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Objectives

• Introduce standard transformations
- Rotations

- Translation

- Scaling

- Shear

• Derive homogeneous coordinate 
transformation matrices

• Learn to build arbitrary transformation 
matrices from simple transformations
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General Transformations

• A transformation maps points to other 
points and/or vectors to other vectors

Q=T(P)

v=T(u)
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Pipeline Implementation
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Homogeneous Notation

• 3D points and vectors are represented as 4D 
points in homogeneous coordinates

- 3D Vector: [x y z 0]

- 3D Point:   [x y z 1]

• Matrices used in 3D graphics are typically 4x4: 
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Identity Matrix



*

usually done “right to left”

Multiplying a point (or vector) by a matrix:

Matrix Multiplication
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Translation

• Move (translate, displace) a point to a 
new location

• Displacement determined by a vector d
- Three degrees of freedom
- P’=P+d

P

P’

d
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Object Translation

Every point in object is displaced by same vector

object translation: every point is displaced 
by same vector
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Translation Using Representations

Using the homogeneous coordinate 
representation in some frame

p = [ x y z 1]T

p’= [x’ y’ z’ 1]T

d = [dx dy dz 0]T

Hence p’ = p + d or
x’ = x+dx
y’ = y+dy
z’ = z+dz

note that this expression is in 
four dimensions and expresses
that point = vector + point
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Translation Matrix

We can also express translation using a 

4 x 4 matrix T in homogeneous coordinates

p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine 
transformations can be expressed this way and 
multiple transformations can be concatenated together
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Translation Matrix

• glm::translate(x,y,z)
• mat4 * vec4

in GLM:
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Scaling
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S = S(sx, sy, sz) =

x’=sxx
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p’=Sp

Expand or contract along each axis (fixed point of origin)
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Scaling

• glm::scale(x,y,z)
• mat4 * vec4

in GLM:
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Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1
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Rotation (2D)

• Consider rotation about the origin by q degrees
- radius stays the same, angle increases by q

x’ = x cos q – y sin q
y’ = x sin q + y cos q

x = r cos f
y = r sin f

x’ = r cos (f + q)
y’ = r sin (f + q)
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Rotation about the z-axis

• Rotation about z axis in three dimensions leaves 
all points with the same z

- Equivalent to rotation in two dimensions in 
planes of constant z

- or in homogeneous coordinates

p’=Rz(q)p

x’ = x cos q – y sin q
y’ = x sin q + y cos q
z’ = z
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Rotation Matrix
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Rotation about x and y axes

• Same argument as for rotation about z-axis
- For rotation about x-axis, x is unchanged

- For rotation about y-axis, y is unchanged

R = Rx(q) =

R = Ry(q) =
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Rotation Matrices

Rotation around
X by θ degrees

Rotation around
Y by θ degrees

Rotation around
Z by θ degrees

• glm::rotate(mat4, θ, x, y, z)
• mat4 * vec4
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Euler Angles

In the mid-1700s, the mathematician Leonhard 
Euler showed that a rotation around any desired 
axis could be specified instead as a combination of 
rotations around the X, Y, and Z axes.

These three rotation angles, around the respective 
axes, have come to be known as Euler angles.
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Inverses

• Although we could compute inverse matrices 
by general formulas, we can use simple 
geometric observations

- Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 

- Rotation: R -1(q) = R(-q)

• Holds for any rotation matrix

• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)
R -1(q) = R T(q)

- Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)
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Concatenation

• We can form arbitrary affine transformation 
matrices by multiplying together rotation, 
translation, and scaling matrices

• Because the same transformation is applied to 
many vertices, the cost of forming a composite 
matrix M=ABCD is not significant compared to 
the cost of computing Mp for many vertices p

• The difficult part is how to form a desired 
transformation from the specifications in the 
application
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=

Muliplying a Matrix by a Matrix



New Point = Matrix1 * (Matrix2 * (Matrix3 * Point))

New Point = (Matrix1 * Matrix2 * Matrix3) * Point

New Point = MatrixC * Point

MatrixC = Matrix1 * Matrix2 * Matrix3

and thus, equivalently:

In this example,  MatrixC is often called the concatenation
of Matrix1, Matrix2, and Matrix3

Matrix Multiplication is Associative
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Order of Transformations

• Note that matrix on the right is the first 
applied

• Mathematically, the following are 
equivalent

p’ = ABCp = A(B(Cp))
• Note many references use column 
matrices to present points. In terms of 
column matrices

pT’ = pTCTBTAT
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General Rotation About the Origin

q

x

z

y
v

A rotation by q about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(q) = Rz(qz) Ry(qy) Rx(qx) 

qx qy qz are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles
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Rotation About a Fixed 
Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R(q) T(-pf)
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Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions
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Shear Matrix

Consider simple shear along x axis

x’ = x + y cot q
y’ = y
z’ = z
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• A vertex is transformed by 4×4 matrices

• All matrices are stored column-major in OpenGL
- this is opposite of what “C” programmers expect

• Matrices are always post-multiplied
- product of matrix and vector is 

3D Transformations
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Affine Transformations

• Characteristic of many important transformations
- Translation

- Rotation

- Scaling

- Shear

• Line preserving
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Objectives

• Learn how to carry out transformations in OpenGL
- Rotation

- Translation 

- Scaling

• Introduce QMatrix4x4 and QVector3D transformations
- Model-view

- Projection
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Current Transformation Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous 
coordinate matrix, the current transformation matrix
(CTM) that is part of the state and is applied to all 
vertices that pass down the pipeline

• The CTM is defined in the user program and loaded 
into a transformation unit

CTMvertices vertices
p p’=Cp

C
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CTM operations

• The CTM can be altered either by loading a new 
CTM or by postmutiplication
Load an identity matrix: C  I
Load an arbitrary matrix: C  M

Load a translation matrix: C  T
Load a rotation matrix: C  R
Load a scaling matrix: C  S

Postmultiply by an arbitrary matrix: C  CM
Postmultiply by a translation matrix: C  CT
Postmultiply by a rotation matrix: C  C R
Postmultiply by a scaling matrix: C  C S
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Rotation about a Fixed Point

Start with identity matrix: C  I
Move fixed point to origin: C  CT
Rotate: C  CR
Move fixed point back: C  CT -1

Result: C = TR T –1 which is backwards. 

This result is a consequence of doing postmultiplications.
Let’s try again.
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Reversing the Order

We want C = T –1 R T  so we must do the operations in the 
following order

C  I
C  CT -1
C  CR
C  CT

Each operation corresponds to one function call in the program.

The last operation specified is the first executed in the program!
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Rotation, Translation, Scaling

m.rotate(theta, QVector3D(vx, vy, vz));

m.scale(sx, sy, sz);
m.translate(dx, dy, dz);

QMatrix4x4 m;
m.setToIdentity();

Create an identity matrix:

Multiply on right by rotation matrix of theta in degrees 
where (vx, vy, vz) define axis of rotation

Do same with translation and scaling:
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Example

• Rotation about z axis by 30 degrees with a fixed 
point of (1.0, 2.0, 3.0)

• Remember that the last matrix specified is the 
first applied

QMatrix4x4 m;
m.setToIdentity();
m.translate( 1.0, 2.0, 3.0);
m.rotate   (30.0, QVector3D(0.0, 0.0, 1.0));
m.translate(-1.0,-2.0,-3.0);
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Arbitrary Matrices

• Can load and multiply by matrices defined 
in the application program

• Matrices are stored as one dimensional 
array of 16 elements which are the 
components of the desired 4 x 4 matrix 
stored by columns

• OpenGL functions that have matrices as 
parameters allow the application to send 
the matrix or its transpose



Vertex Shader for
Rotation of Cube (1)

in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;

void main() 
{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians( theta );
vec3 c = cos( angles );
vec3 s = sin( angles );



Vertex Shader for
Rotation of Cube (2)

// Remember: these matrices are column-major

mat4 rx = mat4( 1.0,  0.0,  0.0, 0.0,
0.0,  c.x,  s.x, 0.0,
0.0, -s.x,  c.x, 0.0,
0.0,  0.0,  0.0, 1.0 );

mat4 ry = mat4( c.y, 0.0, -s.y, 0.0,
0.0, 1.0,  0.0, 0.0,
s.y, 0.0,  c.y, 0.0,
0.0, 0.0,  0.0, 1.0 );



Vertex Shader for
Rotation of Cube (3)

mat4 rz = mat4( c.z, -s.z, 0.0, 0.0,

s.z,  c.z, 0.0, 0.0,
0.0,  0.0, 1.0, 0.0,
0.0,  0.0, 0.0, 1.0 );

color = vColor;

gl_Position = rz * ry * rx * vPosition;
} 



Sending Angles from Application

GLuint thetaLoc; // theta uniform location
vec3  theta;     // axis angles

void display( void )
{

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glUniform3fv( thetaLoc, 1, theta );
glDrawArrays( GL_TRIANGLES, 0, NumVertices );

}


