
Designing Parametric Cubic Curves

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2

Objectives

• Introduce the types of curves
- Interpolating
- Hermite
- Bezier
- B-Spline

•Analyze their performance

3

Design Criteria

•Why we prefer parametric polynomials of
low degree:

- Local control of shape,
- Smoothness and continuity,
- Ability to evaluate derivatives,
- Stability,
- Ease of rendering.

4

Smoothness

•Smoothness guaranteed because our
polynomial equations are differentiable.

•Difficulties arise at the join points.

5

Control Points

•We prefer local control for stability.
- The most common interface is a group of

control points.

- In this example, the curve passes through, or
interpolates, some of the control points, but
only comes close to, or approximates, others.

6

Parametric Cubic
Polynomial Curves

•Choosing the degree:
- High degree allows many control points, but

computation is expensive.
- Low degree may mean low level of control.

•The compromise: use low-degree curves
over short intervals.

- Most designers work with cubic polynomial curves.

7

Matrix Notation

∑
=

==
3

0
,)(

k

Tk
kuu cucp

,

3

2

1

0

=

c
c
c
c

c ,

1

3

2

=

u
u
u

u .

=

kz

ky

kx

k

c
c
c

c

wherethe coefficient
matrix to be
determined

control
points

8

Interpolation

•An interpolating polynomial passes
through its control points.

- Suppose we have four controls points

- We let u vary over the interval [0,1], giving us
four equally spaced values: 0, 1/3, 2/3, 1.

.30for , ≤≤

= k

z
y
x

k

k

k

kp

9

Evaluating the Control
Points

•We seek coefficients c0, c1, c2, c3
satisfying the four conditions:

.)1(
,)32()32(32)32(

,)31()31(31)31(

,)0(

32103

3
3

2
2

102

3
3

2
2

101

00

ccccpp
ccccpp

ccccpp

cpp

+++==
+++==

+++==

==

10

Matrix Notation

• In matrix notation ,Acp =

=

3

2

1

0

p
p
p
p

p .

1111
)32()32(321
)31()31(311

0001

32

32

=A

where

and

a column vector
of row vectors

nonsingular: we
will use its inverse

11

Interpolating Geometry Matrix

•The desired coefficients are

−−
−−

−−
== −

5.45.135.135.4
5.4185.229

15.495.5
0001

1AM I

.pMc I=

12

Interpolating Multiple Segments

•Use the last control point of one segment
as the first control point of the next
segment.

- To achieve smoothness in addition to
continuity, we will need additional constraints
on the derivatives.

13

Blending Functions

•Substituting the interpolating coefficients
into our polynomial:

• Let

•The b(u) are the blending polynomials.

.)(pMucup I
TTu ==

,)()(pbp Tuu = .)(uMb T
Iu =where

14

Visualizing the Curve
Using Blending Functions

•The effect on the curve of an individual
control point is easier to see by studying
its blending function.

15

The Cubic Interpolating Patch

•A bicubic surface patch:

∑ ∑
= =

=
3

0

3

0
.),(

i j
ij

jivuvu cp

16

Matrix Notation

• In matrix form, the patch is defined by

- The column vector v = [1 v v2 v3]T.
- C is a 4 x 4 matrix of column vectors.

• 16 equations in 16 unknowns.

,),(Cvup Tvu =

17

Solving the Surface Equations

•By setting v = 0, 1/3, 2/3, 1 we can
sample the surface using curves in u:

- The coefficient matrix C is computed by

- The equation for the surface becomes

.TT
I

T CAuPMu =

.T
II PMMC =

.),(vPMMup T
II

Tvu =

18

Blending Patches

•Extending our use of blending
polynomials to surfaces:

- 16 simple patches form a surface.
- Also known as tensor-product surfaces.
- These surfaces are not very smooth.

• But they are separable, meaning they allow us to work
with functions in u and v independently.

∑ ∑
= =

=
3

0

3

0
.)()(),(

i j
ijji vbubvu pp

19

Other Types of Curves and Surfaces

•How can we get around the limitations of
the interpolating form

- Lack of smoothness
- Discontinuous derivatives at join points

•We have four conditions (for cubics) that
we can apply to each segment

- Use them other than for interpolation
- Need only come close to the data

20

Hermite Form

p(0) p(1)

p’(0) p’(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments

21

Hermite Curves and Surfaces

•Use the data at control points differently in
an attempt to get smoother results.

- We insist that the curve interpolate the control
points only at the two ends, p0 and p3.

.)1(
,)0(

32103

00

ccccpp
cpp

+++==
==

22

Additional Conditions

•The derivative is a quadratic polynomial:

- We now can derive two additional conditions:

.32)(3
2

21 cccp uu
dudz
dudy
dudx

u ++=

=′

.32)1(
,)0(

3213

10

cccpp
cpp

++=′=′

=′=′

23

Matrix Form

•The desired coefficient matrix is

- MH is the Hermite geometry matrix.
.qMc H=

.

3210
0010
1111
0001

3

0

3

0

c

p
p
p
p

=

′
′call this q

24

The Hermite Geometry Matrix

•The resulting polynomial is

.

1122
1233

0100
0001

−
−−−

=HM

.)(qMup H
Tu =

25

Blending polynomials

• Using blending functions p(u)=b(u)Tq,

• Although these functions are smooth, the Hermite form is
not used directly in Computer Graphics and CAD because
we usually have control points but not derivatives

• However, the Hermite form is the basis of the Bezier form

.
2

32
132

)(

23

23

23

23

−
+−

+−
+−

==

uu
uuu

uu
uu

u T
H uMb

26

Parametric and Geometric Continuity

•We can require the derivatives of x, y,and
z to each be continuous at join points
(parametric continuity)

•Alternately, we can only require that the
tangents of the resulting curve be
continuous (geometry continuity)

•The latter gives more flexibility as we
have need satisfy only two conditions
rather than three at each join point

27

Example

•Here the p and q have the same tangents
at the ends of the segment but different
derivatives

•Generate different
Hermite curves

•This techniques is used
in drawing applications

28

Parametric Continuity

•Continuity is enforced by matching
polynomials at join points.

- C0 parametric continuity:

.
)0(
)0(
)0(

)0(
)1(
)1(
)1(

)1(

==

=

z

y

x

z

y

x

q
q
q

p
p
p

qp

29

C1 Parametric Continuity

•Matching derivatives at the join points
gives us C1 continuity:

.
)0(
)0(
)0(

)0(
)1(
)1(
)1(

)1(

′
′
′

=′=

′
′
′

=′

z

y

x

z

y

x

q
q
q

p
p
p

qp

30

Another Approach:
Geometric Continuity

• If the derivatives are proportional, then we
have geometric continuity.

- One extra degree of freedom.
- Extends to higher dimensions.

different
magnitude

same
direction

31

Bezier Curves: Basic Idea

• In graphics and CAD, we usually don’t have
derivative data

•Bezier suggested using the same 4 data
points as with the cubic interpolating curve
to approximate the derivatives in the
Hermite form

32

Bezier Curves and Surfaces

•Bezier added control points to manipulate
derivatives.

- The two derivative conditions become

.3233
,33

32123

101

cccpp
cpp

++=−
=−

33

Bezier Geometry Matrix

•We solve c=MBp, where

•The cubic Bezier polynomial is thus

.

1331
0363
0033
0001

−
−

−
=BM

.)(pMup B
Tu =

34

Bezier Blending Functions

- These functions are Bernstein polynomials:

.)1(
)!(!

!)(kdk
kd uu

kdk
dub −−
−

=

35

Properties of Bernstein Polynomials

•All zeros are either at u = 0 or u = 1.
- Therefore, the curve must be smooth over (0,1)

•The value of u never exceeds 1.
- p(u) is a convex sum, so the curve lies inside

the convex hull of the control points.

36

Bezier Surface Patches

•Using a 4 x 4 array of control points P,

.

)()(),(
3

0

3

0

vPMMu

pp

T
BB

T
i j

ijji ububvu

=

= ∑ ∑
= =

two blending functions

37

Convex Hull Property in 3D

•The patch is inside the convex hull of the
control points and interpolates the four
corner points p00, p03, p30, p33.

38

Bezier Patch Edges

•Partial derivatives in the u and v directions
treat the edges of the patch as 1D curves.

).(3)0,0(

),(3)0,0(

0001

0010

ppp

ppp

−=
∂
∂

−=
∂
∂

v

u

39

Bezier Patch Corners

•The twist vector draws the center of the
patch away from the plane.

).(9)0,0(11100100

2
ppppp

−+−=
∂∂

∂
vu

40

Cubic B-Splines

•Bezier curves and surfaces are widely
used.

- One limitation: C0 continuity at the join points.
•B-Splines are not required to interpolate
any control points.

- Relaxing this requirement makes it possible to
enforce greater smoothness at join points.

41

The Cubic B-Spline Curve

•The control points now reside in the
middle of a sequence:

- The curve spans only the distance between the
middle two control points.

}.,,,{ 112 +−− iiii pppp

42

Formulating the Geometry Matrix

•We are looking for a polynomial

where p is the matrix of control points.
- M can be made to enforce a number of

conditions.
- In particular, we can impose continuity

requirements at the join points.

,)(Mpup Tu =

43

Join Point Continuity

•Construct q from the same matrix as p:

- Now let q(u) = uTMq.
- Constraints on derivates allow us to control

smoothness.

=

+

−

−

1

1

2

i

i

i

i

p
p

p
p

p .
1

2

3

=
−

−

−

i

i

i

i

p
p
p
p

qand

44

Symmetric Approximations

•Enforcing symmetry at the join points is a
popular choice for M.

•Two conditions that satisfy symmetry are

),(
2
1)1()0(

),4(
6
1)1()0(

2

12

−

−−

−=′=′

++==

ii

iii

ppqp

pppqp

45

Additional Conditions

•We apply the same symmetry conditions
to p(1), the other endpoint.

- We now have four equations in the four
unknowns c0, c1, c2, c3:

.)(cup Tu =

46

The B-Spline Geometry Matrix

•Once we have the coefficient matrix, we
can solve for the geometry matrix:

.

1331
0363
0303
0141

6
1

−−
−

−
=SM

47

B-Spline Blending Functions

•The blending functions are

−++
+−

−

3

32

32

3

3331
364

)1(

6
1

u
uuu

uu
u

48

Advantages of B-spline Curves

• In sequence, B-spline curve segments
have C2 continuity at the join points.

- They are also confined to their convex hulls.

•On the other hand, we need more control
points than we did for Bezier curves.

49

B-Splines and Bases

•Each control point affects four adjacent
intervals.

+≥
+<≤+−

+<≤
<≤−+

−<≤−+
−<

=

.20
,21)1(

,1)(
,1)1(

,12)2(
,20

)(

3

2

1

0

iu
iuiub

iuiub
iuiub
iuiub

iu

uBi

50

Spline Basis Function

•A single expression for the spline curve
using basis functions:

∑
−

=
=

1

1
.)()(

m

i
ii uBu pp

51

Approximating Splines

•Each Bi is a shifted version of a single
function.

- Linear combinations of the Bi form a piecewise
polynomial curve over the whole interval.

52

Spline Surfaces

•The same form as Bezier surfaces:

- But one segment per patch, instead of nine!

- However, they are also much smoother.

.)()(),(
3

0

3

0
∑ ∑
= =

=
i j

ijji ububvu pp

53

General B-Splines

•Polynomials of degree d between n knots
u0,...,un:

- If d = 3, then each interval contains a cubic
polynomial: 4n equations in 4n unknowns.

- A global solution that is not well-suited to
computer graphics.

∑
=

+<<=
d

j
kk

j
jk uuuuu

0
1,)(cp

54

The Cox-deBoor Recursion

•A particular set of basis splines is defined
by the Cox-deBoor recursion:

 ≤≤

= +

otherwise;0
,1 1

0
kk

k
uuu

B

).(

)(

1,1
11

1,

uB
uu
uu

uB
uu

uuB

dk
kdk

dk

dk
kdk

k
kd

−+
+++

+

−
+

−
−

+
−

−
=

55

Recursively Defined B-Splines

•Linear interpolation of polynomials of
degree k produces polynomials of degree
k + 1.

56

Uniform Splines

•Equally spaced knots.

periodic
uniform
B-spline

57

Nonuniform B-Splines

•Repeated knots pull the spline closer to
the control point.

- Open splines extend the curve by repeating
the endpoints.

- Knot sequences:

- Any spacing between the knots is allowed in
the general case.

},,,,1,,2,1,0,0,0,0{ nnnnn −

}.1,1,1,1,0,0,0,0{ cubic Bezier curve

often used

58

NURBS

•Use weights to increase or decrease the
importance of a particular point.

- The weighted homogeneous-coordinate
representation of a control point pi=[xi yi zi] is

.

1

=
i

i

i

ii z
y
x

wq

59

The NURBS Basis Functions

•A 4D B-spline

- Derive the w component from the weights:

∑
=

=

=

n

i
iidi wuB

uz
uy
ux

u
0

, .)(
)(
)(
)(

)(pq

∑
=

=
n

i
idi wuBuw

0
, .)()(

60

Nonuniform Rational B-Splines

•Each component of p(u) is a rational
function in u.

- We use perspective division to recover the 3D
points:

- These curves are invariant under perspective
transformations.

- They can approximate quadrics—one
representation for all types of curves.

.)(
)(

1)(
0 ,

0 ,

)(

)(

∑
∑==

=

=
n
i idi

n
i iidi

wuB

wuBu
uw

u pqp

Rendering Curves and Surfaces

Prof. George Wolberg
Dept. of Computer Science
City College of New York

62

Objectives

• Introduce methods to draw curves
- Approximate with lines
- Finite Differences

•Derive the recursive method for
evaluation of Bezier curves and surfaces

•Learn how to convert all polynomial data
to data for Bezier polynomials

63

Evaluating Polynomials

•Simplest method to render a polynomial
curve is to evaluate the polynomial at many
points and form an approximating polyline

•For surfaces we can form an approximating
mesh of triangles or quadrilaterals

•Use Horner’s method to evaluate
polynomials

p(u)=c0+u(c1+u(c2+uc3))
- 3 multiplications/evaluation for cubic

64

Polynomial Evaluation Methods

•Our standard representation:

•Horner's method:

- If the points {ui} are spaced uniformly, we can
use the method of forward differences.

∑
=

≤≤=
n

i

i
i uuu

0
10,)(cp

))).((()(210 uuuuu nccccp ++++=

65

The Method of Forward Differences

•Forward differences defined iteratively:

• If uk+1 - uk = h is constant, then ∆(n)p(uk) is
constant for all k.

).()()(

),()()(

),()(

)(
1

)()1(
1

)1(

)0(

k
m

k
m

k
m

kkk

kk

uuu

uuu

uu

ppp

ppp

pp

∆−∆=∆

−=∆

=∆

+
+

+

66

Computing The Forward-
Difference Table

•For the cubic polynomial

we construct the table as follows:
,231)(32 uuuup +++=

compute
these

67

Using the Table

•Compute successive values of p(uk)
starting from the bottom:

).()()()1()(
1

)1(
k

m
k

m
k

m upupp −
+

− ∆+∆=∆

68

Subdivision Curves and Surfaces

•A process of iterative refinement that
produces smooth curves and surfaces.

69

Recursive Subdivision of Bezier
Polynomials: deCasteljau Algorithm

•Break the curve into two separate
polynomials, l(u) and r(u).

- The convex hulls for l and r must lie inside the
convex hull for p: the variation-diminishing
property:

70

Efficient Computation of
the Subdivision

),(
2
1

,

101

00

ppl

pl

+=

=

().
2
1

,)(
2
1

2
1

1203

2112

r+==

 ++=

lrl

ppll

Requires only shifts and adds!

71

Every Curve is a Bezier Curve

• We can render a given polynomial using the
recursive method if we find control points for its
representation as a Bezier curve

• Suppose that p(u) is given as an interpolating
curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI

p(u)=uTMIq

p(u)=uTMBp

72

Matrices

Interpolating to Bezier

B-Spline to Bezier

−−

−−
=−

1000
6
53

2
3

3
1

3
1

2
33

6
5

0001

1MM IB

=−

1410
0420
0240
0141

1MM SB

73

Example

These three curves were all generated from the same
original data using Bezier recursion by converting all
control point data to Bezier control points

Bezier Interpolating B Spline

74

Surfaces

• Can apply the recursive method to surfaces if
we recall that for a Bezier patch curves of
constant u (or v) are Bezier curves in u (or v)

• First subdivide in u
- Process creates new points
- Some of the original points are discarded

original and kept new

original and discarded

75

Second Subdivision

16 final points for
1 of 4 patches created

76

Normals

•For rendering we need the normals if we
want to shade

- Can compute from parametric equations

- Can use vertices of corner points to determine
- OpenGL can compute automatically

v
vu

u
vu

∂
∂

×
∂

∂
=

),(),(ppn

77

Utah Teapot

• Most famous data set in computer graphics
• Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

78

Algebraic Surfaces

•Quadric surfaces are described by
implicit equations of the form

- 10 independent coefficients A, b, and c
determine the quadric.

- Ellipsoids, paraboloids, and hyperboloids can
be created by different groups of coefficients.

- Equations for quadric surfaces can be reduced
to standard form by affine transformation.

.0=++ cTT pbApp

79

Rendering Quadric Surfaces

•Finding the intersection of a quadric with a
ray involves solving a scalar quadratic
equation.

- We substitute ray p = p0+αd and use the
quadratic formula.

- Derivatives determine the normal at a given
point.

80

Quadric Objects in OpenGL

•OpenGL supports disks, cylinders and
spheres with quadric objects.

- Choose wire frame rendering with

- To draw an object, pass the reference:

GLUquadricObj *qobj;
qobj = gluNewQuadric();

gluQuadricDrawStyle(qobj, GLU_LINE);

gluSphere(qobj, RADIUS, SLICES, STACKS);

81

Bezier Curves in OpenGL

•Creating a 1D evaluator:

-type: points, colors, normals, textures, etc.
-u_min, u_max: range.
-stride: points per curve segment.
-order: degree + 1.
-point_array: control points.

glMap1f(type, u_min, u_max, stride,
order, point_array);

82

Drawing the Curve

•One evaluator call takes the place of
vertex, color, and normal calls.

- The user enables them with glEnable.

typedef float point[3];
point data[] = {...};
glMap1f(GL_MAP_VERTEX_3, 0.0, 1.0, 3, 4, data);
glEnable(GL_MAP_VERTEX_3);

glBegin(GL_LINE_STRIP)
for(i=0; i<100; i++) glEvalCoord1f(i/100.);
glEnd();

83

Bezier Surfaces in OpenGL

•Using a 2D evaluator:
glMap2f(GL_MAP_VERTEX_3,0,1,3,4,0,1,12,4,data);
...
for(j=0; j<99; j++) {

glBegin(GL_QUAD_STRIP);
for(i=0; i<=100; i++) {

glEvalCoord2f(i/100., j/100.);
glEvalCoord2f((i+1)/100., j/100.);

}
glEnd();

}

84

Example: Bezier Teapot

• Vertex information goes in an array:

GLfloat data[32][4][4];

• Initialize the grid for wireframe rendering:

void myInit() {
glEnable(GL_MAP2_VERTEX_3);
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

}

85

Drawing the Teapot

for(k=0; k<32; k++) {
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &data[k][0][0][0]);
for (j=0; j<=8; j++) {

glBegin(GL_LINE_STRIP);
for (i=0; i<=30; i++)

glEvalCoord2f((GLfloat)i/30.0,
(GLfloat)j/8.0);

glEnd();
glBegin(GL_LINE_STRIP);
for (i=0; i<=30; i++)

glEvalCoord2f((GLfloat)j/8.0,
(GLfloat)i/30.0);

glEnd();
}

}

	Designing Parametric Cubic Curves
	Objectives
	Design Criteria
	Smoothness
	Control Points
	Parametric Cubic Polynomial Curves
	Matrix Notation
	Interpolation
	Evaluating the Control Points
	Matrix Notation
	Interpolating Geometry Matrix
	Interpolating Multiple Segments
	Blending Functions
	Visualizing the Curve Using Blending Functions
	The Cubic Interpolating Patch
	Matrix Notation
	Solving the Surface Equations
	Blending Patches
	Other Types of Curves and Surfaces
	Hermite Form
	Hermite Curves and Surfaces
	Additional Conditions
	Matrix Form
	The Hermite Geometry Matrix
	Blending polynomials
	Parametric and Geometric Continuity
	Example
	Parametric Continuity
	C1 Parametric Continuity
	Another Approach: Geometric Continuity
	Bezier Curves: Basic Idea
	Bezier Curves and Surfaces
	Bezier Geometry Matrix
	Bezier Blending Functions
	Properties of Bernstein Polynomials
	Bezier Surface Patches
	Convex Hull Property in 3D
	Bezier Patch Edges
	Bezier Patch Corners
	Cubic B-Splines
	The Cubic B-Spline Curve
	Formulating the Geometry Matrix
	Join Point Continuity
	Symmetric Approximations
	Additional Conditions
	The B-Spline Geometry Matrix
	B-Spline Blending Functions
	Advantages of B-spline Curves
	B-Splines and Bases
	Spline Basis Function
	Approximating Splines
	Spline Surfaces
	General B-Splines
	The Cox-deBoor Recursion
	Recursively Defined B-Splines
	Uniform Splines
	Nonuniform B-Splines
	NURBS
	The NURBS Basis Functions
	Nonuniform Rational B-Splines
	Rendering Curves and Surfaces
	Objectives
	Evaluating Polynomials
	Polynomial Evaluation Methods
	The Method of Forward Differences
	Computing The Forward-Difference Table
	Using the Table
	Subdivision Curves and Surfaces
	Recursive Subdivision of Bezier Polynomials: deCasteljau Algorithm
	Efficient Computation of the Subdivision
	Every Curve is a Bezier Curve
	Matrices
	Example
	Surfaces
	Second Subdivision
	Normals
	Utah Teapot
	Algebraic Surfaces
	Rendering Quadric Surfaces
	Quadric Objects in OpenGL
	Bezier Curves in OpenGL
	Drawing the Curve
	Bezier Surfaces in OpenGL
	Example: Bezier Teapot
	Drawing the Teapot

