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Objectives

• Introduce the types of curves
- Interpolating
- Hermite
- Bezier
- B-Spline

•Analyze their performance
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Design Criteria

•Why we prefer parametric polynomials of 
low degree:

- Local control of shape,
- Smoothness and continuity,
- Ability to evaluate derivatives,
- Stability,
- Ease of rendering.
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Smoothness

•Smoothness guaranteed because our 
polynomial equations are differentiable.

•Difficulties arise at the join points.
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Control Points

•We prefer local control for stability.
- The most common interface is a group of 

control points.

- In this example, the curve passes through, or 
interpolates, some of the control points, but 
only comes close to, or approximates, others.
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Parametric Cubic 
Polynomial Curves

•Choosing the degree:
- High degree allows many control points, but 

computation is expensive.
- Low degree may mean low level of control.

•The compromise: use low-degree curves 
over short intervals.

- Most designers work with cubic polynomial curves.
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Matrix Notation
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Interpolation

•An interpolating polynomial passes 
through its control points.

- Suppose we have four controls points

- We let u vary over the interval [0,1], giving us 
four equally spaced values: 0, 1/3, 2/3, 1.
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Evaluating the Control 
Points

•We seek coefficients c0, c1, c2, c3
satisfying the four conditions: 
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Matrix Notation

• In matrix notation ,Acp =
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Interpolating Geometry Matrix

•The desired coefficients are
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Interpolating Multiple Segments

•Use the last control point of one segment 
as the first control point of the next 
segment.

- To achieve smoothness in addition to 
continuity, we will need additional constraints 
on the derivatives.
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Blending Functions

•Substituting the interpolating coefficients 
into our polynomial:

• Let 

•The b(u) are the blending polynomials.
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Visualizing the Curve 
Using Blending Functions

•The effect on the curve of an individual 
control point is easier to see by studying 
its blending function.
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The Cubic Interpolating Patch

•A bicubic surface patch:
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Matrix Notation

• In matrix form, the patch is defined by

- The column vector v = [1 v v2 v3]T.
- C is a 4 x 4 matrix of column vectors.

• 16 equations in 16 unknowns.
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Solving the Surface Equations

•By setting v = 0, 1/3, 2/3, 1 we can 
sample the surface using curves in u:

- The coefficient matrix C is computed by

- The equation for the surface becomes
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Blending Patches

•Extending our use of blending 
polynomials to surfaces:

- 16 simple patches form a surface.
- Also known as tensor-product surfaces.
- These surfaces are not very smooth.

• But they are separable, meaning they allow us to work 
with functions in u and v independently.
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Other Types of Curves and Surfaces

•How can we get around the limitations of 
the interpolating form

- Lack of smoothness
- Discontinuous derivatives at join points

•We have four conditions (for cubics) that 
we can apply to each segment

- Use them other than for interpolation
- Need only come close to the data
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Hermite Form

p(0) p(1)

p’(0) p’(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments
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Hermite Curves and Surfaces

•Use the data at control points differently in 
an attempt to get smoother results.

- We insist that the curve interpolate the control 
points only at the two ends, p0 and p3.
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Additional Conditions

•The derivative is a quadratic polynomial:

- We now can derive two additional conditions:
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Matrix Form

•The desired coefficient matrix is

- MH is the Hermite geometry matrix.
.qMc H=
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The Hermite Geometry Matrix

•The resulting polynomial is
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Blending polynomials

• Using blending functions p(u)=b(u)Tq,

• Although these functions are smooth, the Hermite form is 
not used directly in Computer Graphics and CAD because 
we usually have control points but not derivatives

• However, the Hermite form is the basis of the Bezier form
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Parametric and Geometric Continuity

•We can require the derivatives of x, y,and 
z to each be continuous at join points 
(parametric continuity)

•Alternately, we can only require that the 
tangents of the resulting curve be 
continuous (geometry continuity)

•The latter gives more flexibility as we 
have need satisfy only two conditions 
rather than three at each join point
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Example

•Here the p and q have the same tangents 
at the ends of the segment but different 
derivatives

•Generate different 
Hermite curves

•This techniques is used
in drawing applications
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Parametric Continuity

•Continuity is enforced by matching 
polynomials at join points.

- C0 parametric continuity:
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C1 Parametric Continuity

•Matching derivatives at the join points 
gives us C1 continuity:
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Another Approach: 
Geometric Continuity

• If the derivatives are proportional, then we 
have geometric continuity.

- One extra degree of freedom.
- Extends to higher dimensions.

different
magnitude

same
direction



31

Bezier Curves: Basic Idea

• In graphics and CAD, we usually don’t have 
derivative data

•Bezier suggested using the same 4 data 
points as with the cubic interpolating curve 
to approximate the derivatives in the 
Hermite form
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Bezier Curves and Surfaces

•Bezier added control points to manipulate 
derivatives.

- The two derivative conditions become
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Bezier Geometry Matrix

•We solve c=MBp, where

•The cubic Bezier polynomial is thus
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Bezier Blending Functions

- These functions are Bernstein polynomials:
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Properties of Bernstein Polynomials

•All zeros are either at u = 0 or u = 1.
- Therefore, the curve must be smooth over (0,1)

•The value of u never exceeds 1.
- p(u) is a convex sum, so the curve lies inside 

the convex hull of the control points.
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Bezier Surface Patches

•Using a 4 x 4 array of control points P,
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Convex Hull Property in 3D

•The patch is inside the convex hull of the 
control points and interpolates the four 
corner points p00, p03, p30, p33. 
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Bezier Patch Edges

•Partial derivatives in the u and v directions 
treat the edges of the patch as 1D curves.
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Bezier Patch Corners

•The twist vector draws the center of the 
patch away from the plane. 
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Cubic B-Splines

•Bezier curves and surfaces are widely 
used.

- One limitation: C0 continuity at the join points.
•B-Splines are not required to interpolate 
any control points.

- Relaxing this requirement makes it possible to 
enforce greater smoothness at join points.
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The Cubic B-Spline Curve

•The control points now reside in the 
middle of a sequence:

- The curve spans only the distance between the 
middle two control points.
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Formulating the Geometry Matrix

•We are looking for a polynomial

where p is the matrix of control points.
- M can be made to enforce a number of 

conditions.
- In particular, we can impose continuity 

requirements at the join points.
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Join Point Continuity

•Construct q from the same matrix as p:

- Now let q(u) = uTMq.
- Constraints on derivates allow us to control 

smoothness.
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Symmetric Approximations

•Enforcing symmetry at the join points is a 
popular choice for M.

•Two conditions that satisfy symmetry are
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Additional Conditions

•We apply the same symmetry conditions 
to p(1), the other endpoint.

- We now have four equations in the four 
unknowns c0, c1, c2, c3:
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The B-Spline Geometry Matrix

•Once we have the coefficient matrix, we 
can solve for the geometry matrix: 
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B-Spline Blending Functions

•The blending functions are
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Advantages of B-spline Curves

• In sequence, B-spline curve segments 
have C2 continuity at the join points.

- They are also confined to their convex hulls.

•On the other hand, we need more control 
points than we did for Bezier curves.
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B-Splines and Bases

•Each control point affects four adjacent 
intervals.
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Spline Basis Function

•A single expression for the spline curve 
using basis functions:
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Approximating Splines

•Each Bi is a shifted version of a single 
function.

- Linear combinations of the Bi form a piecewise 
polynomial curve over the whole interval.



52

Spline Surfaces

•The same form as Bezier surfaces:

- But one segment per patch, instead of nine!

- However, they are also much smoother.
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General B-Splines

•Polynomials of degree d between n knots 
u0,...,un:

- If d = 3, then each interval contains a cubic 
polynomial: 4n equations in 4n unknowns.

- A global solution that is not well-suited to 
computer graphics.
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The Cox-deBoor Recursion

•A particular set of basis splines is defined 
by the Cox-deBoor recursion:
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Recursively Defined B-Splines

•Linear interpolation of polynomials of 
degree k produces polynomials of degree 
k + 1.
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Uniform Splines

•Equally spaced knots.

periodic
uniform
B-spline
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Nonuniform B-Splines

•Repeated knots pull the spline closer to 
the control point.

- Open splines extend the curve by repeating 
the endpoints.

- Knot sequences:

- Any spacing between the knots is allowed in 
the general case.

},,,,1,,2,1,0,0,0,0{ nnnnn −

}.1,1,1,1,0,0,0,0{ cubic Bezier curve

often used
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NURBS

•Use weights to increase or decrease the 
importance of a particular point.

- The weighted homogeneous-coordinate 
representation of a control point pi=[xi yi zi] is
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The NURBS Basis Functions

•A 4D B-spline

- Derive the w component from the weights:
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Nonuniform Rational B-Splines

•Each component of p(u) is a rational 
function in u.

- We use perspective division to recover the 3D 
points:

- These curves are invariant under perspective 
transformations.

- They can approximate quadrics—one 
representation for all types of curves.
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Rendering Curves and Surfaces
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Objectives

• Introduce methods to draw curves
- Approximate with lines
- Finite Differences

•Derive the recursive method for 
evaluation of Bezier curves and surfaces

•Learn how to convert all polynomial data 
to data for Bezier polynomials
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Evaluating Polynomials

•Simplest method to render a polynomial 
curve is to evaluate the polynomial at many 
points and form an approximating polyline

•For surfaces we can form an approximating 
mesh of triangles or quadrilaterals

•Use Horner’s method to evaluate 
polynomials

p(u)=c0+u(c1+u(c2+uc3))
- 3 multiplications/evaluation for cubic
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Polynomial Evaluation Methods

•Our standard representation:

•Horner's method:

- If the points {ui} are spaced uniformly, we can 
use the method of forward differences.
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The Method of Forward Differences

•Forward differences defined iteratively:

• If uk+1 - uk = h is constant, then ∆(n)p(uk) is 
constant for all k.
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Computing The Forward-
Difference Table

•For the cubic polynomial

we construct the table as follows:
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Using the Table

•Compute successive values of p(uk) 
starting from the bottom:
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Subdivision Curves and Surfaces

•A process of iterative refinement that 
produces smooth curves and surfaces.
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Recursive Subdivision of Bezier 
Polynomials: deCasteljau Algorithm

•Break the curve into two separate 
polynomials, l(u) and r(u).

- The convex hulls for l and r must lie inside the 
convex hull for p: the variation-diminishing 
property: 
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Efficient Computation of 
the Subdivision
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Every Curve is a Bezier Curve

• We can render a given polynomial using the 
recursive method if we find control points for its 
representation as a Bezier curve 

• Suppose that p(u) is given as an interpolating 
curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI

p(u)=uTMIq

p(u)=uTMBp
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Matrices

Interpolating to Bezier

B-Spline to Bezier
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Example

These three curves were all generated from the same
original data using Bezier recursion by converting all
control point data to Bezier control points

Bezier Interpolating B Spline
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Surfaces

• Can apply the recursive method to surfaces if 
we recall that for a Bezier patch curves of 
constant u (or v) are Bezier curves in u (or v)

• First subdivide in u 
- Process creates new points 
- Some of the original points are discarded

original and kept new

original and discarded
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Second Subdivision

16 final points for
1 of 4 patches created
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Normals

•For rendering we need the normals if we 
want to shade

- Can compute from parametric equations

- Can use vertices of corner points to determine
- OpenGL can compute automatically
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Utah Teapot

• Most famous data set in computer graphics
• Widely available as a list of 306 3D vertices and 

the indices that define 32 Bezier patches
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Algebraic Surfaces

•Quadric surfaces are described by 
implicit equations of the form

- 10 independent coefficients A, b, and c 
determine the quadric.

- Ellipsoids, paraboloids, and hyperboloids can 
be created by different groups of coefficients.

- Equations for quadric surfaces can be reduced 
to standard form by affine transformation.

.0=++ cTT pbApp
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Rendering Quadric Surfaces

•Finding the intersection of a quadric with a 
ray involves solving a scalar quadratic 
equation.

- We substitute ray p = p0+αd and use the 
quadratic formula.

- Derivatives determine the normal at a given 
point.
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Quadric Objects in OpenGL

•OpenGL supports disks, cylinders and 
spheres with quadric objects.

- Choose wire frame rendering with

- To draw an object, pass the reference:

GLUquadricObj *qobj;
qobj = gluNewQuadric();

gluQuadricDrawStyle(qobj, GLU_LINE);

gluSphere(qobj, RADIUS, SLICES, STACKS);
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Bezier Curves in OpenGL

•Creating a 1D evaluator:

-type:  points, colors, normals, textures, etc.
-u_min, u_max:  range.
-stride:  points per curve segment.
-order: degree + 1.
-point_array:  control points.

glMap1f(type, u_min, u_max, stride,
order, point_array);
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Drawing the Curve

•One evaluator call takes the place of 
vertex, color, and normal calls.

- The user enables them with glEnable.

typedef float point[3];
point data[] = {...};
glMap1f(GL_MAP_VERTEX_3, 0.0, 1.0, 3, 4, data);
glEnable(GL_MAP_VERTEX_3);

glBegin(GL_LINE_STRIP)
for(i=0; i<100; i++) glEvalCoord1f(i/100.);
glEnd();
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Bezier Surfaces in OpenGL

•Using a 2D evaluator:
glMap2f(GL_MAP_VERTEX_3,0,1,3,4,0,1,12,4,data);
...
for(j=0; j<99; j++) {

glBegin(GL_QUAD_STRIP);
for(i=0; i<=100; i++) {

glEvalCoord2f(i/100., j/100.);
glEvalCoord2f((i+1)/100., j/100.);

}
glEnd();

}
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Example: Bezier Teapot

• Vertex information goes in an array:

GLfloat data[32][4][4];

• Initialize the grid for wireframe rendering:

void myInit() {
glEnable(GL_MAP2_VERTEX_3);
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

}
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Drawing the Teapot

for(k=0; k<32; k++) {
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &data[k][0][0][0]);
for (j=0; j<=8; j++) {

glBegin(GL_LINE_STRIP);
for (i=0; i<=30; i++)

glEvalCoord2f((GLfloat)i/30.0,
(GLfloat)j/8.0);

glEnd();
glBegin(GL_LINE_STRIP);
for (i=0; i<=30; i++)

glEvalCoord2f((GLfloat)j/8.0,
(GLfloat)i/30.0);

glEnd();
}

}
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