
Transformations

Prof. George Wolberg

Dept. of Computer Science

City College of New York

2

Objectives

• Introduce standard transformations
- Rotations

- Translation

- Scaling

- Shear

• Derive homogeneous coordinate
transformation matrices

• Learn to build arbitrary transformation
matrices from simple transformations

3

General Transformations

• A transformation maps points to other
points and/or vectors to other vectors

Q=T(P)

v=T(u)

4

Pipeline Implementation

transformation rasterizer

u

v

u

v

T

T(u)

T(v)

T(u)
T(u)

T(v)

T(v)

vertices vertices pixels

frame
buffer

(from application program)

5

Homogeneous Notation

• 3D points and vectors are represented as 4D
points in homogeneous coordinates

- 3D Vector: [x y z 0]

- 3D Point: [x y z 1]

• Matrices used in 3D graphics are typically 4x4:

6

Identity Matrix

*

usually done “right to left”

Multiplying a point (or vector) by a matrix:

Matrix Multiplication

8

Translation

• Move (translate, displace) a point to a
new location

• Displacement determined by a vector d
- Three degrees of freedom
- P’=P+d

P

P’

d

9

Object Translation

Every point in object is displaced by same vector

object translation: every point is displaced
by same vector

10

Translation Using Representations

Using the homogeneous coordinate
representation in some frame

p = [x y z 1]T

p’= [x’ y’ z’ 1]T

d = [dx dy dz 0]T

Hence p’ = p + d or
x’ = x+dx
y’ = y+dy
z’ = z+dz

note that this expression is in
four dimensions and expresses
that point = vector + point

11

Translation Matrix

We can also express translation using a

4 x 4 matrix T in homogeneous coordinates

p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine
transformations can be expressed this way and
multiple transformations can be concatenated together



















1000

d100

d010

d001

z

y

x

12

Translation Matrix

• glm::translate(x,y,z)
• mat4 * vec4

in GLM:

13

Scaling



















1000

000

000

000

z

y

x

s

s

s

S = S(sx, sy, sz) =

x’=sxx
y’=syy
z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

14

Scaling

• glm::scale(x,y,z)
• mat4 * vec4

in GLM:

15

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

16

Rotation (2D)

• Consider rotation about the origin by q degrees
- radius stays the same, angle increases by q

x’ = x cos q – y sin q
y’ = x sin q + y cos q

x = r cos f
y = r sin f

x’ = r cos (f + q)
y’ = r sin (f + q)

17

Rotation about the z-axis

• Rotation about z axis in three dimensions leaves
all points with the same z

- Equivalent to rotation in two dimensions in
planes of constant z

- or in homogeneous coordinates

p’=Rz(q)p

x’ = x cos q – y sin q
y’ = x sin q + y cos q
z’ = z

18

Rotation Matrix


















qq
qq

1000

0100

00 cossin

00sin cos

R = Rz(q) =

19

Rotation about x and y axes

• Same argument as for rotation about z-axis
- For rotation about x-axis, x is unchanged

- For rotation about y-axis, y is unchanged

R = Rx(q) =

R = Ry(q) =



















qq
qq

1000

0 cos sin0

0 sin- cos0

0001



















qq

qq

1000

0 cos0 sin-

0010

0 sin0 cos

20

Rotation Matrices

Rotation around
X by θ degrees

Rotation around
Y by θ degrees

Rotation around
Z by θ degrees

• glm::rotate(mat4, θ, x, y, z)
• mat4 * vec4

21

Euler Angles

In the mid-1700s, the mathematician Leonhard
Euler showed that a rotation around any desired
axis could be specified instead as a combination of
rotations around the X, Y, and Z axes.

These three rotation angles, around the respective
axes, have come to be known as Euler angles.

22

Inverses

• Although we could compute inverse matrices
by general formulas, we can use simple
geometric observations

- Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

- Rotation: R -1(q) = R(-q)

• Holds for any rotation matrix

• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)
R -1(q) = R T(q)

- Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

23

Concatenation

• We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

• Because the same transformation is applied to
many vertices, the cost of forming a composite
matrix M=ABCD is not significant compared to
the cost of computing Mp for many vertices p

• The difficult part is how to form a desired
transformation from the specifications in the
application

*

=

Muliplying a Matrix by a Matrix

New Point = Matrix1 * (Matrix2 * (Matrix3 * Point))

New Point = (Matrix1 * Matrix2 * Matrix3) * Point

New Point = MatrixC * Point

MatrixC = Matrix1 * Matrix2 * Matrix3

and thus, equivalently:

In this example, MatrixC is often called the concatenation
of Matrix1, Matrix2, and Matrix3

Matrix Multiplication is Associative

26

Order of Transformations

• Note that matrix on the right is the first
applied

• Mathematically, the following are
equivalent

p’ = ABCp = A(B(Cp))
• Note many references use column
matrices to present points. In terms of
column matrices

pT’ = pTCTBTAT

27

General Rotation About the Origin

q

x

z

y
v

A rotation by q about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(q) = Rz(qz) Ry(qy) Rx(qx)

qx qy qz are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

28

Rotation About a Fixed
Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R(q) T(-pf)

29

Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions

30

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot q
y’ = y
z’ = z

















 q

1000

0100

0010

00cot 1

H(q) =





















151173

141062

13951

12840

mmmm

mmmm

mmmm

mmmm

M

• A vertex is transformed by 4×4 matrices

• All matrices are stored column-major in OpenGL
- this is opposite of what “C” programmers expect

• Matrices are always post-multiplied
- product of matrix and vector is

3D Transformations

v


M





















4

3

2

1

v

v

v

v

v

32

Affine Transformations

• Characteristic of many important transformations
- Translation

- Rotation

- Scaling

- Shear

• Line preserving

























































110001

'

'

'

141062

13951

12840

z

y

x

mmmm

mmmm

mmmm

z

y

x

OpenGL Transformations

Prof. George Wolberg

Dept. of Computer Science

City College of New York

34

Objectives

• Learn how to carry out transformations in OpenGL
- Rotation

- Translation

- Scaling

• Introduce QMatrix4x4 and QVector3D transformations
- Model-view

- Projection

35

Current Transformation Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation matrix
(CTM) that is part of the state and is applied to all
vertices that pass down the pipeline

• The CTM is defined in the user program and loaded
into a transformation unit

CTMvertices vertices
p p’=Cp

C

36

CTM operations

• The CTM can be altered either by loading a new
CTM or by postmutiplication
Load an identity matrix: C  I
Load an arbitrary matrix: C  M

Load a translation matrix: C  T
Load a rotation matrix: C  R
Load a scaling matrix: C  S

Postmultiply by an arbitrary matrix: C  CM
Postmultiply by a translation matrix: C  CT
Postmultiply by a rotation matrix: C  C R
Postmultiply by a scaling matrix: C  C S

37

Rotation about a Fixed Point

Start with identity matrix: C  I
Move fixed point to origin: C  CT
Rotate: C  CR
Move fixed point back: C  CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.

38

Reversing the Order

We want C = T –1 R T so we must do the operations in the
following order

C  I
C  CT -1
C  CR
C  CT

Each operation corresponds to one function call in the program.

The last operation specified is the first executed in the program!

39

Rotation, Translation, Scaling

m.rotate(theta, QVector3D(vx, vy, vz));

m.scale(sx, sy, sz);
m.translate(dx, dy, dz);

QMatrix4x4 m;
m.setToIdentity();

Create an identity matrix:

Multiply on right by rotation matrix of theta in degrees
where (vx, vy, vz) define axis of rotation

Do same with translation and scaling:

40

Example

• Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

• Remember that the last matrix specified is the
first applied

QMatrix4x4 m;
m.setToIdentity();
m.translate(1.0, 2.0, 3.0);
m.rotate (30.0, QVector3D(0.0, 0.0, 1.0));
m.translate(-1.0,-2.0,-3.0);

41

Arbitrary Matrices

• Can load and multiply by matrices defined
in the application program

• Matrices are stored as one dimensional
array of 16 elements which are the
components of the desired 4 x 4 matrix
stored by columns

• OpenGL functions that have matrices as
parameters allow the application to send
the matrix or its transpose

Vertex Shader for
Rotation of Cube (1)

in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;

void main()
{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians(theta);
vec3 c = cos(angles);
vec3 s = sin(angles);

Vertex Shader for
Rotation of Cube (2)

// Remember: these matrices are column-major

mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
0.0, c.x, s.x, 0.0,
0.0, -s.x, c.x, 0.0,
0.0, 0.0, 0.0, 1.0);

mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
0.0, 1.0, 0.0, 0.0,
s.y, 0.0, c.y, 0.0,
0.0, 0.0, 0.0, 1.0);

Vertex Shader for
Rotation of Cube (3)

mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,

s.z, c.z, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);

color = vColor;

gl_Position = rz * ry * rx * vPosition;
}

Sending Angles from Application

GLuint thetaLoc; // theta uniform location
vec3 theta; // axis angles

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUniform3fv(thetaLoc, 1, theta);
glDrawArrays(GL_TRIANGLES, 0, NumVertices);

}

