

–
Bi, the following equations summarize the steps for

generating a nonuniform in-between image I. b j
i(p)

denotes the jth coordinate in blending vector 
–
Bi(p).

Figure 3 illustrates the above framework. We have
chosen blending functions 

–
Bi that make in-between

image I retain the hair, eyes and nose, and mouth and
chin from input images I0, I1, and I2, respectively. The –Bi
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determine warp functions 
––
Wi,

which generate distortions of Ii

whereby the parts of interest
remain intact. Here again inter-
mediate images Ii appear in full
intensity for clarity. In practice,
input images Ii are nonuniform-
ly attenuated by applying 

–
Bi

before they are distorted. The
attenuation maintains those
parts to be retained in I at their
full intensity. 

The strict requirement to
retain specified features of the
input images has produced an
unnatural result around the
mouth and chin in Figure 3.
Additional processing might be
necessary to address the artifacts
inherent in the current process.
First, we will consider how to
reduce runtime computation
and memory overhead in gener-
ating an in-between image.

Optimization with a central
image

The evaluation of warp func-
tions Wij is generally expensive.
To reduce runtime computation,
we compute Wij only once, when
feature correspondences are
established among input images Ii. We sample each Wij

over all source pixels and store the resulting target coor-
dinates in an array. The arrays for all Wij are then used
to compute intermediate warp functions 

––
Wi, which

depend on blending functions 
–
Bi. For large n, these n2

warp functions require significant memory overhead,
especially for large input images. To avoid this memory
overhead, we define a central image and use it to reduce
the number of stored warp functions.

A central image IC is a uniform in-between image cor-
responding to the centroid of the simplex that consists
of input images. The blending vector (1/n, 1/n, …, 1/n)
is associated with this image. Instead of keeping n2 warp
functions Wij, we maintain 2n warp functions, WiC and
WCi, and compute 

––
Wi from a blending function specified

on IC. WiC is a warp function from input image Ii to cen-
tral image IC. Conversely, WCi is a warp function from IC

to Ii. WCi is the inverse function of WiC.
Let a blending function 

–
BC be defined on central image

IC. 
–
BC determines the metamorphosis characteristics of

an in-between image I. 
–
BC has the same role as 

–
Bi except

that it operates on IC instead of Ii. Therefore, 
–
BC(q) gives

a blending vector that specifies the relative influences of
corresponding points in Ii onto I for each point q in IC.
The equivalent blending functions 

–
Bi for input images Ii

can be derived by function compositions 
–
BC° WiC .

To obtain warp functions 
––
Wi from Ii to I, we first gener-

ate a warp function WC from IC to I. For each point in IC,
warp functions WCi give a set of corresponding points in
input images Ii. Hence, WC can be derived by linearly

interpolating WCi with the weights of 
–
BC. The 

––
Wi are then

obtained by function compositions ––WC ° WiC . Figure 4
shows the relationship of warp functions WiC, WCi, and
––WC with images Ii, IC, and I. Note that WiC and WCi are inde-
pendent of 

–
BC, whereas WC is determined by 

–
BC from WCi.

Given images Ii and warp functions WiC and WCi, the
following equations summarize the steps for generat-
ing an in-between image I from a blending function 

–
BC

defined on central image IC. Let p, q, and r represent
points in Ii, IC, and I, respectively. They are related by
q = WiC(p) and r=––WC(q). bj

i(p) and b j
C(q) denote the

jth coordinates in blending vectors 
–
Bi(p) and  

–
BC(q),

respectively.
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Note that the • and ° operators denote forward and
inverse mapping, respectively. For an image I and warp
function W, W • I maps all pixels in I onto the distorted
image I′, while I ° W−1 maps all pixels in I′ onto I, assum-
ing that the inverse function W−1 exists. Although the °
operator could have been applied to compute Ii above,
we use the • operator because ––W −1

i is not readily available.
In Figure 4, central image IC has dashed borders

because it is not actually constructed in the process of
generating an in-between image. We introduced it to
provide a conceptual intermediate step to derive the
necessary warp and blending functions. Any image,

including an input image, can be
made to play the role of the central
image. However, we have defined
the central image to lie at the cen-
troid of the simplex to establish
symmetry in the metamorphosis
framework. In most cases, a central
image relates to a natural in-
between image among the input
images. It equally blends the fea-
tures in the input images, such as a
prototype face among input faces.

Preprocessing and
postprocessing

Polymorphing proves useful in
feature-based image composition,
where selected features from input
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images blend seamlessly in an in-
between image. In that case, if the
shapes and positions of the selected
features do not match among the
input images, the in-between image
might not have features in appropri-
ate shapes and positions. For exam-
ple, the in-between face in Figure 3
retains hair, eyes and nose, and
mouth and chin features from the
input faces, yet it appears unnatur-
al. This results from the rigid place-
ment of selected input regions into a
patchwork of inappropriately scaled
and positioned elements—akin to a
cut-and-paste operation where
smooth blending was limited to
areas between these regions.

We can overcome this problem by
adding a preprocessing step to the
metamorphosis framework. Before
using the framework on input
images Ii, we can apply warp functions Pi to Ii to gener-
ate distorted input images I′i . The distortions change the
shapes and positions of the selected features in Ii so that
an in-between image from I′i has appropriate feature
shapes and positions. In that case, we apply the frame-
work to I′i instead of Ii, treating I′i as the input images.

After deriving an in-between image through the
framework, we sometimes need image postprocessing to
enhance the result, even though the preprocessing step
has already been applied. For example, we might want
to reduce the size of the in-between face in Figure 3—
not readily done by preprocessing input images. To post-
process an in-between image I′, we apply a warp
function Q to I′ and generate the final image I. The post-
processing step is useful for local refinement and glob-
al manipulation of an in-between image.

Figure 5 shows the warp functions used in the meta-
morphosis framework, including the preprocessing and
postprocessing steps. Warp functions Pi distort input
images Ii toward I′i , from which an in-between image I′
is generated. Applying warp function Q to I′ derives the
final image I. Figure 6 illustrates the process with inter-
mediate images. In preprocessing, the hair of input
image I0 and the mouth and chin of I2 move upwards
and to the lower right, respectively. The nose in I1 nar-
rows slightly. The face in in-between image I′ now
appears more natural than that in Figure 3. In postpro-
cessing, the face in I′ is scaled down horizontally to gen-
erate the final image I.

When adding the preprocessing step to the meta-
morphosis framework, distorted input images I′i deter-
mine the central image I′C and warp functions W′iC and
W′Ci. However, in that case, whenever we apply differ-
ent warp functions Pi to input images Ii, we must recom-
pute W′iC and W′Ci to apply the framework to I′i. This
can become very cumbersome, especially since several
preprocessing iterations might be necessary to derive
a satisfactory in-between image. To overcome this
drawback, we reconfigure Figure 5 to Figure 7 so that
IC, WiC, and WCi depend only on Ii, regardless of Pi. In

the new configuration, we can derive the correspond-
ing points in the I′i for each point in IC by function com-
positions Pi ° WCi. Given a blending function 

–
BC defined

on IC, warp function WC is computed by linearly inter-
polating Pi ° WCi with the weights of 

–
BC. The resulting

WC is equivalent to W′C used in Figure 5. Then, the
warp functions from Ii to I′ can be obtained by ––WC ° WiC,
properly reflecting the effects of preprocessing. Warp
functions 

––
Wi from Ii to the final in-between image I,

including the postprocessing step, can be derived by
Q ° WC ° WiC.

Consider input images Ii, warp functions WiC and WCi,
and a blending function 

–
BC defined on central image IC.

The following equations summarize the process to gen-
erate an in-between image I from 

–
BC and warp functions

Pi and Q, which specify the preprocessing and postpro-
cessing steps. Let p, q, and r represent points in Ii, IC, and
I, respectively. They are related by q = WiC(p) and
r=(Q°WC)(q).

The differences between this framework and that in
the section “Optimization with a central image” lie only
in the computation of warp functions WC and 

––
Wi. We

included additional function compositions to incorporate
the preprocessing and postprocessing effects. In Figure
7, images I′i and I′ appear with dashed borders because
they are not actually constructed in generating I. As in the
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case of central image IC, images I′i and I′ provide concep-
tual intermediate steps to derive WC and 

––
Wi.

Figure 8 shows an example of in-between image gen-
eration with the framework. Intermediate images Ii are
the same as the distorted images generated if we apply
warp function Q to images 

_
I′i in Figure 6. In other words,

Ii reflects the preprocessing and postprocessing effects
in addition to the distortions defined by blending func-
tion 

–
BC. Hence, only three intermediate images are

needed to obtain the final in-between image I, as in
Figure 3, rather than seven as in Figure 6. Notice that I
is the same as in Figure 6.

Given n input images, generating an in-between
image through the framework requires a solution to
each of the following three problems:

■ how to find 2n warp functions WiC and WCi,
■ how to specify a blending function 

–
BC on IC, and

■ how to specify warp functions Pi and Q for prepro-
cessing and postprocessing.

Warp function generation
This section addresses the problem of deriving warp

functions WiC and WCi, and Pi and Q. A conventional
image morphing technique computes warp functions
for (n − 1) pairs of input images. We propagate these
warp functions to obtain Wij for all pairs of input images.
Averaging Wij for each i produces WiC. We compute WCi

as the inverse function of WiC by using a warp genera-

tion algorithm. Pi and Q are derived from the user input
specified by primitives such as line segments overlaid
onto images.

Warp functions between two images
We can derive the warp functions between two input

images using a conventional image morphing technique.
Traditionally, image morphing between two images
begins with establishing their correspondence with
pairs of feature primitives such as mesh nodes, line seg-
ments, curves, or points. Each primitive specifies an
image feature, or landmark. An algorithm then com-
putes a warp function that interpolates the feature cor-
respondence across the input images.

The several image morphing algorithms in common
use differ in the manner in which features are specified
and warp functions are generated. In mesh warping,1

bicubic spline interpolation computes a warp function
from the correspondence of mesh points. In field mor-
phing,2 pairs of line segments specify feature corre-
spondences, and weighted averaging determines a warp
function. More recently, thin-plate splines4,8 and multi-
level free-form deformations3 have been used to com-
pute warp functions from selected point-to-point
correspondences.

In this article, we use the multilevel free-form defor-
mation algorithm3 to generate warp functions between
two input images. We selected this algorithm because
it efficiently generates C2-continuous and one-to-one
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warp functions. The one-to-one property guarantees
that the distorted image does not fold back upon itself.

A warp function represents a mapping between all
points in two images. In this work, we save the warp func-
tions in binary files to reduce runtime computation. A
warp function for an M × N image is stored as an M × N
array of target x- and y-coordinates for all source pixels.
Once feature correspondence between two images Ii and
Ij is established, we can derive warp functions in both
directions, Wij and Wji. Therefore, we store two M × N
arrays of target coordinates for each pair of input images
for which feature correspondence is established.

Figure 9 depicts the warp generation process. In
Figures 9a and 9b, the specified features are overlaid on
input images I0 and I1. Figures 9c and 9d illustrate warp
functions W01 and W10 generated from the features by
the multilevel free-form deformation.

Warp function propagation
We can derive the warp functions between two images

by specifying their feature correspondence. Multiple
images, however, require determining warp functions
for each image to every other image. This exacerbates
the already tedious and cumbersome operation of spec-
ifying feature correspondence. For instance, n input
images require establishing feature correspondence
among n(n−1)/2 pairs of images. We now address the
problem of minimizing this feature specification effort.

Consider a directed graph G with n vertices. Each ver-
tex vi corresponds to input image Ii, and an edge eij con-
nects vi to vj if warp function Wij from Ii to Ij has been
derived. To minimize the feature specification effort, we
first select (n − 1) pairs of images so that the associated
edges constitute a connected graph G. We specify the
feature correspondence between the selected image
pairs to obtain warp functions between them. These
warp functions can then be propagated to derive the
remaining warp functions for all other image pairs. The
propagation occurs in the same manner as that used for
computing the transitive closure of graph G. The con-
nectivity of G guarantees that warp functions are deter-
mined for all pairs of images after propagation.

To determine an unknown warp function Wij, we tra-
verse G to find any vertex vk shared by existing edges eik

and ekj. If we can find such a vertex vk, we update G to
include edge eij and define Wij as the composite function
Wkj ° Wik. When there exist several such vk, the composed
warp functions through those vk are computed and aver-
aged. If no vk connects vi and vj, Wij remains unknown
and eij is not added to G. This procedure iterates for all
unknown warp functions, and the iteration repeats until
all warp functions are determined. If Wij remains
unknown in an iteration, it will be determined in a fol-
lowing iteration as G gets updated. From the connec-
tivity of G, at most (n − 2) iterations are required to
resolve every unknown warp function.

With the warp propagation approach, the user must
specify feature correspondences for (n − 1) pairs of
images. This is far less effort than considering all 
n(n−1)/2 pairs. Figure 10 shows an example of warp
propagation. Figure 10a illustrates warp function W02,
which was derived by specifying feature correspondence

between input images I0 and I2. To determine warp func-
tion W12 from I1 to I2, we compose W10 and W02, shown
in Figure 9d and Figure 10a, respectively. Figure 10b
illustrates the resulting W12 = W02 ° W10. Notice that the
left and right sides of the hair have widened in W12 and
narrowed in W02.

Warp functions for central image
We now consider how to derive the warp functions

among the central image IC and all input images Ii. IC is
the uniform in-between image corresponding to a
blending vector (1/n, 1/n, …, 1/n). Hence, from the
basic metamorphosis framework, warp functions WiC

from Ii to IC are straightforward to compute. That is,
WiC(p)=Σn

j=1 Wi j(p)/n for each point p in Ii. Computing
warp function WCi from IC back to Ii, however, is not
straightforward.

We determine WCi as the inverse function of WiC. Each
point p in Ii is mapped to a point q in IC by WiC. The
inverse of WiC should map each q back to p. Hence, the
corresponding points q for pixels p in Ii provide WCi with
scattered positional constraints, WCi(q) = p. The multi-
level free-form deformation technique, used to derive
warp functions, can also be applied to the constraints to
compute WCi.

When warp functions Wij are one-to-one, it is not
mathematically clear that their average function WiC is
also one-to-one. Conceptually, though, we can expect
WiC to be one-to-one because it is the warp function that
might be generated by moving the features in Ii to the
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averaged positions. In the worst case that WiC is not one-
to-one, the positional constraints, WCi(q) = p, may have
two different positions for a point q. In that case, we
ignore one of the two positions and apply the multilevel
free-form deformation to the remaining constraints.

Figure 11 shows examples of warp functions between
input images and a center image. Figure 11a illustrates
warp function W0C from I0 to IC, which is the average of
the identity function, W01 in Figure 9c, and W02 in Figure
10a. In Figure 11b, WC0 has been derived as the inverse
function of W0C by the multilevel free-form deforma-
tion technique.

Warp functions for preprocessing and
postprocessing

Warp functions Pi for preprocessing are derived in a
similar manner to those between two images—we over-
lay primitives such as line segments and curves onto
image Ii. However, in this case, the primitives select the
parts in Ii to distort, instead of specifying feature corre-
spondence with another image. Pi is defined by moving
the primitives to the desired distorted positions of the
selected parts and computed by applying the multilevel
free-form deformation technique to the displacements.
Figure 12 shows the primitive and its movement speci-
fied on input image I2 to define warp function P2 in

Figure 6. The primitive has been moved to the lower
right to change the positions of the mouth and chin.

We can derive warp function Q for postprocessing in
the same manner as Pi. In this case, primitives overlaid
on in-between image I′ in Figure 7 select parts to distort
toward the final in-between image I. The overlaid prim-
itives are moved to define Q, and multilevel free-form
deformation computes Q from the movements. We con-
struct I′ only to allow for the specification of features
and their movements, not for the process of in-between
image generation. The postprocessing operation illus-
trated in Figure 13 horizontally scales down the primi-
tive specified on I′ to make the face narrower.

Blending function generation
This section addresses the problem of generating a

blending function 
–
BC defined on the central image IC. A

blending vector suffices to determine a 
–
BC that gener-

ates a uniform in-between image. A nonuniform in-
between image, however, can be specified by assigning
different blending rates to selected parts of various input
images. We derive the corresponding 

–
BC by gathering

all the blending rates onto IC and applying scattered data
interpolation to them.

Uniform in-between image
To generate a uniform in-between image from n input

images, a user must specify a blending vector b = 
(b1, b2, …, bn), subject to the constraints bi ≥ 0 and 
Σn

i=0 bi=1. If these constraints are violated, we enforce
them by clipping negative values to zero and dividing
each bi by Σn

i=0 bi . The blending function 
–
BC is then a

constant function having the resulting blending vector
as its value at every point in IC.

Nonuniform in-between image
To generate a nonuniform in-between image I, a user

assigns a real value bi ∈ [0,1] to a selected region Ri of
input image Ii for some i. The value bi assigned to Ri deter-
mines the influence of Ii onto the corresponding part R of
in-between image I. When bi approaches 1, the colors
and shapes of the features in Ri dominate those in R.
Conversely, when bi approaches 0, the influence of Ri on
R diminishes. Figures 14a, 14b, and 14c show the poly-
gons used to select regions in I0, I1, and I2 for generating
I in Figure 3. All points inside the polygons in Figures
14a, 14b, and 14c have been assigned the value 1.0.

We generate a blending function 
–
BC by first projecting

the values bi onto IC. We can do this by mapping points
in Ri onto IC using warp functions WiC. Figure 14d shows
the projection of the selected parts in Figures 14a, 14b,
and 14c onto IC. Let (b1, b2, …, bn) be an n-tuple repre-
senting the projected values of bi onto a point in IC. This
n-tuple is defined only in the projection of Ri on IC. Since
the user does not have to specify bi for all Ii, some of the
bi may be undefined for the n-tuple.

Let D and U denote the sets of defined and undefined
elements bi in the n-tuple, respectively. Further, let s be
the sum of the defined values in D. There are three cases
to consider: s > 1, s ≤ 1 and U is empty, and s ≤ 1 and U is
not empty. If s > 1, then we assign zero to the undefined
values and scale down the elements in D to satisfy s = 1.

Feature Article

66 January/February 1998

(a) (b)

11 Warp func-
tions between I0
and IC: (a) warp
W0C and 
(b) warp WC0.

12 Specified
primitives for
preprocessing:
(a) original
positions and
(b) new posi-
tions.

(a) (b)

(a) (b)

13 Specified
primitives for
postprocessing:
(a) original
positions and
(b) new posi-
tions.



If s ≤ 1 and U is empty, then we scale up the elements in
D to satisfy s = 1. Otherwise, we assign (1−s)/k to each
element in U, where k is the number of elements in U.

Normalizing the n-tuples of the projected values lets
us obtain blending vectors for the points in IC that cor-
respond to the selected parts Ri in Ii. These blending vec-
tors can then be propagated to all points in IC by
scattered data interpolation. We construct an interpo-
lating surface through the ith coordinates of these vec-
tors to determine bi of a blending vector b at all points
in IC. For the scattered data interpolation, we use mul-
tilevel B-splines,9 a fast technique for generating a C2-
continuous surface.

After constructing n surfaces, we have an n-tuple at
each point in IC. Since each surface is generated inde-
pendently, the sum of the coordinates in the n-tuple does
not necessarily equal one. In that case, we scale them to
force their sum to one. The resulting n-tuples at all
points in IC define a blending function 

–
BC that satisfies

the user-specified blending constraints.
Figure 15 illustrates the constructed surfaces to

determine 
–
BC used in Figure 3. The heights of the sur-

faces in Figures 15a, 15b, and 15c represent b0, b1, and
b2 of blending vector b at the points in IC, respectively.
In Figure 14b, b1 is 1.0 at the points corresponding to
the eyes and nose in IC, satisfying the requirement spec-
ified in Figure 14b. They are 0.0 around the hair, mouth,
and chin due to the value 1.0 assigned to those parts in
Figures 14a and 14c. Figures 15a and 15c also reflect the
requirements for b0 and b2 specified in Figure 14.

Implementation
This section describes the implementation of the poly-

morph framework. We also present the implemented
system’s performance.

Polymorph system
The polymorph system consists of three modules. The

first module is an image morphing system that consid-
ers two input images at a time. It requires the user to
establish feature correspondence among two input
images and generates warp functions between them.
We adopted the morph system presented by Lee at al.3

because it facilitates flexible point-to-point correspon-
dences and produces one-to-one warp functions that
avoid undesirable foldovers. The first module is applied
to (n −1) pairs of input images, which correspond to the
edges selected to constitute a connected graph G. The
generated warp functions are sampled at each pixel and
stored in binary files.

The second module is the warp propagation system. It
first reads the binary files of the warp functions associat-
ed with the selected edges in graph G. Those warp func-
tions are then propagated to derive n(n−1) warp
functions Wij among all n input images Ii. Finally, the sec-
ond module computes 2n warp functions in both direc-
tions between the central image IC and all Ii. The resulting
warp functions, WiC and WCi, are stored in binary files and
used as the input of the third module, together with all Ii.

The third module is the in-between image generation
system. It lets the user control the blending characteris-
tics and the preprocessing and postprocessing effects in

an in-between image. To determine the blending char-
acteristics of a uniform in-between image, the user must
provide a blending vector. For a nonuniform in-between
image, the user selects regions in Ii and assigns them
blending values. If preprocessing and postprocessing are
desired, the user must specify primitives on images Ii and
I′, respectively, and move them to new positions. Once
the user input is given, the third module first computes
blending function 

–
BC and warp functions Pi and Q. The

module then generates an in-between image by apply-
ing the polymorph framework to Ii, WiC, and WCi.

The polymorph system modules are independent of
each other and communicate by way of binary files stor-
ing warp functions. Any image morphing system can
serve as the first module if it can save a derived warp
function to a binary file. The second module does not
need input images and manipulates only the binary files
passed from the first module. The first and second mod-
ules together serve to compute warp functions WiC and
WCi. Given input images, these modules run only once,
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and the derived WiC and WCi pass to the third module.
The user then runs the third module repeatedly to gen-
erate several in-between images by specifying different
–
BC, Pi, and Q.

Performance
We now discuss the performance of the polymorph

system in terms of the examples already shown. The
input images’ resolution in Figure 2 is 300 × 360, and
we measured the runtime on a Sun Sparc10 worksta-
tion. The first module, when applied to input image pairs

(I0, I1) and (I0, I2), derived warp
functions W01, W10, W02, and W20.
The second module, which runs
without user interaction, computed
WiC and WCi in 59 seconds.

The third module took seven sec-
onds to obtain the uniform in-
between image in Figure 2 from
blending vector b = (1/3, 1/3, 1/3).
A nonuniform in-between image
requires more computation than a
uniform in-between image because
three surfaces must be constructed
to determine blending function 

–
BC.

It took 38 seconds to derive the in-
between image in Figure 3 from the
user input shown in Figure 14. To use
preprocessing and postprocessing,
we must compute warp functions Pi

and Q. It took 43 seconds to derive
the in-between image in Figure 8,
which includes the preprocessing
and postprocessing effects defined
by Figure 12 and Figure 13.

Metamorphosis examples
The top row of Figure 16 shows

the input images, I0, I1, and I2. We
selected three groups of features in
these images and assigned them

blending value bi =1 to generate in-between images. The
feature groups consisted of the hair, eyes and nose, and
mouth and chin. Each feature group was selected in a
different input image. For instance, Figure 14 shows the
feature groups selected to generate the leftmost in-
between image in the middle row of Figure 16. Notice
that the in-between image is the same as I′ in Figure 6.
The middle and bottom rows of Figure 16 show the in-
between images resulting from all possible combinations
in selecting those feature groups from the input images.

Figure 17 shows the changes in in-between images
when we vary the blending values assigned to selected
feature regions in the input images. For example, con-
sider the middle image in the bottom row of Figure 16.
We derived that image by selecting the mouth and chin,
hair, and eyes and nose from input images I0, I1, and I2,
respectively. Blending value bi = 1 was assigned to each
selected feature group. In Figure 17, we generated in-
between images by changing bi to 0.75, 0.5, 0.25, and
0.0, from left to right and top to bottom. Note that
decreasing an assigned blending value diminishes the
influence of the selected feature in the in-between
image. For instance, with bi = 0, the selected features in
all the input images vanish in the lower right in-between
image in Figure 17.

In polymorph, an in-between image is represented by
a point in the simplex whose vertices correspond to input
images. We can generate an animation among the input
images by deriving in-between images at points that con-
stitute a path in the simplex. Figure 18 shows a meta-
morphosis sequence among the input images in Figure
16. We obtained the in-between images at the sample
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points on the circle inside the triangle shown in Figure
19. The top left image in Figure 18 corresponds to point
p0. The other images, read from left to right and top to
bottom, correspond to the points on the circle in coun-
terclockwise order. Every in-between image blends the
characteristics of all the input images at once. The blend-
ing is determined by the position of the corresponding

point relative to the vertices in the triangle. For exam-
ple, input image I0 dominates the features in the top left
in-between image in Figure 18 because point p0 lies close
to the vertex of the triangle corresponding to I0.

Figure 20 shows metamorphosis examples from four
input images. The input images appear in the top row.
Figure 20e is the central image, a uniform in-between

IEEE Computer Graphics and Applications 69

18 A metamor-
phosis sequence
among three
images.

I2

p
0

0

I1

I

19 The path
and sample
points for the
metamorphosis
sequence.

20 Input
images (top
row) and in-
between images
from them
(bottom row).

(a) (b) (c) (d)

(e) (f) (g) (h)



image generated by blending vector (1/4, 1/4, 1/4,
1/4). In Figure 20f, the hair, eyes and nose, mouth and
chin, and clothing were derived from Figures 20d, 20a,
20b, and 20c, respectively. We rotated and enlarged the
eyes and nose in Figure 20a in the preprocessing step
to match them with the rest of the face in Figure 20f.
The eyes and nose in Figure 20g resulted from select-
ing those in Figures 20b and 20d and assigning them
blending value bi = 0.5. The hair and clothing in Figure
20g were derived from Figure 20c and 20d, respective-
ly. In Figure 20h, we retained the hair and clothing from
Figure 20a. The eyes, nose, and mouth were blended
from Figures 20b, 20c, and 20d with bi = 1/3. The
resulting image resembles a man with a woman’s hair-
style and clothing.

Discussion
In this section, we discuss the application of poly-

morph in feature-based image composition and exten-
sions of the implemented system.

Application
Polymorph ideally suits image composition applica-

tions that seamlessly blend elements from two or more
images. The traditional view of image composition is
essentially one of generalized cut-and-paste. That is,
we cut out a region of interest in a foreground image
and identify where to paste it in the background image.
Composition theory permits several variations for
blending, particularly for removing hard edges.
Although image composition is widely used to embell-
ish images, current methods are limited in several
respects. First, composition is generally a binary oper-
ation restricted to only two images at a time—the fore-
ground and background elements. In addition,
geometric manipulation of the elements is not effec-
tively integrated. Instead, it is generally handled inde-
pendently of the blending operations.

Our examples demonstrated the use of polymorph-
ing for image composition. We extended the tradition-
al cut-and-paste approach to effectively integrate
geometric manipulation and blending. A composite
image is treated as a metamorphosis between selected
regions of several input images. For example, consider
the regions selected in Figure 14. Those regions seam-
lessly blend together with respect to geometry and color
to produce the in-between image in Figure 6. That
image would otherwise be considerably more cumber-
some to produce using conventional image composi-
tion techniques.

Extensions
In the polymorph system, we use warp propagation

to obtain warp functions Wij for all pairs of input images.
To enable the propagation, we need to derive warp
functions associated with the edges selected to make
graph G connected. The selected edges in G are inde-
pendent of each other in computing the associated
warp functions. We can specify different feature sets
for different pairs of input images to apply different
warp generation algorithms. This permits the reuse of
feature correspondence previously established for a dif-

ferent application, such as morphing between two
images. Also, simple transformations like an affine
mapping may serve to represent warp functions
between an image pair when appropriate.

We derive warp functions Wij between input images
to compute warp functions WiC and WCi. Suppose that
we specified the same set of features for all input
images. For example, given face images, we can spec-
ify the eyes, nose, mouth, ears, and profile of each
input face Ii as its feature set Fi. In this case, WiC and
WCi can be computed directly without deriving Wij.
That is, we compute the central feature set FC by aver-
aging the positions of feature primitives in Fi. We can
then derive WiC and WCi by applying a warp generation
algorithm to the correspondence between Fi and FC in
both directions.

With the same set of features on input images, we
can derive warp functions 

––
Wi for a uniform in-between

image in the same manner as WiC. Given a blending
vector, we derive an in-between feature set F by weight-
ed averaging feature sets Fi on input images. 

––
Wi can

then be computed by a warp generation algorithm
applied to Fi and F. With this approach, we do not need
to maintain WiC and WCi to compute 

––
Wi for a uniform

in-between image. However, this approach requires a
warp generation algorithm to run n times whenever
an in-between image is generated. This takes more
time than the approach we described using WiC and
WCi. In the polymorph system, once we have derived
WiC and WCi, we can quickly compute 

––
Wi by linearly

interpolating warp functions and applying function
compositions.

Conclusions
Polymorph provides a general framework for mor-

phing among multiple images. We extended conven-
tional morphing to derive in-between images from
more than two images at once. This paradigm requires
feature specification among only (n−1) pairs of input
images, a significant savings over all n(n−1)/2 pairs.
The use of preprocessing and postprocessing stages
accommodates fine control over the scaling and posi-
tioning of selected input regions. In this manner we
resolve conflicting positions of selected features in input
images when they are blended to generate a nonuni-
form in-between image.

Polymorph is ideally suited for image composition
applications where elements from multiple images are
blended seamlessly. A composite image is treated as a
metamorphosis between selected regions of input
images. Future work remains in simplifying the feature
specification process through the use of snakes3 and
intelligent scissors.10 ■
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