
Autonomous Robots (2020) 44:1485–1503
https://doi.org/10.1007/s10514-020-09941-w

RGB-D camera calibration and trajectory estimation for indoor
mapping

Liang Yang2,3 · Ivan Dryanovski1 · Roberto G. Valenti2 · George Wolberg2 · Jizhong Xiao2

Received: 3 April 2019 / Accepted: 27 July 2020 / Published online: 17 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we present a system for estimating the trajectory of a moving RGB-D camera with applications to building
maps of large indoor environments. Unlike the current most researches, we propose a ‘feature model’ based RGB-D visual
odometry system for a computationally-constrained mobile platform, where the ‘feature model’ is persistent and dynamically
updated from new observations using a Kalman filter. In this paper, we firstly propose a mixture of Gaussians model for
the depth random noise estimation, which is used to describe the spatial uncertainty of the feature point cloud. Besides, we
also introduce a general depth calibration method to remove systematic errors in the depth readings of the RGB-D camera.
We provide comprehensive theoretical and experimental analysis to demonstrate that our model based iterative-closest-point
(ICP) algorithm can achieve much higher localization accuracy compared to the conventional ICP. The visual odometry runs
at frequencies of 30 Hz or higher, on VGA images, in a single thread on a desktop CPU with no GPU acceleration required.
Finally, we examine the problem of place recognition from RGB-D images, in order to form a pose-graph SLAM approach
to refining the trajectory and closing loops. We evaluate the effectiveness of the system on using publicly available datasets
with ground-truth data. The entire system is available for free and open-source online.

Keywords RGB-D · Computer vision · 3D mapping · Camera calibration

Liang Yang and Ivan Dryanovski have contribute equally to this paper.

This work is supported in part by U.S. Army Research Office under
Grant No. W911NF-09-1-0565, U.S. National Science Foundation
under Grants No. IIS-0644127 and No. CBET-1160046, Federal
High-Way Administration (FHWA) under Grant Nos.
DTFH61-12-H-00002 and PSC-CUNY under Grant No. 65789-00-43.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-020-09941-w) contains
supplementary material, which is available to authorized users.

B Jizhong Xiao
jxiao@ccny.cuny.edu

Liang Yang
lyang1@ccny.cuny.edu

Ivan Dryanovski
idryanovski@google.com

Roberto G. Valenti
robertogl.valenti@gmail.com

George Wolberg
wolberg@cs.ccny.cuny.edu

1 Introduction

An RGB-D camera is a device which provides two concur-
rent image streams: a conventional color image, and a depth
image, containing a measure of the distance from the camera
to each observed pixel along the optical axis. The two images
can be used together to obtain a dense, textured 3D model of
the observed scene.

The properties of RGB-D data, together with the low cost
of current devices, have made RGB-D cameras very popular
among the computer vision and robotics communities. RGB-
D data has been used in various applications, including visual
odometry, SLAM, scene modeling, and object recognition.

1 Department of Computer Science, The Graduate Center, The
City University of New York, 365 Fifth Avenue, New York,
NY 10016, USA

2 The City College of New York, Convent Ave & 140th Street,
New York, NY 10031, USA

3 Shenyang Institute of Automation, Chinese Academy of
Sciences, University of Chinese Academy of Sciences,
Shenyang, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-020-09941-w&domain=pdf
https://doi.org/10.1007/s10514-020-09941-w


1486 Autonomous Robots (2020) 44:1485–1503

Fig. 1 Top-down and side views of 3D map constructed from RGB-D data using our system

In this paper, we present our work on 3D localization and
mapping of indoor environmentswith anRGB-D sensor, run-
ning on computationally constrained platforms. An example
of a 3D reconstruction produced by our system is shown in
Fig. 1. Our research has been motivated from the perspec-
tive of mobile robotic perception; therefore, there is a strong
focus throughout our work on computational efficiency and
real-time performance. The three key problems we address
are the depth calibration and noise estimation of the point
cloud, the pose estimation of a moving camera using ‘fea-
ture model’, and re-localization from RGB-D images for
detecting and dealing with trajectories revisiting the same
location.We believe our contribution to the first two areas are
applicable beyond the field of robotic perception, to anyone
working on indoor modeling with RGB-D data. Our place
recognition work is primarily included for the sake of sys-
tem completeness and as a straightforwardmethod for offline
post-processing; we don’t claim any significant contribution
over more established methods in the field.

We begin by examining the accuracy and precision of
depth images produced by RGB-D cameras. Accuracy refers
to the closeness of the measurements to the truth, while
precision refers to the variation of repeated measurements
under the sameconditions.Compared to theirmore expensive
range-sensing counterparts such as laser scanners, RGB-D
cameras have lower precision and accuracy. Consider Fig. 2,
which shows the result of a simple experiment where we
placed an RGB-D camera at three different distances away
from a flat wall. For the top figure, the point cloud visible in
the figure is the result of aggregating multiple depth readings
at 4 m away. An ideal sensor would produce a thin, straight
line as the top view of the point cloud. The bottom right fig-
ure shows the result taken at 8.0m away, which is even worse
with an average 578.9 mm error. However, we notice that the
left bottomfigure shows the result taken at 1.5m away, which
only produce an average 8.5mmerror. It is immediately obvi-
ous that the real camera has not only a high uncertainty, but
also a high degree of systematic error which is highly asso-
ciated with the distance to the target. More importantly, the

Fig. 2 Top-downviewof a point cloud obtained bymeasuring a flatwall
using an RGB-D camera. Top image: the point cloud is constructed by
averaging multiple depth images to remove the effect of random noise.
The curvature in the point cloud indicates that the depth readings (Z )
for each pixel have a strong systematic error. Bottom left: the raw point
cloud constructed at 1.5 m, the average depth error is 8.5 mm. Bottom
right: the raw point cloud constructed at 8.00 m, the average depth error
is 578.9 mm

systematic error varies across different sections of the image,
producing geometric distortions.

In order to solve the above problem, we propose a per-
pixel polynomial model calibration technique to remove the
bias in the depth readings. The calibration technique relies
on observing a flat checkerboard at the initial position and
then estimate the transformation using ORB-SLAM2 (Mur-
Artal and Tardós 2017) algorithm (which is proved to have
smaller than 1.0% accuracy). A ground truth pose is deter-
mined by calculating the transformation from the camera to
the chessboard coordinate system. A plane fitting algorithm
is deployed to find the wall based on the first RGB-D frame,
then we only need to compare the accuracy between the
measurement and the fitted plane. With this model, incom-
ing depth images can be unwarped so that the bias in each
pixel is removed. We are also inspired by Basso et al. (2018)
to improve the implementation of the depth calibration for
real time application purpose, but we do not compromise
with lowering the depth resolution. We demonstrate exper-
imentally that unwarping the data has a significant impact
on the performance on visual odometry and mapping algo-
rithms that rely on depth readings. We further formulate an
uncertainty model for the depth reading in each pixel. The

123



Autonomous Robots (2020) 44:1485–1503 1487

uncertainty is based on a Gaussian mixture model of depth
readings of the pixels in a local neighborhoodwindow.When
treating each 3D point as a probabilistic distribution, the cal-
ibration technique accurately determines the mean, while the
uncertainty model predicts the standard deviation.

The probabilistic measurement model forms the basis of a
visual odometry pipeline for trajectory estimation. We begin
by computing the locations of sparse features in the incoming
RGB-D image, and their corresponding 3D coordinates in the
camera frame. Next, we align these features against a global
model dataset of 3D features, expressed in the fixed coordi-
nate frame. After calculating the transformation, themodel is
augmented with the new data.We associate features from the
RGB-D image with features in the model, and update them
using a Kalman filter framework considering the uncertainty
as spatial covariance. Any features from the image which
cannot be associated are inserted as new landmarks in the
model set.

The model (which starts out empty) gradually grows in
size as new data is accumulated. To guarantee constant-time
performance, we place an upper bound on the number of
points the model can contain. Once the model grows beyond
that size, the oldest features are dropped to free up space
for new ones. By performing alignment against a persistent
model instead of only the last frame, we are able to achieve
significant decrease in the drift of the pose estimation. We
perform the trajectory estimation in real time, at rates of 30Hz
or higher (the camera outputs the images at 30 Hz, but our
algorithm is able to process them faster). It uses a single
thread, and does not require a GPU.

The paper is organized as follows. Section 2 reviews the
previous work on RGB-D camera calibration and uncertainty
analysis. Section 3 describes RGB-D camera measurement
model, including the depth image calibration procedure and
noise models. Section 4 presents the trajectory estimation
pipeline, focusing on the visual odometry algorithm. Sec-
tion 5 presents our work on place recognition from RGB-D
images, and its application to global keyframe-based pose
alignment. We present our experimental results using multi-
ple datasets in Sect. 6. Finally, Sect. 7 concludes the paper
with a summary of our contributions and areas of potential
further work.

2 Previous work

In the field of camera calibration, Smisek et al. (2011) present
a calibration procedure for an RGB-D camera, including the
intrinsic parameters or the RGB and depth cameras and the
extrinsic matrix between them. Further, they examine the
relationship between the raw device output and the met-
ric depth, as well as the resolution and quantization of the
depth output. They correct for systematic errors in the depth,
but the correction is performed using a constant term which

is trained only in the 0.7–1.3 m range. Khoshelham and
Elberink (2012) discuss the depth accuracy and resolution
of an RGB-D camera, including the relationship between the
raw depth output and the metric depth. They derive an uncer-
tainty model for the metric depth based on the resolution of
the device and the uncertainty of the raw depth. The model
considers pixel readings as independent of neighboring pix-
els.

Park et al. (2012) propose a mathematical uncertainty
model for 3D visual features. Further, they propose an alter-
native model from computing the metric depth from the
raw depth output. Olesen et al. (2012) propose an uncer-
tainty model for the depth reading based on a parametric
model which considers the radial distance of a pixel from the
image center and the depth reading at that pixel. Nguyen
et al. (2012) propose a depth noise model by measuring
lateral and axial measurement distributions as a function
of distance and angle of the sensor to a surface. Herrera
et al. (2010) present an algorithm to simultaneously cal-
ibrate a depth and RGB camera, including their intrinsic
parameters and the pose between them. The method is
based on observing checkerboards attached to a large flat
surface. Karan (2015) also presented an algorithm to simul-
taneously calibrate a depth and RGB camera within 4 m
range, which using the six order distortion function (Zhang
2000). It does not consider the systematic depth error prob-
lem.

In terms of depth image compensation models, our work
is most closely related to that of Teichman et al. (2013) and
Basso et al. (2018). Teichman et al. (2013) describe a pro-
cedure for training an unwarping model based on myopic
parameters. Their systemusesSLAM-based structure instead
of checkerboard images as a source of reference. This has
the added advantage of being 4able to use natural scenes
for online calibration. However, it couples the model train-
ing with an existing SLAM implementation, which in turn
may be already affected by reconstruction errors due to the
depth image biases. This fact becomes increasingly chal-
lenging as the longer the distance, the more severe the
uncalibrated biases are. Basso et al. (2018) proposed a sim-
ilar idea of using pixel-wise correction approach to correct
the depth, which also proves that a second-order polyno-
mial could be able to eliminate the depth error. However,
it only uses checkerboard based projective-n-point (PNP)
method to estimate the pose from the camera to the wall,
which heavily affects the calibration result since the pose
estimation error grows with the distance to the checkerboard.
In particular, we demonstrate results from a depth camera
on a mobile device with systematic errors large enough to
compromise structure-based calibration methods. To solve
this problem, we propose a hybrid pose estimation system
combing checkerboard PNP calculation and rapid SLAM to
obtain the reference plane detection, which is proved to be

123



1488 Autonomous Robots (2020) 44:1485–1503

more robust and accurate compared to a single checkerboard
approach.

In the field of visual odometry and motion estimation,
Steinbrucker et al. (2011) present a system for frame-
to-frame trajectory estimation by minimizing an energy
function in the space of the dense depth data. Dryanovski
et al. (2012) present a system for frame-to-frame registration
using edge features, which uses a high-frequency loop for
sparse data and a low-frequency loop for dense data. Henry
et al. (2010) present a system which uses GPU-accelerated
SIFT features. Images are aligned on a frame-to-frame basis,
by using both sparse and dense data. Global refinement is
performed offline using Sparse Bundle Adjustment. In their
newer work Henry et al. (2012) they also consider FAST
features without GPU acceleration.

Endres et al. (2012) present a system which uses sparse
SURF, ORB, or GPU-accelerated SIFT descriptors (the
choice is configurable). Images are aligned against a sub-
set of previous frames of constant size, in order to increase
robustness. The implementation requires multiple threads.
Additional refinement of the trajectory can be performed
offline. Newcombe et al. (2011) present a system for RGB-
D pose tracking and mapping. Their method aligns dense
depth data against a model of a surface. The model is aug-
mented with new data. The system requires a GPU-equipped
computer. Kerl et al. (2013) describe a RGB-D SLAM sys-
tem which tracks images using a frame-to-keyframe scheme
and performs pose-graph alignment in a separate thread. The
system is notable for performing dense alignment between
the frames, using data from all pixels. The alignment runs
in real time on a desktop CPU; however, it requires more
computational time and lower resolution images than our
proposed algorithm, making our solution more appropri-
ate for computationally-constrained systems. Furthermore,
their work does not demonstrate results from environments
larger than a limited office scene; in comparison, we pro-
vide results from a larger-scale reconstruction of multiple
rooms.Meilland andComport (2013) present a systemwhich
unifies keyframe-based SLAM techniques with volumet-
ric map representations. The system runs in real time, and
requires a GPU-equipped computer. Whelan et al. (2015)
introduce a GPU based ICP for realtime pose estimation
and dense map fusion algorithm called ‘ElasticFusion’. It
introduces a ‘surface loop closures’ approach rather than
feature based graph model loop closing. The current most
successful RGB-D SLAM is proposed by Mur-Artal and
Tardós (2017), it proposes an ORB feature based local and
global graph optimization approach to perform pose esti-
mation. It has achieved the best performance almost in all
public dataset including TUM dataset (Sturm et al. 2012),
KITTI dataset (Geiger et al. 2012), and EuRoc Dataset
(Burri et al. 2016). However, ORB-SLAM2 still requires
heavy graph optimization, which is not suitable for real

time processing on a mobile platform with computation con-
straints.

In our previousworkDryanovski et al. (2013),we describe
a visual odometry pipeline using a persistent feature model.
The visual odometry section of this paper expands upon our
previous results, describing an improved pipeline including
a RANSAC step, as well as more experimental evaluations.

3 RGB-Dmeasurement model

3.1 Preliminaries

In the context of this paper, we define an RGB-D image as an
image with 3 standard color channels and an additional depth
channel. The depth channel contains a measure, in meters,
of the distance from the camera optical center to the scene,
along the camera optical axis. We adopt the standard cam-
era coordinate frame convention with the z axis pointing
along the optical axis. We expect RGB-D images to have
complete color information, and incomplete, yet very dense,
depth information.

An RGB-D camera will typically output a color and depth
image produced by two separate cameras, RGB and infrared,
each with its own intrinsic parameters and distortion coeffi-
cients. The device and its software drivermight have a built-in
calibration for the intrinsics of the two cameras, as well as
the extrinsic pose between them. This allows for the two
images to be properly undistorted, and for the depth image
to be reprojected into the frame of the RGB camera to form
a single unified RGB-D image.

In the case when the factory calibration is not provided,
or is not sufficient, a user can perform a custom calibra-
tion in two steps. First, the intrinsic parameters of the RGB
and infra-red (IR) cameras are determined, including a radial
distortion model. This is performed by observing a black
and white checkerboard of known size in multiple images.
For this procedure we used existing toolboxes implemented
with OpenCV (Bradski 2000). The approach has been well
documented, for example in Wang et al. (2010). Besides,
there exists a well built open source tool based on ROS
(James Bowman 2017) with detailed instruction. A point of
interest is that the infrared pattern projected by the RGB-D
camera interferes with the corner detection on the IR images
of the checkerboard. Therefore, it is necessary to place some-
thing in front of the IR projector which diffuses the infrared
light pattern (a white sheet of paper sufficed in our exper-
iments). This allows the treatment of the IR image as a
standard monochrome image.

The second step is determining the extrinsic matrix
between the IR and RGB cameras. This can be performed
by treating the two cameras as a stereo pair, and calibrat-
ing by using a checkerboard observed in multiple images.

123



Autonomous Robots (2020) 44:1485–1503 1489

Fig. 3 The depth bias calibration system setup proposed in this paper.
It follows the three steps as described in Sect. 3.2. First, we use checker-
board to obtain the initial transformation from the camera to the wall
plane TCA

CB and perform wall plane fitting to obtain the depth ground

truth. Then, we estimate the pose of each RGB-D frame based on ORB-
SLAM2. The depth error is calculated by comparing to the wall plane

Stereo camera calibration is also a well studied problem. We
use an implementation based on the OpenCV stereo calibra-
tion functions (Bradski 2000). Treating the two cameras as a
stereo pair can be achieved by the diffusion of the IR image
described above.

Once the RGB-D image is properly formed, we can rep-
resent the image as a dense, 3D point cloud. Given a pixel
q = [U , V , Z ]T , where U and V are the image coordinates,
and Z is the measured depth, in meters, we can express q as
a 3D point p = [X , Y , Z ]T , in the camera coordinate frame:

X = Z

fx
(U − cx ) (1a)

Y = Z

fy
(V − cy) (1b)

where fx , fy are the focal lengths, and cx , cy are optical
centers of the RGB-D image, taken from theRGB-D intrinsic
matrix. We treat U , V , Z as random variables. The former
two reflect the uncertainty location in sparse features such
as corners. The latter reflects the error in the sensor’s depth
measurements.

3.2 Depth bias calibration

Once we have obtained the intrinsic and extrinsic camera
matrices, we can use the RGB camera as a source of ref-
erence for calibrating the depth camera. While not a real
ground-truth measure, we assume that the measurement of
the pose by using SLAM and checkerboard pose estimation
is significantly more accurate than the depth data returned in

the depth image. We note that the results of any subsequent
depth calibration are subject to the quality of the extrinsic,
intrinsic, and distortion model calibration of the cameras, as
well as the SLAM pose estimation. To calibrate the depth
bias, our method takes three steps (see in Fig. 3):

(1) Initial pose estimationWe attach a large checkerboard on
a flat wall very tightly. Then, we put the camera facing
toward the wall and start recording videos. For the first
frame, we perform RANSAC projective-n-points (PNP)
algorithm to estimate the initial transformation between
the checkerboard and the camera, e.g., TCA

CB .
(2) Plane fitting Once we obtain the initial pose, TCA

CB . We
can transform the point cloud of the first frame to the
checkerboard coordinate system.Then,we performplane
fitting to obtain the center CB P and the normal CBN of
the wall plane.

(3) SLAM pose estimation and depth error calculation For
each new frame, we obtain the pose using SLAM and
transform to the checkerboard coordinate system. Then,
we can simply calculate the error of each 3D point based
on the initially estimated plane {(CB P,CB N )}.

For performing the depth calibration, we did two separate
experiments in both indoor and outdoor environments. The
setup is illustrated inFig. 3,weuse a large checkerboard (both
chessboard and Aruco board (Garrido-Jurado et al. 2014) are
used) printed on a thin cardboard and then attach it to flat wall
surfaces tightly. Since there is a limit on how large we can
print the checkerboard on a flat surface, when we move the
checkerboard further away from the camera it does not cover
the entire field of view of the RGB image. Therefore we need

123



1490 Autonomous Robots (2020) 44:1485–1503

Fig. 4 Example of 2 sets of RGB-D training pairs used for the depth
calibration, which are indoor and outdoor RGB-D frames respectively.
The RGB-D frames are taken at different distance

to shift the checkerboard and create an image mosaic. For
outdoor scenario, if a flat wall is available, we could attach
the checkerboard to the wall and observe it from various
distances.

To mitigate the effects of the noise in the depth readings,
we collected: (1) Indoor: checkerboard with an averag-
ing 1000 consecutive depth images, Aruco board with an
averaging 2700 consecutive depth images; (2) Outdoor:
checkerboard with around 5000 consecutive depth images
from a large flat wall. An RGB and (average) depth image
together form a training pair. Figure 4 shows an example of
two training pairs.

In each training pair, we estimate the pose of the camera
using our pose estimate system (in Fig. 3) in the RGB cam-
era frame. Next, we transform them into the IR camera frame
using the extrinsic matrix between the cameras. We generate
a ground-truth (reference) depth image defined by the fitted
wall plane {(CB P,CB N )}. For indoor scenario, any pixels
which are outside the checkerboard are not used, while the
outdoor scenario keeps all the pixel on the wall plane. Thus,
the indoor training image pair only allows for calibration in
a small area of the image, which gets smaller as the checker-
board is placed at greater distances. Effectively, this means
that we need to record a large number of training pairs in
order to cover the entire field of view. Figure 5 shows an
overview of the data we collected in indoor environment. On
the left is a side view of multiple reference checkerboards.
In the middle are the corresponding measured depth read-
ings for each checkerboard. On the right is a closeup for
the reference and measured locations for a single checker-
board, clearly showing the discrepancy between the two.
Note that for clarity, the image only shows 50 checkerboard
images.

Once all N training images are collected, we create a set
of training points for each checkerboard pixel in each image.
We denote the measured distance at a pixel q = [u, v] as
z(i)uv , and the corresponding reference distance Z(i)

uv . Since
the same pixel q will be observed at multiple images, we
use i to express the index of the training image. We define a
“corrected” reading z̃uv described by a set of c0uv , c1uv and

Fig. 5 Left: reference checkerboard images, detected from the RGB
image using our pose estimation system. Center: corresponding mea-
sured checkerboards in the depth image. Image shows 50 checkerboards
(173 were used for the actual calibration). Right:close up (top view) of
a single reference and measured checkerboard pair, clearly showing the
discrepancy between the expected and depth readings

c2uv coefficients:

z̃uv =
n

∑

i=0

ci uv · ziuv (2)

In this paper, the total error function for a given pixel
location u, v can be defined as

e(u, v) =
∑

i

(

Z(i)
uv − z̃(i)uv

)2
(3)

where i iterates across all the imageswhere the pixel u, v was
inside the checkerboard area, ci uv denotes per-pixel coeffi-
cients.We also notice the same problemwhichwas discussed
in Basso et al. (2018), that is, what should be the best poly-
nomial order n to fit the depth error distribution over each
pixel. To find the best model for depth bias fitting, we valid
the options in an experimental approach, where we select
the order as n = {2, 3, 4, 5, 6, 7, 8} and then learn their
polynomial coefficients respectively based on the principle,

arg minc0:2uv
e(u, v) (4)

We accomplish this by fitting a n-order polynomial to
the data. The raw depth and error distribution over each
pixel is illustrated in Fig. 6, we perform two pose estima-
tion approaches to obtain the error results, which are PNP
based on checkerboard and our proposed coupled pose esti-
mation method (see Fig. 3). The figure demonstrates that
some parts of the depth image consistently overestimate the
depth reading, while others consistently underestimate it.
Based on the ground truth we have, we believe the PNP
approach introduced none-negligible depth error to the sys-
tem. Again, we calculate the error based on the wall-fitting
at the initial stage, and then simply calculate the distance
from the point to the wall as error. To decide which order of
polynomial should be chosen, we valid a total of 7 different

123



Autonomous Robots (2020) 44:1485–1503 1491

Fig. 6 Comparison of depth calibration results for a two different pix-
els in the image ([522, 126] and [103, 30]) using a PNP and b our pose
estimation. The figure shows the polynomial fit (solid line) and its devi-
ation from the ideal sensor (dashed line). In a, we can see that one of the
pixels systematically overestimates the depth Z , while the other pixel
systematically underestimates it. In b we can easily derive that all the
pixel will under estimate if Z is over 4 m. Based on our observation,
we found a is a wrong conclusion

orders, n = {2, 3, 4, 5, 6, 7, 8}. It can be seen in Fig. 8 that
second order polynomial achieves almost the same perfor-
mance as the eighth order fitting. Also, depth correct can
largely decrease the systematic depth error. Thus, in this
paper, we choose to use the second order fitting for both
accuracy and time performance considerations. Since the fit
is performed for each pixel, the end result is 640×480 sets of
coefficients. In our implementation, we store them as three
VGA images Ic0 , Ic1 , Ic2 , each for the respective coefficient
ranks.

Once the coefficient images are recovered, they can be
applied to incoming depth images to “unwarp” them and
remove the systematic bias in the depth reading on a per-
pixel basis. The results of the unwarping for a single depth
image are displayed in Fig. 7. The figure shows the point
clouds reconstructed from the original depth image and
the unwarped one. We also perform rooted mean square
(RMS) analysis for the error between the measured dis-
tance z in the depth image and reference Z obtained from
the RGB checkerboard image. Figure 8 presents the results
for an Asus Xtion-PRO sensor. We define the RMS errors
for a given the uncalibrated and calibrated image i as:

e(i)
rms =

(

1

n

∑

u,v

(

Z(i)
uv − z(i)uv

)2
) 1

2

(5a)

ẽ(i)
rms =

(

1

n

∑

u,v

(

Z(i)
uv − z̃(i)uv

)2
) 1

2

(5b)

where u and v iterate over all the checkerboard pixels
observed in that image. Each data point in the figure rep-
resents the RMS error of z over all the pixels in a given
checkerboard test image, versus the average depth of the
checkerboard. the results with and without calibration are

Fig. 7 Top-down view of point cloud created by observing a flat wall
with furniture in front of it. The image shows the point cloud before
and after applying the polynomial correction. The unwarp behavior is
especially visible at upper side of the image

Fig. 8 Mean RMS error in Z before calibration e(k)
rms and after ẽ(k)

rms ,
for Asus Xtion-PRO camera. Each data point represents the mean RMS
error over the wall plane at varying distances Z from the camera. We
illustrate depth error using second order to eighth order fitting

displayed. The figure shows that the RMS error is signifi-
cantly lower when the polynomial unwarping is performed
on the depth images, and the error improvement becomes
more pronounced as the distance between the object and the
camera grows.

We performed the same procedure with a depth cam-
era embedded in a mobile device—Peanut, Google’s Project
Tango prototype cell phone (Google 2014). The depth cam-
era, which is based on the same structured light technology
as the the Asus camera, exhibited much higher initial biases
(as high as 1.5 m at a distance of 3 m in some areas
of the image). After calibration, we were able to reduce
the RMS error by approximately an order of magnitude
(Fig. 9).

123



1492 Autonomous Robots (2020) 44:1485–1503

Fig. 9 RMS error in Z before calibration e(k)
rms and after ẽ

(k)
rms , for depth

camera on mobile device. Each data point represents the error over the
checkerboard pixels in the i-the checkerboard image. Multiple checker-
board images at varying distances Z from the camera are used

3.3 Depth uncertainty analysis

Khoshelham and Elberink (2012) present the following for-
mulation for the uncertainty in Z :

σz = 1

f b
σdμ

2
z (6)

where f is the effective IR camera focal length, and b is the
baseline distance between the IR camera and IR projector.
After calibration, Khoshelham and Elberink (2012) obtain
the following expression:

σz = 1.45 × 10−3μ2
z (7)

where μz and σz are expressed in meters.
We extend the model in two ways. First, the locations of

features detected by a sparse feature detector are subject to
error; therefore, we allow for uncertainty in the U and V
variables. Second, we assume that the depth uncertainty is
dependent not only on the depth readings of a given pixel,
but also on its neighbors in a local window. We will show
that using these assumptions, we can predict the magnitude
of the depth uncertainty better than the previously published
model.

Let us begin by assuming that U and V are independent
random variables distributed according to a normal distribu-
tion N (μu, σu) and N (μv, σv) respectively. Further, let σu
and σv inform the following approximate Gaussian kernel of
size 3 × 3:

W = 1

16

⎡

⎣

1 2 1
2 4 2
1 2 1

⎤

⎦ (8)

Assuming that Z is normally distributed, we can define a
random variable ̂Z , which is a mixture of the Z variables in a
local window {i :∈ [μu − 1, μu + 1], j ∈ [μv − 1, μv + 1]}.
The weights of the mixture wi j are chosen according to the
kernel W . The mean and variance of the resulting Gaussian
mixture ̂Z are

μ̂z =
∑

i, j

wi j
(

μzi j

)

(9a)

σ̂ 2
z =

∑

i, j

wi j

(

σ 2
zi j + μ2

zi j

)

− μ̂2
z (9b)

At this stage,we have two alternativemodels for the uncer-
tainty: σz , estimated according to the simple model in Eq. 6,
and σ̂z , estimated according to the Gaussian mixture model.
To evaluate which model has more predictive power, we
gather n depth images of a static scene. For each pixel in the
image, we calculate the uncertainty σ̄z in the metric depth z
according to

μ̄z = 1

n

n
∑

m=1

zm (10a)

σ̄ 2
z = 1

n − 1

n
∑

m=1

(μ̄z − zm)2 (10b)

We call this the observed uncertainty. When n is large
(we used 200 images)we can assume that the observed uncer-
tainty approaches the true uncertainty for the RGB-D camera
measurement. Next, we take a single depth image, and gener-
ate the twopredicted uncertaintiesσz and σ̂z . Figure 10 shows
a comparison between the observed and predicted uncertain-
ties according to both models. We note that the Gaussian
mixture model predicts the uncertainty much better than the
simple model, especially around the edges of objects. This
comes from the fact that the RGB-D camera produces read-
ings for edge pixels, which tend to jump from foreground to
background.

3.4 3D distribution

Wecan estimate the 3D uncertainty� of a point p fromEq. 1.

� =
⎡

⎣

σ 2
x σxy σxz

σyx σ 2
y σyz

σzx σzy σ 2
z

⎤

⎦ (11)

123



Autonomous Robots (2020) 44:1485–1503 1493

Fig. 10 Uncertainty analysis for the depth readings of an RGB-D cam-
era. Left: RGB image, shown for visualization only. Right: observed
(ground truth) uncertainty (σ̄z), obtained by taking 200 depth images
of a static scene and calculating the mean and standard deviation on
a per-pixel basis. Color is scaled as the log of the uncertainty. Center-

left: uncertainty predicted from a single depth image, according to the
simple model (σz). Center-right: uncertainty predicted from the same
depth image, according to the Gaussianmixturemodel (̂σz).We demon-
strate the Gaussianmodel uncertainty predicts the true uncertaintymore
accurately, especially around object edges

where

σ 2
x = σ 2

z (μu − cx )(μv − cy) + σ 2
u (μ2

z + σ 2
z )

f 2x

σ 2
y = σ 2

z (μu − cx )(μv − cy) + σ 2
v (μ2

z + σ 2
z )

f 2y

σxz = σzx = σ 2
z (μu − cx )

fx

σyz = σzy = σ 2
z (μv − cy)

fy

σxy = σxy = σ 2
z (μu − cx )(μv − cy)

fx fy

The above expressions are derivedwithμz and σz from the
simple depth uncertainty model. We can then approximate�

in terms of the Gaussian mixture model by replacing μz and
σz with μ̂z and σ̂z respectively. We approximate p as a multi-
variate Gaussian distribution with mean µ = [μx , μy, μz]T
and covariance �.

4 Trajectory estimation

4.1 Overview

The entire visual odometry pipeline is shown in Fig. 11. The
trajectory estimation takes four steps as illustrated in the fig-
ure: (1) firstly, feature detection over the intensity image;
(2) secondly, 3D back-projection and covariance calcula-

Fig. 11 Pipeline for the trajectory estimation. We align sparse feature
data from the current RGB-D frame to a global model. The data is
represented by 3D points with covariance matrices

tion based on Sect. 3.3; (3) thirdly, 3D feature point cloud
(‘model’) based ICP pose estimation; (4) finally, update the
feature point cloud using Kalman filter. We take advantage
of the filter-based approach to update the feature point cloud
and use the feature point cloud to estimate the current pose.
Thus, the current frame pose estimation does not only relies
on the last frame but also relies on all previous frames that
captured the same features.

The estimation begins with extracting sparse features in
each incoming RGB-D image It . The features are detected

123



1494 Autonomous Robots (2020) 44:1485–1503

on the intensity channel of the RGB image. We have exper-
imented with several choices of feature detectors, including
SURF (Bay et al. 2008), ORB (Rublee et al. 2011), and
Shi and Tomasi (1994) keypoints. While our implementa-
tion offers a configurable choice between them, we found
that the Shi-Tomasi features offer the best trade-off between
robustness and computational speed. Besides, we spatially
split an intensity image into 8 patches, and force the feature
detector to detect the same number of features in each patch.
It is able to provide a more accurate pose estimation.

Next, we back-project the feature to 3D space and esti-
mate the 3D normal distribution for each feature, according
to the uncertainty equations defined in Sect. 3. From this,
we generate a set of 3D features D = {di }. Each feature
d = {µ[D], �[D]} has a mean and covariance matrix. The D
set is expressed in the camera reference frame.

Meanwhile, we initialize a global feature point cloud
M = {m j }, withm = {µ[M], �[M]}, expressed in the world
coordinate frame. It is called ‘model’ in this paper, and it is
used to perform a 3D (model) to 3D (current frame) Iterative
Closest Points (ICP) (Besl andMcKay 1992) based pose esti-
mation. In contrast, the frame-to-framebasedpose estimation
only relies on the last frame (Mur-Artal andTardós 2017), and
does not take advantage of the historical observations. Thus,
it is easy to drift without using bundle adjustment. Our pro-
posed ‘model’ which integrates the historical observations is
able to provide a more accurate pose estimation.

Then, the trajectory estimation is basically the process
of aligning the current feature point cloud D to the global
model M . This happens in two steps. First, we align Dt to
Dt−1, where t is time step, using a 3-point RANSAC (Fis-
chler and Bolles 1981) transformation estimation. Second,
we align Dt to the previous model Mt−1, using the trans-
formation estimated by RANSAC as a initialization to do
ICP. Note that we do not use the associations generated by
RANSAC to do ICP, but choose to compute them all over
iteratively using the nearest neighbor search. This is because
the associations from RANSAC are only between the cur-
rent and last frame, while in the ICP step we are interested
in aligning the 3D features to the global model M , which
potentially contains features not seen in the previous frame.
While this might seem like a duplicated effort, in practice
themodel M keeps updated consistently thus a single or few
abnormal pose estimation will not affect the robustness of
the overall performance.

Once the final transformation is found using the above
two-step approach, we transform the set Dt into the global
frame (expressed as D

′
t ). Finally,we establish the final corre-

spondences between the two sets D
′
t andMt−1. Re-observed

features in the ‘model’ Mt−1 are updated using a Kalman fil-
ter, and new features are added to the model Mt−1, resulting
in the new model Mt . The rest of this section describes the

details of the third and fourth steps on how to perform pose
estimation and model update.

4.2 Model registration

This section discusses the pose estimation that uses the two-
step approach as discussed in Sect. 4.1.Wefirst useRANSAC
to estimate the initial guess of the current frame for the first
step. It involves with a feature matching between the current
frame and last frame. For the second step, we begin with
defining a distance function dist which measures the dis-
tance between two features fa , fb. Each feature is normally
distributed with means µa and µb and covariance matrices
�a and �b.

dist(fa, fb) =
√

�fafb(�a + �b)−1�T
fafb

(12)

where

�fafb = µa − µb (13)

The distance function is based on the Mahalanobis dis-
tance from a point to a distribution.

Then, we use ICP to align the data set D to the model
set M . The ICP algorithm has 2 steps of interest: (1) gen-
erating correspondences between the two input sets, and (2)
calculating the transformation which minimizes the distance
between the correspondences. In a classical ICP formulation,
the correspondences are generated using nearest neighbors
in Euclidean space; the transformation is also estimated by
minimizing the sum of squared Euclidean distances.

In this paper, we propose using a modified ICP algorithm,
in which we establish approximate correspondences using
the Mahalanobis distance. First, we build a kd-tree Muja
and Lowe (2009) of the model M , by using the means of
the features. Next, for each feature d in the data D we find
the k nearest Euclidean neighbors from M . Finally, we iter-
ate through all k candidates, and find the one which has the
smallest Mahalanobis distance. This allows us to leverage
the efficiency of kd-trees, which cannot be directly used with
non-linear functions such as theMahalanobis distance. In our
implementation, we use a small size for k (for example, 4).

The rest of the ICP algorithm remains the same. We note
that while it is possible to optimize aMahalanobis distance as
the objective function for the best transform, we do not do so,
and this is a possible area of improvement. An example of an
algorithm which implements a similar optimization (albeit
in the context of dense data) is Generalized ICP (Segal et al.
2009).

123



Autonomous Robots (2020) 44:1485–1503 1495

4.3 Data association andmodel updating

This section addresses the model updating, which consis-
tently fuses the historical observations to the global model.
For model updating, we begin by data association step via
rotating the data set D into the global frame of reference,
and refer to it as D

′
. Let the current transformation between

the global and camera coordinate frames is T , consisting of
a rotation and translation:

T =
[

R t
0 1

]

(14)

We can transform the mean vector and covariance matrix
according to:

µ
′ = Rµ + t (15a)

�
′ = R�RT (15b)

Next, for each point d
′
i in the transformed Data set, we

find the approximate nearest Mahalanobis neighbor m j in
the Model.

dist(d
′
,m) =

√

�d′m(�[M] + �[D′ ])−1�T
d′m

We consider two points to be associated if the distance
between them is lower than a threshold ε. Typical values for
ε include 7.82 or 11.35. The two thresholds correspond to the
95% and 99% probability tests that the data point is sampled
from the given model distribution.

Any features in D
′
which cannot be associated are inserted

as new members in M . The model is bounded in size, so if
themaximum allowed size is exceeded, we remove the oldest
features in the model. This is achieved by using a ring-buffer
implementation.

For each featurewhich is associated,weperformaKalman
filter update. We treat the distributionsm as the prior, and the
distribution d as the observation.

Since we do not have a prediction in our model, it keeps
the same as the prior state of the model at time t − 1, that is,

µ̃t = µ
[M]
t−1 (16a)

�̃t = �
[M]
t−1 . (16b)

Then, the new observations are used to update the asso-
ciated feature states at time t by applying the following
equations,

Gt = �̃t

(

�̃t + �
[D]
t

)−1
(17a)

µ
[M]
t = µ̃t + Gt

(

µ
[D]
t − µ̃t

)

(17b)

�
[M]
t = (I − Gt ) �̃t (17c)

where G is the kalman gain, µ[M]
t is the global associated

global feature points, µ[D]
t is the current observation.

5 Post Bundle adjustment and
reconstruction

This section discusses the post-processing towards global
Bundle adjustment to achieve 3D structure reconstruction.
We also adopt using keyframes to represent and reconstruct
a scene (Klein and Murray 2007). New keyframes are gen-
erated heuristically, using either distance or overlap metric.
The distance metric triggers a new keyframe when the linear
or angular distance traveled between the current camera pose
(as reported by the visual odometry) and the camera pose of
the last keyframe exceeds a certain threshold (for example,
0.3 m or 30◦). The overlap metric triggers a new keyframe
when the number of features in the data set D which have a
correspondence in the model M falls under a certain thresh-
old.

Each of the RGB-D keyframes informs a vertex in a graph.
The vertex is described by the keyframe’s 6-DoF pose. Edges
in the graph are described by the relative pose between
two keyframes. The visual odometry pipeline provides the
edge information for time-consecutive keyframes. To per-
form large-scale loop closure and global alignment, we need
to detect pairs of non-consecutive keyframes and a relative
pose between them. Once the graph is built, we optimize for
the pose of all keyframes using a non-linear graph optimizer
(g2o,Kummerle et al. 2011).Currently, the pose graph adjust-
ment does notmodify the location of the features in themodel
used for trajectory estimation.However, sinceweperform the
alignment as the final step at the end of the reconstruction
run, this is not an issue.

The main problem in the approach described above is
finding pairs of RGB-D keyframes that observe the same
scene, so we can calculate their relative pose. We refer to
this as the place recognition problem. Our general approach
to the place recognition problem is the following: select a
pair of images, try to align their 3D features using a sample-
and-consensus algorithm, and mark them as correlated if the
algorithm finds a transformation model with a large num-
ber of inlier features. We present two ways to implement this
approach: abrute-force implementation,which is determinis-
tic, and considers all possible image pairs and transformation
models, and a heuristic implementation, which uses non-
deterministic, randomized algorithms to find corresponding

123



1496 Autonomous Robots (2020) 44:1485–1503

Fig. 12 Place recognitionpipeline, showing the binary candidatematrix
(Q), correspondence count matrix (C), and binary association matrix
(A). The method for building Q and applying the correspondence test
are different in the brute-force and heuristic algorithms we present

images and transformations. The former approach is pro-
hibitively computationally expensive, but it’s complete, so
we use it as a bench-mark to validate the performance of our
heuristic approach, which is computationally efficient.

The generalized form of both approaches can be seen in
Fig. 12. We have a set of keyframes K with size k. First,
we create a binary candidacy matrix Q of size k × k. For
any element Qi j = 1 we perform a pairwise matching test
between Ki and K j . The number of correspondingmatches is
stored asCi j , forming the correspondence matrixC. Finally,
we apply a threshold of minimum correspondence count on
C to obtain the binary association matrix A. The details of
how the correspondence matrix C is created and what the
pairwise matching test consists of are described below.

5.1 Brute-force place recognition

In the brute force place recognition algorithm, the candidacy
matrix Q has 1 in every entry. For the pairwise matching
test, we developed an algorithm called ExSAC, or Exhaustive
Sample And Consensus. ExSAC is a deterministic version of
RANSAC which considers every possible set of (fixed-size)
samples tofind the bestmodel. In our case, theminimumsam-
ple size to determine the 6DoF transformation is 3 features.
Thus, we use 3-point ExSAC, which considers all combina-
tions of 3-point correspondences between a pair of RGB-D
images. For each 3-point set, a rigid transformation is com-
puted, and the number of features which are inliers to this
model are counted. The output of the algorithm is the size of
the best model, and the corresponding transformation. If we
account for the symmetry of the test, and exclude reflexive
testing, the pairwisematching is performed in total (k−1)2/2
times, or O(k2). The size of the best model is stored in the
correspondence count matrix C, which is then thresholded
to obtain the association matrix A.

5.2 Heuristic place recognition

In the heuristic place recognition algorithm, we first compute
a match-count matrix M. An entry Mi j corresponds to the
number of features in Ki which have their top nearest neigh-
bors (in feature descriptor space) present in K j . Next, for

each index i , we consider the N top-scoring keyframes, in
terms of match count, and mark them as 1 in the candidacy
matrix Q. The result is that Q has at most Nk candidates.
For each candidate, we apply the 3-point RANSAC test to
determine the number of correspondences. From there, the
algorithm is the same as its brute-force counterpart.

The advantage of the heuristic test comes from the fact that
the correspondence test needs to be performed O(kN ) times,
with N << k. Furthermore, since the correspondence test
uses random sampling instead of exhaustive sampling, we
can use much fewer iterations to find a model which approx-
imates the best optimal model. The main free parameter in
the heuristic approach is N , or the number of top candidates
to consider.

The results for a dataset of 250 keyframes can be seen in
Fig. 13. On the left is the correspondence count matrix C
for the brute force test, and the respective association matrix
A. On the right is the candidacy matrix Q using the heuris-
tic approach, and the respective association matrix A. The
heuristic association matrix is nearly identical to the brute-
force association matrix, validating the approach. We further
analyze the recognition rate of the heuristic approach, using
the brute-force as a baseline for comparison. We define the
recognition rate as

1 − false negatives

total associations
(18)

where “Total associations” is the number of keyframe pair
associations established by the brute force approach, and
“False negatives” is the number of associations which were
missed by the heuristic approach. The results for different
number of candidates N are shown in Table 1.

6 Experiments

In this section, we evaluate our VO system in three aspects
and compare with other state-of-the-art methods in both
depth correction and localization area, using the results gen-
erated by our mobile platform which only has an Atom
1.6 GHz processor with only 2 Gb RAM. Our open-source
code includes all the methods discussed in this paper to facil-
itate other researchers to repeat the experiments.

6.1 Model versus frame-to-frame based ICP

In the first experiment, we perform a qualitative evaluation of
our visual odometry pipelinewithRGB-Ddata recorded in an
indoor environment with no ground-truth data. The camera
is moved along a loop, and placed back at its starting point.
We replicate the data 5 times to simulate the exact same loop.
Figure 14 shows the trajectories generated using our persis-

123



Autonomous Robots (2020) 44:1485–1503 1497

Fig. 13 Left to right: (1) correspondence count matrix C for the brute force test (log scale). (2) Respective brute-force association matrix A. (3)
Candidacy matrix Q using the heuristic approach, showing top N = 10 candidates. (4) Respective heuristic association matrix A

Table 1 Place recognition rates

N candidates False negatives Recognition rate

5 169 out of 887 0.809

10 35 out of 887 0.961

15 26 out of 887 0.971

20 19 out of 887 0.979

tent model pipeline (left), versus trajectories generated by
frame-to-frame ICP (right). We show that our approach is
able to correctly solve small loops, keeping the trajectory
error bounded. Figure 15 shows the respective sizes of the
model and data feature sets. The model set grows in size dur-
ing first loop, while the environment is observed for the first
time. In subsequent loops, very few new features are added
to the model, since most of them are correctly reobserved
and associated.

6.2 Benefits of depth correction

In the second set of experiments, we discuss the benefits
of the depth calibration from two perspectives, which are,
trajectory accuracy comparison and 3D reconstruction error
comparison. Since there is no such publicly available dataset
for depth calibration performance evaluation, we create a
new data set based on the TUM RGB-D dataset (Sturm et al.
2012). Although the TUM RGB-D has already provided a
sequence for depth verification, the sequence only covers the
lower part of the image if the distance between the camera
and the chessboard exceeds 2 m. It is impossible to obtain the
pixel-wise depth calibration parameters beyond this distance.

In order to obtain a dataset containing both ‘ground truth’
depth and ‘biased’ depth, we employ our depth calibration
parameters (for example, pixel [320, 240] parameter illus-
trated in Table 2) over the ‘ground truth’ depth images, where
the ‘ground truth’ is the raw depth image from the TUM
dataset. Since our model is a second-order polynomial equa-
tion, we employ this to the ground truth depth in an inverse

Fig. 14 Comparison of trajectory estimation with persistent model
(left) versus frame-to-frame ICP. Top row: side views, xz-plane. Bottom
row: top view, xy-plane. The trajectory shown consists of 5 repeated
loops, with approximately 2000 images processed in each loop

Fig. 15 Size of themodel and data set sizes for the experiment in Fig. 14

Table 2 The depth calibration parameters of pixel [320, 240]
Second order First order Constant

c20 = 4.76e−03 c10 = 9.65e−01 c00 = 1.0

approach. In Table 2, ci0, i = 0, 1, 2 denotes parameter of
each order.

We first compare the absolute trajectory error (ATE) in
two cases by runningORB-SLAM2on ourGPUplatform (12
core I7 CPU with 64 GB memory), with and without depth

123



1498 Autonomous Robots (2020) 44:1485–1503

Table 3 ATE (/m) comparison
between with and without depth
calibration

Dataset ATE with depth correction ATE without depth correction

fr1_xyz 0.0126 0.0135

fr1_rpy 0.0243 0.0264

fr1_360 0.1408 0.1248

fr1_desk 0.0206 0.0229

fr1_desk2 0.0419 0.0378

fr1_floor 0.0353 0.0490

fr2_rpy 0.0104 0.0108

fr2_desk 0.0136 0.0139

fr2_360_kidnap 0.0773 0.0795

Fig. 16 Qualitative mesh comparison with/without depth calibration. a
The color mesh of fr1_xyz dataset. bThemesh comparison between the
depth corrected mesh (yellow) and the raw depth mesh (green) (Color
figure online)

correction. For ATE evaluation, we use the open-source tool
that provided by the TUM RGBD data set, to evaluate the
trajectory. The result is illustrated in Table 3. It shows that
the ATE is smaller after depth correction with an average
8.74% improvement. We also notice that we have slightly
degraded performance in f r1_360 and f r1_desk2 which is
caused by pose drift.

We also compare 3D reconstruction accuracy and com-
pleteness in two cases, with and without depth correction (a
figure showing the mesh difference with/without using depth
correction is illustrated in Fig. 16). In this paper, we choose
3D mesh accuracy and completeness as a metric to com-
pare the reconstructed mesh (Jensen et al. 2014). For mesh
accuracy, it measures the distance from customer generated
mesh to the ground truth mesh, and completeness defines the
distance from the ground truth mesh to the customer gener-
ated mesh. In this paper, we use a publicly accessible tool
provided by Stutz and Geiger (2018). In order to obtain the
result in a limited time, we sub-sample each mesh to 300,000
vertex. The results can be seen in Table 4. The table demon-
strates that the mesh reconstructed with depth correction can
achieve higher accuracy as well as completeness.

6.3 VO time performance comparison

In the third set of experiments, we evaluate the accuracy
of the trajectory estimation using publicly-available RGB-
D datasets with ground-truth trajectory information from a
motion-capture camera system (Sturm et al. 2012). Table 5
shows the Relative Pose Error (RPE) for a number of differ-
ent trajectories in indoor settings. We have chosen the RPE
metric in order to evaluate the effectiveness of our visual
odometry system. In the experiment evaluating theRPEerror,
we do not use our place-recognition or pose-graph-based
alignment. The table compares error of our implementation
(ccny_rgbd) with an existing implementation of Endres et al.
(2012) (RGBD-SLAM) and ORB-SLAM2 (Mur-Artal and
Tardós 2017). The results show that our implementation per-
forms slightly better on most datasets (approximately 1cm
more error), slightly worse on one dataset (3 cm less error),
and significantlyworse onone dataset (3 cmmore error) com-
pared with RGBD-SLAM. Our implementation performs
slightly worse on most dataset (3 cm less error), and sig-
nificantly worse on 1 dataset (3 cm more error) compared
with ORB-SLAM2. Besides, Mur-Artal and Tardós (2017)

123



Autonomous Robots (2020) 44:1485–1503 1499

Table 4 3D structure accuracy
and completeness comparison
(/m)

Dataset Without/with depth correction Mesh accuracy Mesh completeness

fr1_xyz Without 0.0300 0.0295

fr1_xyz With 0.0172 0.0121

fr1_360 Without 0.2456 0.2714

fr1_360 With 0.2393 0.2520

fr1_room Without 0.0363 0.0405

fr1_room With 0.0340 0.0327

fr1_floor Without 0.0397 0.0415

fr1_floor With 0.0211 0.0210

fr1_rpy Without 0.1012 0.1164

fr1_rpy With 0.0893 0.0971

Table 5 Relative pose error (meters)

Dataset RGBD SLAM ORB-SLAM2 ccny_rgbd

fr1_360 0.089 0.045 0.121

fr1_desk 0.033 0.026 0.043

fr1_desk2 0.054 0.039 0.067

fr1_room 0.095 0.035 0.068

fr1_rpy 0.046 0.039 0.064

fr1_xyz 0.021 0.019 0.030

fr2_desk 0.017 0.024 0.023

fr2_rpy 0.010 0.008 0.023

fr2_xyz 0.006 0.016 0.008

fr3_loh na 0.021 0.028

fr1, freiburg1; fr2, freiburg2 in TUM dataset

provide detailed comparison with Dense Visual Odometry
(Kerl et al. 2013), and Elastic-fusion (Henry et al. 2010).
Results indicates that ORB-SLAM2 outperform all these
algorithms. Since our implementation is slightly worse than
ORB-SLAM2 and achieve comparable performance in most
cases, that is, our implementation can achieve comparable
localization performance with Dense Visual Odometry and
Elastic-fusion (Fig. 17).

When comparing the results,we emphasize that our imple-
mentation runs in real time (30 Hz) on VGA data using a
single core of a desktop computer. Moreover, the processing
time for each image is on average 22 ms, and almost never
exceeds 33 ms, resulting in minimal latency (see Fig. 18).
We were able to obtain similar results on an Atom 1.6 GHz
processor using QVGA resolutions. Using the same setup
and default parametrization for the RGBD-SLAM imple-
mentation, we were able to obtain frequencies of 5–10 Hz
on the desktop machine, and unable to run in real time on the
Atom computer. Besides, we also compared the time perfor-
mance with ORB-SLAM2, which are illustrated in Fig. 19.
ORB-SLAM2 applies local and global loop closing toward
online pose estimation, however, as we can notice that it is

Fig. 17 The trajectory comparison of two tests in outdoor environment.
We put the RGB-D camera on amoving Cart with a level. The trajectory
is close to a straight line. a and b denote the XOZ view and YOZ view
of the trajectory obtained from our system and PNP approach of test 1.
c and d are the results of test 2

still not suitable for real time processing on computationally
constrained platform. The average processing time for ORB-
SLAM2 is over 100 ms (see in Fig. 19a, c), which can only
provide a 7 Hz output as we detected using ROS Frequency
Check. For our VO implementation, it produces a much bet-
ter performance with approximate 40 Hz output, that enables
real time pose estimation for robot navigation application.

Thus, we believe our pipeline offers a very computa-
tionally efficient solution at a small cost of accuracy. This
trade-off is especially important for systems which require
real-time perception such as Micro-air vehicle flight which
motivate our research. Figure 20 shows the trajectory of
the visual odometry (VO) pipeline for the freiburg2_desk

123



1500 Autonomous Robots (2020) 44:1485–1503

Fig. 18 Top: processing duration for each incoming image. Horizontal
axis:image index number. Vertical axis: time required for feature detec-
tion (red) and alignment and model update (blue). Bottom: size of the
Data andModel sets. Vertical lines mark the start of each repeated loop
(Color figure online)

Fig. 19 Time performance comparisons between our VO and ORB-
SLAM2.Where a and c show processing time of ORB-SLAM on TUM
dataset freiburg1_360 and freiburg1_rpy. b and d are the processing
time of our VO, where we also illustrate the feature detection, pose
estimation, and feature registration time of our VO

dataset. The figure also shows the trajectory after the pose-
graph optimization, which was performed offline at the end
of the experiment.

In the fourth experiment, we evaluated the effectiveness of
the entire system, including the depth calibration, trajectory
estimation, and pose-graph-based global alignment. We per-
formed a large-scale indoor mapping experiment. We used
an Asus Xtion-PRO camera carried by hand, exploring three
rooms and returning to the original position in the first room.
The results of the experiment can be seen in Fig. 1.

6.4 Pose system and depth correction toward
accuracy

Finally, we explore how depth bias calibration affects the
differentmodules in the systemand also howour pose estima-
tion system outperforms the single checkerboard approach.
The result is illustrated in Fig. 17, we can clearly find out
that pose estimation using a single checkerboard and PNP

Fig. 20 Comparison of trajectories for the freiburg2_desk dataset.
Black: ground truth from motion-capture camera system. Red: trajec-
tory from our visual odometry pipeline. Blue: trajectory from our visual
odometry pipeline, after pose-graph refinement (Color figure online)

Fig. 21 Results from a large-scale 3D mapping experiment with an
Asus Xtion-PRO camera. Left: orthographic projection of the 3D map,
created using data without polynomial depth calibration. Right: result
from same experiment, repeated with polynomial depth image correc-
tion. Bothmaps are generated using our visual odometry and pose-graph
correction

Fig. 22 Results from a 3D mapping experiment with a Google Peanut
mobile device. Left: orthographic projection of the 3D map, created
using data without polynomial depth calibration. Right: result from
same experiment, repeated with polynomial depth image correction.
Both maps are generated using pre-computed trajectories that do not
rely on depth images

123



Autonomous Robots (2020) 44:1485–1503 1501

method can only provide acceptable accuracy within 3 m.
The error will increase to as high as 6 m in both X and Y
axis. For depth Z , the error could increase as high as 2 m,
which affect the depth bias prediction a lot.

We repeated the three-room experiment, with and without
unwarping the depth images using our calibration model The
results of the experiment can be seen in Fig. 21. On the left
is the final map result (top-down orthographic projection)
with the uncalibrated data. On the right is the result using the
unwarped (calibrated) data. The figure demonstrates that the
unwarpeddata produces significantly better results, evenwith
offline graph-based optimization performed in both cases.
The systematic skew in the walls of the map in the uncali-
brated experiment can be attributed to the slight concavity
of the uncalibrated depth data when observing flat surfaces,
resulting in incorrect trajectory estimation.

We further explored the benefits of our calibration proce-
dure for systems that use other trajectory estimationmethods.
In Fig. 22, we present a reconstruction using a dataset
obtained with the Peanut device. The trajectory is pre-
computed using a combination of visual-inertial odometry
and bundle adjustment based solely on the monocular (non-
depth) images. Thus, the trajectory is independent of the
depth bias. However, removing the bias results in much
cleaner scene reconstruction.

7 Conclusions

In this paper, we presented a calibration procedure and uncer-
tainty model for depth readings of RGB-D cameras. The
methods we described allow 3D points constructed from
depth images to be treated as zero-mean multi-variate Gaus-
sian distributions with a known covariance matrix. This is of
interest to any system which performs calculations on RGB-
D data where the precision and accuracy are important. We
demonstrate experimental evidence of how the calibration
procedure affects visual odometry andmapping applications,
and demonstrate the predictive power of our uncertainty esti-
mation model, which is able to estimate uncertainties around
object edges better than the previously published formula-
tions in this field. The calibration procedure requires that a
checkerboard is placed in multiple distances and locations
from the camera to obtain dense data, and is reasonable for
distances up to 4–5 m.

Further, we presented a visual odometry system for RGB-
D cameras. The system uses sparse features which are
registered against a persistent model of bounded size. The
model is updated through a probabilisticKalman filter frame-
work. In order to achieve this, we developed a formulation
for the 3D uncertainty in sparse features in RGB-D images,
based on a Gaussian mixture model of readings in a local
image window.

Finally, we presented a place recognition procedurewhich
is used to find correspondences and relative transformations
between non-consecutive keyframes for doing pose-graph
SLAM. We present two approaches—an exhaustive one and
a heuristic one, and evaluate the recognition rate of the
latter.

An implementation of our system, developed for use with
the ROS (Quigley et al. 2009) framework, is available for
download under a free, open-source license from our website
(http://robotics.ccny.cuny.edu/).

References

Basso, F.,Menegatti, E.,&Pretto,A. (2018).Robust intrinsic and extrin-
sic calibration ofRGB-Dcameras. IEEETransactions onRobotics,
34(5), 1315–1332.

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up
robust features (SURF). Computer Vision and Image Understand-
ing, 110(3), 346–359.

Besl, P., &McKay, N. (1992). A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14, 239–256.

Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Soft-
ware Tools, 25, 120–125.

Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., et
al. (2016). The EuRoC micro aerial vehicle datasets. The Inter-
national Journal of Robotics Research. https://doi.org/10.1177/
0278364915620033.

Dryanovski, I., Jaramillo, C.,&Xiao, J. (2012). Incremental registration
of RGB-D images. In IEEE International conference on robotics
and automation (ICRA).

Dryanovski, I., Valenti, R. G., & Xiao, J. (2013). Fast visual odometry
and mapping from RGB-D data. In International conference on
robotics and automation (Vol. 10031).

Endres, F., Hess, J., Cremers, D.,&Engelhard, N. (2012). An evaluation
of the RGB-D SLAM system. Perception, 3(c), 1691–1696.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus:
A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 24(6),
381–395.

Garrido-Jurado, S.,Munoz Salinas, R.M.,Madrid-Cuevas, F., &Marín-
Jiménez, M. (2014). Automatic generation and detection of highly
reliable fiducial markers under occlusion. Pattern Recognition,
47(6), 2280–2292. https://doi.org/10.1016/j.patcog.2014.01.005.

Geiger,A., Lenz, P.,&Urtasun,R. (2012).Arewe ready for autonomous
driving? The kitti vision benchmark suite. In Conference on com-
puter vision and pattern recognition (CVPR).

Google: Project Tango (2014). Retrieved from https://en.wikipedia.org/
wiki/Tango_(platform).

Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2010). RGB-D
mapping: Using depth cameras for dense 3d modeling of indoor
environments. InRGB-D:Advanced reasoningwith depth cameras
workshop in conjunction with RSS.

Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D
mapping: Using Kinect-style depth cameras for dense 3D model-
ing of indoor environments. The International Journal of Robotics
Research, 31(5), 647–663.

Herrera, D., Kannala, J., & Heikkilä, J. (2010). Joint depth and color
camera calibration with distortion correction. IEEE Transactions
on Pattern Analysis andMachine Intelligence, 34(10), 2058–2064.
https://doi.org/10.1109/TPAMI.2012.125.

123

https://doi.org/10.1177/0278364915620033
https://doi.org/10.1177/0278364915620033
https://doi.org/10.1016/j.patcog.2014.01.005
https://en.wikipedia.org/wiki/Tango_(platform)
https://en.wikipedia.org/wiki/Tango_(platform)
https://doi.org/10.1109/TPAMI.2012.125


1502 Autonomous Robots (2020) 44:1485–1503

James Bowman, P. M. (2017). ROS camera calibration. Retrieved from
http://wiki.ros.org/camera_calibration.

Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., & Aanæs, H. (2014). Large
scale multi-view stereopsis evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 406–
413)

Karan, B. (2015). Calibration of kinect-type RGB-D sensors for robotic
applications. Fme Transactions, 43, 47–54.

Kerl, C., Sturm, J., & Cremers, D. (2013). Dense visual slam for RGB-
D cameras. In IEEE/RSJ international conference on intelligent
robots and systems (IROS) (pp. 2100–2106). IEEE.

Kerl, C., Sturm, J., &Cremers, D. (2013). Dense visual slam for RGBD-
D cameras. In IEEE/RSJ international conference on intelligent
robots and systems (pp. 2100–2106). IEEE.

Khoshelham, K., & Elberink, S. O. (2012). Accuracy and resolution of
Kinect depth data for indoor mapping applications. Sensors, 12(2),
1437–1454. https://doi.org/10.3390/s120201437.

Klein, G., &Murray, D. (2007). Parallel tracking andmapping for small
AR workspaces. In Proceedings of the 2007 6th IEEE and ACM
international symposium on mixed and augmented reality (pp. 1–
10). IEEE Computer Society.

Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W.
(2011). g2o:Ageneral framework for graph optimization. In ICRA.
Shanghai.

Meilland, M., & Comport, A. I. (2013). On unifying key-frame and
voxel-based dense visual SLAMat large scales. In IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS) (pp.
3677–3683). IEEE.

Muja, M., & Lowe, D. (2009). Fast approximate nearest neighbors with
automatic algorithm configuration. In International conference on
computer vision theory and application VISSAPP’09 (Vol. 340,
pp. 331–340). INSTICC Press.

Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An open-source
slam system for monocular, stereo, and RGB-D cameras. IEEE
Transactions on Robotics, 33(5), 1255–1262.

Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O.,
Shotton, J., et al. (2011). KinectFusion: Real-time dense surface
mapping and tracking. In 10th IEEE international symposium on
mixed and augmented reality (ISMAR) (pp. 127–136).

Nguyen, C.V., Izadi, S., & Lovell, D. (2012). Modeling Kinect sen-
sor noise for improved 3d reconstruction and tracking. In Second
international conference on 3D imaging, modeling, processing,
visualization and transmission (3DIMPVT) (pp. 524–530). IEEE.

Olesen, S. M., Lyder, S., Kraft, D., Krüger, N., & Jessen, J. B. (2012).
Real-time extraction of surface patches with associated uncertain-
ties by means of Kinect cameras. Journal of Real-Time Image
Processing, 10, 1–14. https://doi.org/10.1007/s11554-012-0261-
x.

Park, J. H., Shin, Y. D., Bae, J. H., & Baeg, M. H. (2012). Spatial
uncertainty model for visual features using a KinectT M sensor.
Sensors, 12(7), 8640–8662.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al.
(2009). ROS: An open-source robot operating system. In Interna-
tional conference on robotics and automation, Figure 1.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB:
An efficient alternative to SIFT or SURF. In IEEE international
conference on computer vision (ICCV) (pp. 2564–2571). https://
doi.org/10.1109/ICCV.2011.6126544.

Segal, A., Haehnel, D., & Thrun, S. (2009). Generalized-ICP. In
Robotics: Science and systems. Seattle, USA.

Shi, J., & Tomasi, C. (1994). Good features to track. In IEEE computer
society conference on computer vision and pattern recognition.
Proceedings CVPR ’94 (pp. 593–600). https://doi.org/10.1109/
CVPR.1994.323794.

Smisek, J., Jancosek, M., & Pajdla, T. (2011). 3D with Kinect. In IEEE
international conference on computer vision workshops (ICCV
workshops) (pp. 1154–1160).

Steinbrucker, F., Sturm, J., & Cremers, D. (2011). Real-time visual
odometry from dense RGB-D images. In IEEE international con-
ference on computer vision workshops (ICCV workshops) (pp.
719–722). https://doi.org/10.1109/ICCVW.2011.6130321.

Sturm, J., Engelhard, N., Endres, F., Burgard,W.,&Cremers, D. (2012).
A benchmark for the evaluation of RGB-D SLAM systems. In
Proceedings of the international conference on intelligent robot
systems (IROS).

Stutz, D.,&Geiger, A. (2018). Learning 3d shape completion from laser
scan data with weak supervision. In IEEE conference on computer
vision and pattern recognition (CVPR). IEEE Computer Society.

Teichman, A., Miller, S., & Thrun, S. (2013). Unsupervised intrinsic
calibration of depth sensors via SLAM. In Robotics: Science and
systems.

Wang, Y. M., Li, Y., & Zheng, J. B. (2010). A camera calibration
technique based on OpenCV. In 3rd International conference on
information sciences and interaction sciences (ICIS) (pp. 403–
406).

Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison,
A. (2015). Elasticfusion: Dense slam without a pose graph. In
Robotics: Science and systems.

Zhang, Z. (2000).Aflexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22,
1330–1334.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Liang Yang was born in Anqing,
China. He received his bachelor
degree from Shenyang Aerospace
University, Shenyang, China in
2012, and a Ph.D. degree in elec-
trical engineering from the City
College of New York (CUNY City
College) in 2019, and a Ph.D.
degree in pattern recognition and
intelligent system from Univer-
sity of Chinese Academy of Sci-
ences in 2019. His research inter-
ests cover motion and path plan-
ning in complex environment, 3D
mapping, visual SLAM, data

fusion, and control.

IvanDryanovskiwas born in Sofia,
Bulgaria. He received a B.A. in
Physics from Franklin and
Marhsall College, PA, USA in
2007 and a M.Sc. in Comput-
ing Science from Imperial Col-
lege London, UK in 2009, and
Ph.D. in computer science from
the Graduate Center of The City
University of New York (CUNY),
USA in 2015. He currently works
at Google Inc. His research inter-
ests include computer vision, 3D
mapping, SLAM, and quadrotor
MAV systems.

123

http://wiki.ros.org/camera_calibration
https://doi.org/10.3390/s120201437
https://doi.org/10.1007/s11554-012-0261-x
https://doi.org/10.1007/s11554-012-0261-x
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/ICCVW.2011.6130321


Autonomous Robots (2020) 44:1485–1503 1503

Roberto G. Valenti was born
in Catania, Italy. He received the
M.S. degree in electronics engi-
neering from the University of
Catania, Catania, Italy in 2009,
and Ph.D. degree in electrical engi-
neering from the City College of
New York (CUNY City College)
in 2016. He currently works at
MathWorks Inc. His research inter-
ests include micro-aerial-vehicles
(MAV) modeling, simulation, and
control.

Dr. George Wolberg is a Professor
of Computer Science at the City
College of New York. He received
his B.S. and M.S. degrees in Elec-
trical Engineering from Cooper
Union in 1985, and his Ph.D.
degree in Computer Science from
Columbia University in 1990. His
research interests include image
processing, computer graphics, and
computer vision. He was an early
pioneer of image morphing, and
has conducted research on warp-
ing, interpolation, registration, 3D
reconstruction, and structure from

motion. His recent work on PhotoSketch, a photo-centric urban 3D
modeling plugin for SketchUp, can be found on www.brainstormllc.
com. Prof. Wolberg is the recipient of a 1991 NSF Presidential Young
Investigator Award, the 1997 CCNY Outstanding Teaching Award,
and the 2000 NYC Mayor’s Award for Excellence in Science and
Technology. He is the author of Digital Image Warping (IEEE Com-
puter Society Press, 1990), the first comprehensive monograph on
image warping and morphing.

Dr. Jizhong Xiao is a Profes-
sor of Electrical Engineering at
the City College of New York
(CCNY/CUNY City College) and
a doctoral faculty member of the
Ph.D. program in Computer Sci-
ence at CUNY Graduate Center.
He received his Ph.D. degree from
Michigan State University in 2002,
M.E. degree from Nanyang Tech-
nological University, Singapore in
1999, M.S, and B.S. degrees from
the East China Institute of Tech-
nology, Nanjing, China, in 1993
and 1990, respectively. He started

the robotics research program at CCNY in 2002 as the founding direc-
tor of CCNY Robotics Lab. His current research interests include
robotics and control, cyber-physical systems, autonomous navigation
and 3D simultaneous localization and mapping (SLAM), real-time and
embedded computing, assistive technology, multi-agent systems and
swarm robotics. He has published more than 160 research articles in
peer reviewed journal and conferences. He received the U.S. National
Science Foundation CAREER Award in 2007, the CCNY Outstand-
ing Mentor Award in 2011, and the Humboldt Research Fellowship for
Experienced Researchers from the Alexander von Humboldt Founda-
tion, Germany, from 2013 to 2015. He is a senior member of IEEE.

123

www.brainstormllc.com
www.brainstormllc.com

	RGB-D camera calibration and trajectory estimation for indoor mapping
	Abstract
	1 Introduction
	2 Previous work
	3 RGB-D measurement model
	3.1 Preliminaries
	3.2 Depth bias calibration
	3.3 Depth uncertainty analysis
	3.4 3D distribution

	4 Trajectory estimation
	4.1 Overview
	4.2 Model registration
	4.3 Data association and model updating

	5 Post Bundle adjustment and reconstruction
	5.1 Brute-force place recognition
	5.2 Heuristic place recognition

	6 Experiments
	6.1 Model versus frame-to-frame based ICP
	6.2 Benefits of depth correction
	6.3 VO time performance comparison
	6.4 Pose system and depth correction toward accuracy

	7 Conclusions
	References




