
Shadows

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2

Objectives

• Introduce shadow algorithms
- Projective shadows
- Shadow volumes
- Shadow mapping
- PCF filtering for soft shadows

Importance of Shadows

• ADS model added lighting to our 3D scenes
• However, it didn’t actually add light
• It simulated the effects of light on objects
• The limitations become apparent when lighting
more than one object in the same scene

3

• Missing shadows in scene
• Ambiguous location of models
• Is torus resting on plane?
• Is torus floating above it?
• Impossible to know without shadows

Importance of Shadows

4

???

Resting on ground plane Floating on ground plane

Flashlight in the Eye Graphics

•When do we not see shadows in a real scene?
- When the only light source is a point source at the

eye or center of projection
- Shadows are behind objects and not visible

•Shadows are a global rendering issue
- Is a surface visible from a light source
- May be obscured by other objects

5

Projective Shadows

•Oldest shadow method
- Used in flight simulators to provide visual clues

•Projection of a polygon is a polygon called a
shadow polygon

•Given a point light source and a polygon,
the vertices of the shadow polygon are the
projections of the original polygon’s vertices
from a point light source onto a surface

6

• Easy to implement
• Good results when casting

shadows onto one plane
• Projects model onto a plane in

just one matrix multiplication
• Very fast
• Can be extended to cast onto

multiple planes, but each plane
will require another rendering of
the model.

Planar Projected Shadows

Planar Projected Shadows

• [x, y, z] is the difference between the center of the model
and the light source.

• Ideally you want to use the distance from each vertex,
However it is not as fast since the matrix will have to be
computed on a per vertex basis instead of a per model
basis.

• The vertices of the model are multiplied by the Planar
Projection matrix.

Plane Eq:
Ax + By + Cz + D = 0

Shadow Polygon

9

Computing Shadow Vertex

1. Source at (xl, yl, zl)
2. Vertex at (x, y, z)
3. Consider simple case of shadow projected onto

ground at (xp, 0, zp)
4. Translate source to origin with T(-xl, -yl, -zl)
5. Perspective projection

6. Translate back
10

M =

1 0 0 0
0 1 0 0
0 0 1 0
0

1
−

l
y 0 0





















Shadow Process

1. Put two identical triangles and their colors on GPU
(black for shadow triangle)

2. Compute two model-view matrices as uniforms
3. Send model-view matrix for original triangle
4. Render original triangle
5. Send second model-view matrix for shadow triangle
6. Render shadow triangle
- Note shadow triangle undergoes two transformations
- Note hidden surface removal takes care of depth issues

11

Generalized Shadows

• Approach was OK for shadows on a single flat surface
• Note with geometry shader we can have the shader
create the second triangle

• Cannot handle shadows on general objects
• There exists a variety of other methods based on same
basic idea

• We’ll pursue methods based on projective textures

12

Image Based Lighting

•We can project a texture onto the surface
in which case we are treating the texture
as a “slide projector”

•This technique is the basis of projective
textures and image based lighting

•Supported in OpenGL and GLSL through
four-dimensional texture coordinates

13

4D Textures Coordinates

• Texture coordinates (s, t, r, q) are affected by a
perspective division so the actual coordinates
used are (s/q, t/q, r/q) or (s/q, t/q) for a two
dimensional texture

• GLSL has a variant of the function texture
textureProj which will use the two- or three-
dimensional texture coordinate obtained by a
perspective division of a 4D texture coordinate a
texture value from a sampler
color = textureProj(my_sampler, tex_coord)

14

Shadow Maps

• If we render a scene from a light source, the
depth buffer will contain the distances from the
light source to each fragment.

• We can store these depths in a texture called
a depth map or shadow map

• Note that although we don’t care about the
image in the shadow map, if we render with
some light, anything lit is not in shadow.

• Form a shadow map for each source

15

Final Rendering

•During the final rendering we compare the
distance from the fragment to the light
source with the distance in the shadow map

• If the depth in the shadow map is less than
the distance from the fragment to the
source, the fragment is in shadow (from this
light source)

•Otherwise we use rendered color

16

Application’s Side

• Start with vertex in object coordinates
• Want to convert representation to texture coordinates
• Form LookAt matrix from light source to origin in
object coordinates (MVL)

• From projection matrix for light source (PL)
• From a matrix to convert from [-1, 1] clip coordinates
to [0, 1] texture coordinates

• Concatenate to form object to texture coordinate
matrix (OTC)

17

Vertex Shader

18

uniform mat4 modelview;
uniform mat4 projection;
uniform normalmatrix; // for diffuse lighting
uniform mat4 otc; // object to texture coordinate
uniform vec4 diffuseproduct; // diffuse light*diffuse reflectivity

in vec4 vPosition;
in vec4 normal;

out vec4 color;
out vec4 shadowCoord;

void main()
{
// compute diffuse color as usual
// using normal, normal matrix, diffuse product

color = ...

gl_Position = projection*modelview*vPosition;
shadowCoord = OTC*vPosition;

}

textureProj function

• Application provides the shadow map as a texture
object

• The GLSL function textureProj compares the
third value of the texture coordinate with the third
value of the texture image

• For nearest filtering of the texture object,
textureProj returns 0.0 if the shadow map value
is less than the third coordinate and 1.0 otherwise

• For other filtering options, textureProj returns
values between 0.0 and 1.0

19

Fragment Shader

20

uniform sampler2DShadow ShadowMap;

in vec4 shadowCoord;
in vec4 Color;

main()
{

// assume nearest sampling in ShadowMap
float shadeFactor = textureProj(ShadowMap, ShadowCoord);
gl_FragColor = vec4(shadeFactor*Color.rgb, Color.a)

}

Shadow Mapping

21

• Pass 1: Render the scene from the light’s position. The depth buffer
then contains, for each pixel, the distance between the light and the
nearest object to it.

• Copy the depth buffer to a separate “shadow buffer”.

• Pass 2: Render the scene normally. For each pixel:
 look up the corresponding position in the shadow buffer
 If the distance to the point being rendered is greater than the value

retrieved from the shadow buffer
• the object being drawn at this pixel is further from the light

than the object nearest the light
• therefore, this pixel is in shadow
• make the pixel darker

 else draw it normally

Shadow Mapping Using Textures

22

• Pass 1 as before
• Copy the depth buffer into a texture
• Pass 2 as before, except that the shadow buffer is now

a shadow texture.

OpenGL has support for shadow textures in the form of a
“sampler2DShadow” type

Pass 1

23

• Configure the buffer and shadow texture
• Disable color output
• Build a “look at” matrix from the light to objects in the scene
• For each object drawn, create a “shadowMVP” matrix

(projection, look-at, and model matrices)
• Call glDrawArrays()
• No textures or lighting are necessary because we aren’t

drawing anything in Pass 1.
• We are just creating a shadow map filled with Z-buffer values
• As a result, the fragment shader doesn’t do anything

Pass 1:
Render scene from point of view of light source

24

Pass one shaders:

• No textures or lighting necessary in fragment shader
• Only Z-buffer information from vertex shader needed

Pass 1:
Can use fragment shader for optional testing

25

#version 430
out vec4 fragColor;
void main(void) {

fragColor = vec4(1.0, 0.0, 0.0, 0.0);
}

Intermediate Step:
Copying the Z-buffer to a texture

26

• Generate an empty shadow texture, and
• Use glCopyTexImage2D()

One approach:

Another approach:

• Use a “custom framebuffer” in Pass 1
• Attach the shadow texture with glFrameBufferTexture()

Preparing for Pass 2

27

B =
0.5 0 0 0.5
0 0.5 0 0.5
0 0 0.5 0.5
0 0 0 1

shadowMVP2 = [B] [shadowMVP(pass1)]

Convert from [-1,1] light space to [0,1] texture space:

Bias matrix B translates by ½ and scales by ½ to
change the light coordinates from a range of (-1..1) to a
range of (0..1).

Pass 2:
Render actual scene with shadows

28

• Build “B” transform matrix to convert from light to texture space
(typically done in init())

• Enable the shadow texture for look-up
• Enable color output
• Enable the GLSL pass 2 rendering program, containing both vertex

and fragment shaders
• Build MVP matrix for the object being drawn based on the camera

position (as normal)
• Build shadowMVP2 matrix (incorporating the “B” matrix) – the

shaders will need it to look up pixel coordinates in the shadow texture
• Send the matrix transforms to shader uniform variables
• Enable buffers containing vertices, normal vectors, and texture

coordinates (if used), as usual
• Call glDrawArrays()

Pass 2:
Other shader tasks

29

• The vertex shader converts vertex positions from model space to
projected coordinates from the light’s point of view, and sends
the resulting coordinates to the fragment shader in a vertex
attribute so that they will be interpolated. This makes it possible
to retrieve the correct values from the shadow texture.

• The fragment shader calls textureProj(), which returns a 0 or 1
indicating whether or not the pixel is in shadow (described on the
next slide). If it is in shadow, the shader darkens the pixel by not
including its diffuse and specular contributions.

Shadow-mapping is such a common task that GLSL provides a special
type of sampler variable called a sampler2DShadow . . .

Pass 2:
Automatic depth comparison in sampler2DShadow

30

Vertex Shader
. . .
out vec4 shadow_coord;
. . .
uniform mat4 shadowMVP2;
void main(void)
{ . . .

shadow_coord = shadowMVP2 * vec4(vertPos,1.0);
}

Fragment Shader
. . .
in vec4 shadow_coord;
layout (binding=0) uniform sampler2DShadow shTex;
. . .
void main(void)
{ . . .

float notInShadow = textureProj(shTex, shadow_coord);
fragColor = globalAmbient * material.ambient + light.ambient * material.ambient;
If (notInShadow == 1.0)
{ fragColor += light.diffuse * material.diffuse * max(dot(L,N),0.0)

+ light.specular * material.specular
* pow(max(dot(H,N),0.0),material.shininess*3.0);

}
}

C++/OpenGL application
. . .
// shadow-related variables
nt screenSizeX, screenSizeY;
GLUint shadowTex, shadowBuffer;
glm::mat4 lightVmatrix;
glm::mat4 lightPmatrix;
glm::mat4 shadowMVP1;
glm::mat4 shadowMVP2;
glm::mat4 b;

void init(GLFWwindow* window) {
. . .
setupShadowBuffers();
// create “B” matrix
b = glm::mat4(

0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f);

} continued . . .

void setupShadowBuffers(GLFWwindow* window) {
glfwGetFramebufferSize(window, &width, &height);
screenSizeX = myCanvas.getWidth();
screenSizeY = myCanvas.getHeight();
// create the custom frame buffer
glGenFramebuffers(1, &shadowBuffer);
// create the shadow texture and configure it to hold depth information.
// these steps are similar to those in Program 5.2
glGenTextures(1, &shadowTex);
glBindTexture(GL_TEXTURE_2D, shadowTex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32,

screenSizeX, screenSizeY, 0,
GL_DEPTH_COMPONENT, GL_FLOAT, 0);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,

GL_LEQUAL);
}

continued . . .

void display(GLFWwindow* window, double currentTime) {
. . .
// vector from light to origin
lightVmatrix = glm::lookAt(currentLightPos, origin, up);
lightPmatrix = glm::perspective(toRadians(60.0f), aspect, 0.1f, 1000.0f);
// make the custom frame buffer current, and associate it with the shadow texture
glBindFramebuffer(GL_FRAMEBUFFER, shadowBuffer);
gl.glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

shadowTex, 0);
// disable drawing colors, but enable the depth computation
glDrawBuffer(GL_NONE);
glEnable(GL_DEPTH_TEST);
passOne();
// restore the default display buffer, and re-enable drawing
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, shadowTex);
glDrawBuffer(GL_FRONT); // re-enables drawing colors
passTwo();

}
continued . . .

void passOne(void) {
// rendering_program1 contains only the pass one vertex shader
glUseProgram(renderingProgram1);

// build the torus object’s Model matrix
mMat = glm::translate(glm::mat4(1.0f), torusLoc);

// we are drawing from the light’s point of view, so we use the light’s P and V matrices
shadowMVP1 = lightPmatrix * lightVmatrix * mMat;
sLoc = glGetUniformLocation(renderingProgram1, "shadowMVP");
glUniformMatrix4fv(sLoc, 1, GL_FALSE, glm::value_ptr(shadowMVP1));
. . .
glDrawElements(…)

// repeat for the pyramid (but don’t clear the GL_DEPTH_BUFFER_BIT)
}

continued . . .

void passTwo(void) {
. . .
glUseProgram(renderingProgram2);
. . .
sLoc = glGetUniformLocation(renderingProgram2, "shadowMVP2");
. . .
shadowMVP2 = b * lightPmatrix * lightVmatrix * mMat;
. . .
glUniformMatrix4fv(sLoc, 1, GL_FALSE, glm::value_ptr(shadowMVP2));
. . .
glDrawElements(. . .)

// repeat for each object drawn in the scene
. . .

}

Result

37

These artifacts are called “shadow acne” or
“erroneous self-shadowing”

Combatting Shadow Acne

38

void display(GLFWwindow* window double currentTime) {
. . .
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(2.0f, 4.0f);
passOne();
glDisable(GL_POLYGON_OFFSET_FILL);
. . .
passTwo();

}

Other Shadow Mapping Artifacts

39

“Peter Panning”

Other Shadow Mapping Artifacts

40

jagged edges due to inadequate resolution

Soft Shadows

41

Shadows that occur in nature are usually “soft shadows”

Percentage Closer Filtering (PCF)

42

Generate soft shadows:

Concept:
Lighten or darken pixels based on
how many neighboring pixels are
in shadow

Percentage Closer Filtering Result

43

Soft shadow generated by sampling 64 neighboring
pixels for each pixel being rendered

Dithering

44

• Unfortunately, sampling this many neighbor pixels
is generally not feasible for performance reasons

• A common compromise is called dithering
• Only a small number of neighbors are sampled
• The selection of neighboring pixels alternates

depending on the location of the rendered pixel

PCF with Dithering

45Dithering with only four neighbors

Percentage Closer Filtering Result

46

Soft shadow generated by sampling 4 neighboring
pixels for each pixel being rendered (dithered)

Comparison

47

4 samples per pixel, dithered 64 samples per pixel

Comparison

48

4 samples per pixel, dithered 64 samples per pixel

Fragment shader:

// Returns the shadow depth value for a texel at distance (x,y) from shadow_coord.
float lookup(float ox, float oy)
{ float t = textureProj(shadowTex,

shadow_coord + vec4(ox * 0.001 * shadow_coord.w, oy * 0.001 * shadow_coord.w,
-0.01, 0.0)); // the third parameter (-0.01) is an offset to counteract shadow acne

return t;
}
void main(void)
{ . . .

float shadowFactor = 0.0f;
. . .
// this section produces a 4-sample dithered soft shadow
float swidth = 2.5; // tunable amount of shadow spread
// produces one of 4 sample patterns depending on glFragCoord mod 2
vec2 offset = mod(floor(gl_FragCoord.xy), 2.0) * swidth;
shadowFactor += lookup(-1.5*swidth + offset.x, 1.5*swidth - offset.y);
shadowFactor += lookup(-1.5*swidth + offset.x, -0.5*swidth - offset.y);
shadowFactor += lookup(0.5*swidth + offset.x, 1.5*swidth - offset.y);
shadowFactor += lookup(0.5*swidth + offset.x, -0.5*swidth - offset.y);
shadowFactor = shadowFactor / 4.0; // average of the four sampled points
. . .
fragColor = vec4((shadowColor.xyz + shadowFactor*(lightedColor.xyz)),1.0);

}

	Shadows
	Objectives
	Importance of Shadows
	Importance of Shadows
	Flashlight in the Eye Graphics
	Projective Shadows
	Planar Projected Shadows
	Planar Projected Shadows
	Shadow Polygon
	Computing Shadow Vertex
	Shadow Process
	Generalized Shadows
	Image Based Lighting
	4D Textures Coordinates
	Shadow Maps
	Final Rendering
	Application’s Side
	Vertex Shader
	textureProj function
	Fragment Shader
	Shadow Mapping
	Shadow Mapping Using Textures
	Pass 1
	Pass 1:�Render scene from point of view of light source
	Pass 1:�Can use fragment shader for optional testing
	Intermediate Step:�Copying the Z-buffer to a texture
	Preparing for Pass 2
	Pass 2:�Render actual scene with shadows
	Pass 2:�Other shader tasks
	Pass 2:�Automatic depth comparison in sampler2DShadow
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Result
	Combatting Shadow Acne
	Other Shadow Mapping Artifacts
	Other Shadow Mapping Artifacts
	Soft Shadows
	Percentage Closer Filtering (PCF)
	Percentage Closer Filtering Result
	Dithering
	PCF with Dithering
	Percentage Closer Filtering Result
	Comparison
	Comparison
	Slide Number 49

