
Computer Viewing

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2

Objectives

• Introduce the mathematics of projection
• Introduce OpenGL viewing functions
•Look at alternate viewing APIs

Viewing Process

camera

tripod model

view
volume

4

Computer Viewing

•There are three aspects of the viewing process,
all of which are implemented in a pipeline,

- Positioning the camera
• Setting the model-view matrix

- Selecting a lens
• Setting the projection matrix

- Clipping
• Setting the view volume

Transformation Pipeline

• Transformations take us from one “space” to another
- All of our transforms are 4×4 matrices

Model-View
Transform

Projection
Transform

Perspective
Division (w)

Viewport
Transform

Modeling
Transform

Modeling
Transform

Object Coords.

World Coords. Eye Coords. Clip Coords.
Normalized

Device
Coords.

Vertex
Data

2D Window
Coordinates

Transformations

•Modeling transformations
- move models into world coordinate system

•Viewing transformations
- define position and orientation of the camera

•Projection transformations
- adjust the lens of the camera; define view volume

•Viewport transformations
- enlarge or reduce the physical photograph

7

Modeling Transformations

Local, or “Model” space
• The space in which a model is defined
• Usually centered at the origin

“World” space
• The space in which the models are assembled/collected
• Dimensions and orientation conforms to simulated scene

model
space

world
space

The matrix transforms (concatenated)
that place an object in world space is
called its Model matrix, or M

8

The Model Coordinate System

The X,Y,Z coordinates of the model’s vertices are defined relative to the
object’s center, where (0,0,0) is the center of the object.

9

The World Coordinate System

The model is moved to a new position, and possibly included with other
models, in the world coordinate system.

10

The View Coordinate System

The vertices expressed in the world coordinate system must be transformed
into the view coordinate system since they are now relative to the camera.

11

View Space

• World space as seen from a simulated camera or “eye”
• Also known as view, camera, or eye space.

12

Model-View Transformation

• A 4x4 matrix transforms vertices from the model to the world coordinate system.
• A second 4x4 matrix maps the world to the view coordinate system.
• The product of these two matrices is called the model-view matrix
• It maps the object from the original model coordinate system directly to the

camera’s (viewer’s) coordinate system

Model-view
Matrix

13

The World and Camera Frames

• Changes in frame are defined by 4 x 4 matrices
• In OpenGL, we start with the world frame
• We move models from the world frame to the

camera frame by using the model-view matrix M
• Initially these frames are the same (M=I)
• If you want to move the camera three units to the

right (+x), this is achieved by moving the objects
three units to the left (-x).

• Camera always stays at the origin and points in the
negative z direction

14

The OpenGL Fixed Camera

15

Moving the Objects

Move objects back (along –z direction) to view it in
front of camera, which is at origin.

1 0 0 0
0 1 0 0
0 0 1 −d
0 0 0 1M =

Viewing Transformations

•Position the camera/eye in the scene
- place the tripod down; aim camera

•To “fly through” a scene
- change viewing transformation and redraw scene

tripod

Building a View Matrix (V)

camera orientation:

The Model-View Matrix

PC = MV*PM

A point PM in its own model space can then be transformed
to camera space in one step, as follows:

MV = V*M

19

LookAt
• Simple viewing interface: LookAt(eye, at, up)
• up vector determines unique orientation

Creating the LookAt Matrix

�𝑛𝑛 =
𝑎𝑎𝑎𝑎 − 𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎 − 𝑒𝑒𝑒𝑒𝑒𝑒

�𝑢𝑢 =
�𝑛𝑛 × 𝑢𝑢𝑢𝑢
�𝑛𝑛 × 𝑢𝑢𝑢𝑢

�𝑣𝑣 = �𝑢𝑢 × �𝑛𝑛

⇒

𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 −(𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑢𝑢)
𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧 −(𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ �⃗�𝑣)
−𝑛𝑛𝑥𝑥 −𝑛𝑛𝑦𝑦 −𝑛𝑛𝑧𝑧 −(𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑛𝑛)

0 0 0 1

Specifying What You Can See (1)

•Once camera is positioned in scene, we must
set up a viewing frustum (view volume) to
specify how much of the world we can see

•Done in two steps
- specify the size of the frustum (projection transform)
- specify its location in space (model-view transform)

•Anything outside of viewing frustum is clipped
- primitive is either modified or discarded (if entirely

outside frustum)

Specifying What You Can See (2)

•OpenGL projection model uses eye coordinates
- the “eye” is located at the origin
- looking down the -z axis

•Projection matrices use a six-plane model:
- near (image) plane and far (infinite) plane

• both are distances from the eye (positive values)

- enclosing planes
• top & bottom, left & right

Specifying What You Can See (3)

Orthographic View Perspective View

𝑃𝑃 =

2𝑛𝑛
𝑟𝑟 − 𝑙𝑙 0

𝑟𝑟 + 𝑙𝑙
𝑟𝑟 − 𝑙𝑙 0

0
2𝑛𝑛
𝑎𝑎 − 𝑏𝑏

𝑎𝑎 + 𝑏𝑏
𝑎𝑎 − 𝑏𝑏 0

0 0
−(𝑓𝑓 + 𝑛𝑛)
𝑓𝑓 − 𝑛𝑛

−2𝑓𝑓𝑛𝑛
𝑓𝑓 − 𝑛𝑛

0 0 −1 0

Perspective

Annunciation with
Saint Emidius
(Crivelli - 1486)

Scale by
distance

parallel
lines

Perspective View Volume (Frustum)

26

Perspective Projection

27

Parallel Projection

28

Orthographic Projection

• Projectors are orthogonal to projection surface.
• Special (and most common) case of parallel projections

29

Default OpenGL Viewing

• Default view volume is a cube with sides of
length 2 centered at the origin (from -1 to 1)

• Default projection is orthographic
• For points within the default view volume:

clipped out

z=0

2

xp = x
yp = y
zp = 0

30

Orthogonal Normalization
ortho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert
specified clipping volume to default cube

near and far measured from camera

31

Orthogonal Matrix

• Two steps
- Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))
- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))
2

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 − 𝑙𝑙𝑒𝑒𝑓𝑓𝑎𝑎
0 0 −

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 + 𝑙𝑙𝑒𝑒𝑓𝑓𝑎𝑎
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 − 𝑙𝑙𝑒𝑒𝑓𝑓𝑎𝑎

0
2

𝑎𝑎𝑡𝑡𝑢𝑢 − 𝑏𝑏𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑏𝑏
0 −

𝑎𝑎𝑡𝑡𝑢𝑢 + 𝑏𝑏𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑏𝑏
𝑎𝑎𝑡𝑡𝑢𝑢 − 𝑏𝑏𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑏𝑏

0 0
2

𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟 − 𝑓𝑓𝑎𝑎𝑟𝑟
𝑓𝑓𝑎𝑎𝑟𝑟 + 𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟
𝑓𝑓𝑎𝑎𝑟𝑟 − 𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟

0 0 0 1

P = ST =

32

Final Projection

• Set z =0
• Equivalent to the homogeneous coordinate

transformation

• Hence, general orthogonal projection in 4D is

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1Morth =

P = MorthST

33

OpenGL Perspective

frustum(left,right,bottom,top,near,far)

34

Using Field of View

• It is often difficult to get desired view with frustum()
•perspective(fovy, aspect, near, far)
often provides a better interface

aspect = w/h

front plane

35

Projection Matrix
QMatrix4x4 Projection;
Projection.perspective(

45.0f, // vertical field of view
4.0f/3.0f, // aspect ratio
0.1f, // near clipping plane
100.0f // far clipping plane

)

Model-view
Matrix MV

Projection
Matrix P

36

Model-view and Projection Matrices

• In OpenGL the model-view matrix is used to
- Position the camera

• Easily done by using a LookAt function
- Build models of objects

• Positioning model elements together in world coordinates

• The projection matrix is used to define the
view volume and to select a camera lens

• We create the model-view and projection
matrices in our own applications and pass
them to the vertex shader

37

Composite MVP Matrix

• We may sometimes build a single Model-View-
Projection matrix (MVP):

MVP = P * V *M

A point PM in its own model space can then be
transformed to its final perspective orientation in
one step, as follows:

PC = MVP * PM

38

Putting It All Together (1)
QMatrix4x4 Projection, View, Model, MVP;
Projection.perspective(

45.0f, // vertical field of view
4.0f/3.0f, // aspect ratio
0.1f, // near clipping plane
100.0f // far clipping plane

);

View.lookAt(
vec3(4, 3, 3); // camera in world space
vec3(0, 0, 0); // and looks at the origin
vec3(0, 1, 0); // up direction

);

Model.setToIdentity(); // model matrix is identity

MVP = Projection * View * Model; // composite matrix

39

Putting It All Together (2)

// get a handle for our “u_MVP" uniform at initialization time
GLuint MatrixLoc = glGetUniformLocation(programID, “u_MVP");

// send our transformation to the currently bound shader
// in the “u_MVP" uniform
glUniformMatrix4fv(MatrixLoc, 1, GL_FALSE, &MVP[0][0]);

In vertex shader:

in vec4 a_Position; // vertex position
uniform mat4 u_MVP; // Projection * Modelview
void main()
{

gl_Position = u_MVP * a_Position;
}

Projection Matrices

Prof. George Wolberg
Dept. of Computer Science
City College of New York

41

Objectives

•Derive the projection matrices used for
standard OpenGL projections

• Introduce projection normalization

42

Simple Perspective

•Center of projection at the origin
•Projection plane z = d, d < 0

43

Perspective Equations

Consider top and side views

xp =

𝑥𝑥
𝑧𝑧/𝑑𝑑

𝑥𝑥
𝑧𝑧/𝑑𝑑 yp =

𝑒𝑒
𝑧𝑧/𝑑𝑑 zp = d

44

Homogeneous Coordinate Form

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/𝑑𝑑 0

Consider p = Mq where:

𝑥𝑥
𝑒𝑒
𝑧𝑧
1

𝑥𝑥
𝑒𝑒
𝑧𝑧
𝑧𝑧/𝑑𝑑

=

p M q

45

Perspective Division

•However w ≠ 1, so we must divide by w to
return from homogeneous coordinates

•This perspective division yields

the desired perspective equations

xp =
𝑥𝑥
𝑧𝑧/𝑑𝑑 yp =

𝑒𝑒
𝑧𝑧/𝑑𝑑 zp = d

46

Pipeline View

modelview
transformation

projection
transformation

perspective
division

clipping projection

nonsingular

4D → 3D

against default cube 3D → 2D

47

Model-view and Projection Matrices

• In OpenGL the model-view matrix is used to
- Position the camera

• Easily done by using the LookAt function
- Build models of objects

• Positioning model elements together in world coordinates

• The projection matrix is used to define the
view volume and to select a camera lens
-ortho(left,right,bottom,top,near,far)
-perspective(fovy, aspect, near, far)

48

View Normalization

•Rather than derive a different projection
matrix for orthographic and perspective
projections, we can convert all projections
to orthogonal projections with the default
view volume

•This strategy allows us to use standard
transformations in the pipeline and makes
for efficient clipping

49

Simple Perspective

Consider a simple perspective with the COP at the
origin, the near clipping plane at z = -1, and a 90
degree field of view determined by the planes
x = ±z, y = ±z

50

Perspective Matrices

Simple projection matrix in homogeneous coordinates

Note that -1 = 1/d where d = -1 and that
M is independent of the far clipping plane.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

M =

51

Generalization
1 0 0 0
0 1 0 0
0 0 𝛼𝛼 𝛽𝛽
0 0 −1 0

N =

After perspective division, the point (x, y, z, 1) goes to

x’’ = -x/z
y’’ = -y/z
Z’’ =

which projects orthogonally to the desired point
regardless of α and β.

−(α + β/z)

52

Picking α and β

If we pick

α =

β =

near + far
far − near

2(near ∗ far)
near − far

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

53

Normalization
Transformation

original clipping
volume original object new clipping

volume

distorted object
projects correctly

54

Normalization and
Hidden-Surface Removal

• Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z1 > z2 in the
original clipping volume then the for the
transformed points z1’ > z2’

• Thus hidden surface removal works if we first
apply the normalization transformation

• However, the formula z’’ = -(α+β/z) implies that the
distances are distorted by the normalization
which can cause numerical problems especially if
the near distance is small

55

General Case
𝐴𝐴 0 0 0
0 𝑞𝑞 0 0
0 0 𝛼𝛼 𝛽𝛽
0 0 −1 0

N =

where
q = 1 / tan(fovy/2)
A = q / aspectRatio = q * h/w

This takes into account the viewplane dimensions
and the field of view in the y-direction.

56

OpenGL Perspective Matrix

•The normalization in frustum() requires
an initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally,
the perspective matrix results in needing
only a final orthogonal transformation

P = NSH

our previously defined
perspective matrix

shear and scale

57

Why do we do it this way?

•Normalization allows for a single pipeline for
both perspective and orthogonal viewing

•We stay in four dimensional homogeneous
coordinates as long as possible to retain
three-dimensional information needed for
hidden-surface removal and shading

•We simplify clipping

58

Perspective Projection

A perspective projection of the scene is generated as the rays that connect
the vertices to the center of projection intersect the viewplane. The view
volume consists of a frustum (truncated pyramid) extending from the camera.

59

Before Projection
Before projection, we have the blue objects in camera space and the
red camera frustum.

60

After Projection
Multiplying everything by the projection matrix has the following effect:
the frustum is now a unit cube and the blue objects have been deformed.

61

View from Behind Frustum

62

Resized to Window

	Computer Viewing
	Objectives
	Viewing Process
	Computer Viewing
	Transformation Pipeline
	Transformations
	Modeling Transformations
	The Model Coordinate System
	The World Coordinate System
	The View Coordinate System
	View Space
	Model-View Transformation
	The World and Camera Frames
	The OpenGL Fixed Camera
	Moving the Objects
	Viewing Transformations
	Building a View Matrix (V)
	The Model-View Matrix
	LookAt
	Creating the LookAt Matrix
	Specifying What You Can See (1)
	Specifying What You Can See (2)
	Specifying What You Can See (3)
	Perspective
	Perspective View Volume (Frustum)
	Perspective Projection
	Parallel Projection
	Orthographic Projection
	Default OpenGL Viewing
	Orthogonal Normalization
	Orthogonal Matrix
	Final Projection
	OpenGL Perspective
	Using Field of View
	Projection Matrix
	Model-view and Projection Matrices
	Composite MVP Matrix
	Putting It All Together (1)
	Putting It All Together (2)
	Projection Matrices
	Objectives
	Simple Perspective
	Perspective Equations
	Homogeneous Coordinate Form
	Perspective Division
	Pipeline View
	Model-view and Projection Matrices
	View Normalization
	Simple Perspective
	Perspective Matrices
	Generalization
	Picking a and b
	Normalization Transformation
	Normalization and Hidden-Surface Removal
	General Case
	OpenGL Perspective Matrix
	Why do we do it this way?
	Perspective Projection
	Before Projection
	After Projection
	View from Behind Frustum
	Resized to Window

