Transformations

Prof. George Wolberg
Dept. of Computer Science
City College of New York

Objectives

* Introduce standard transformations
- Rotations
- Translation
- Scaling
- Shear

* Derive homogeneous coordinate
transformation matrices

Learn to build arbitrary transformation
matrices from simple transformations

General Transformations

A transformation maps points to other
points and/or vectors to other vectors

Pipeline Implementation

T (from application program)
l frame

v T(v) T(v)

e * T(V) /
T(u)

[] o
“ * T(u)
vertices > vertices > pixels

Homogeneous Notation

* 3D points and vectors are represented as 4D
points in homogeneous coordinates
- 3D Vector: [xy z O]
- 3D Point: [xy z 1]
* Matrices used in 3D graphics are typically 4x4.:

Identity Matrix

OO O

O O - O

O — O O

— O O O

Matrix Multiplication

Multiplying a point (or vector) by a matrix:

AX+BY +CZ+ D A
EX+FY+GZ+H E
|

*

IX+]Y +KZ +L
MX+NY+0Z+P/ |Mm

ik R

X
Y
Z
1

=~ T
QxR QOO

usually done “right to left”

Translation

* Move (translate, displace) a point to a

new location o

o

* Displacement determined by a vector d

- Three degrees of freedom
- P’=P+d

Object Translation

Every point in object is displaced by same vector

d

translation: every point 1s displaced
by same vector

Translation Using Representations

Using the homogeneous coordinate
representation in some frame

p=[xyzl]'

p=[xy z 1]

d = [dx dy dz 0]!
Hencep’=p+dor

X’ = x+dx \ note that this expression 1s in
’ __ four dimensions and expresses
y’ = y+dy

, that point = vector + point
7z’ = z7+dz

10

Translation Matrix

We can also express translation using a
4 x 4 matrix T in homogeneous coordinates
p'=Tp where

X

y

T = T(d,, d,, d,) =

Z

o = O O
()

o O O =
oS O = O

This form is better for implementation because all affine
transformations can be expressed this way and
multiple transformations can be concatenated together

11

Translation Matrix

X + Ty 1 0 0 Tyl /X
Y+Ty |_|0 1 0 Ty| [V
7Z+T, 0 0 1 T,| \zZ

1 0 0 0 1 1
in GLM:

* glm::translate(x,y,z)
 mat4 * vec4

12

Scaling

Expand or contract along each axis (fixed point of origin)

X’ =8, X
y'=s,y
7’=S8,7
pP'=Sp
s 0
0 S,
S = S(s,, Sy S,) =
0O O

13

in GLM:

Sy 0 0
1o s O
1o o0 S,

0 0 O

glm::scale(x,y,z)
mat4 * vec4

_ O O O

— N <X

14

Reflection

corresponds to negative scale factors

Y
A
B, &
e] o ..
s, =-ls,=1 E{{ L ,\f}ﬁ original
' et
sy =-1s8,=-1 ﬁ E s, = 1s,=-1

15

Rotation (2D)

» Consider rotation about the origin by 6 degrees
- radius stays the same, angle increases by 6

X’ =1 cos (¢ + 0)

/ y’ =r sin (¢ + 0)
(x', y)

-

X’=Xcos0—ysmn0
y’=xsm0+ycos0

\ X =T COS (

il y =1 sin ¢

(x, y)

Rotation about the z-axis

 Rotation about z axis in three dimensions leaves
all points with the same z

- Equivalent to rotation in two dimensions in
planes of constant z

X’=xcosO—ysmn0
y’=xsm0+ycos0
7z =1z

- or in homogeneous coordinates
P=R,(0)p

17

Rotation Matrix

R=R (6) =

cos 0
sin 0
0

0

—sin® 0 0O
cosO 0 O
0 1 O

0 0 1

18

Rotation about x and y axes

« Same argument as for rotation about z-axis
- For rotation about x-axis, x is unchanged

- For rotation about y-axis, y is unchanged
1 0 0 0]

0 cosO -sinf O
R=Ri0)= 10 sin0 cosd 0
0 0 0 1

[cosO 0 sin6 0
R = Ry(e) _ 0 1 0 0
-smnBO 0 cosO O

0 0 0 1

Rotation Matrices

_ X\ [1 0 0 0] /X
Rotation around v'_|0 cos6 —sing of (Y
X by 6 degrees Z'| |0 sind cos6 O Z

1 0 0 o 1] \1

_ X' [cosf 0 sinf 0] /X
Rotation around vi_| o 1 o of[vY
Y by 6 degrees Z'| |-sind 0 cos6 O A

1 0o o o 1l \1

_ X' ‘cos —sinf@ 0 O] X

Rotation around Y'|_|sin6 cos® 0 O [V
7' 0 o 1 ol \z
Z by O degrees . . o o 1] \3

glm::rotate(mat4, 6, x, y, z)
mat4 * vec4

20

Euler Angles

In the mid-1700s, the mathematician Leonhard
Euler showed that a rotation around any desired
axis could be specified instead as a combination of
rotations around the X, Y, and Z axes.

These three rotation angles, around the respective
axes, have come to be known as Euler angles.

21

Inverses

 Although we could compute inverse matrices
by general formulas, we can use simple
geometric observations
- Translation: T-'(d,, d,, d,) = T(-d,, -d,, -d,)
- Rotation: R "1(6) = R(-6)
Holds for any rotation matrix
Note that since cos(-0) = cos(0) and sin(-0)=-sin(0)
R7'0)=R (0

-Scaling: S°(s,, s,, s,) =S(1/s,, 1/s,, 1/s,)

Y’Z

22

Concatenation

* We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

* Because the same transformation is applied to
many vertices, the cost of forming a composite
matrix M=ABCD is not significant compared to
the cost of computing Mp for many vertices p

* The difficult part is how to form a desired
transformation from the specifications in the
application

23

Muliplying a Matrix by a Matrix

A
E
|

M

>~ ®

Aa+Be+Ci+Dm
Ea+Fe+Gi+Hm
la+je+Ki+Lm
Ma+Ne+O0i+Pm

v~ o
%

S X QO

Ab+BF+Cj+Dn
Eb+Ff+Gj+Hn
Ib+]f+Kj+Ln

Mb+NF+0j+Pn

S~

T ~ S &

O xQ 0

a
e
l

m

Ac+Bg+Ck+Do Ad+Bh+CIl+Dp
Ec+Fg+Gk+Ho Ed+Fh+GI+Hp
lct+jg+Kk+Lo Id+/h+KI+Lp
Mc+Ng+0Ok+Po Md+Nh+OI+Pp

Matrix Multiplication is Associative
New Point = Matrix, * (Matrix, * (Matrix; * Point))
New Point = (Matrix, * Matrix, * Matrix;) * Point
and thus, equivalently:

Matrix. = Matrix, * Matrix, * Matrix
New Point = Matrix * Point

In this example, Matrix. is often called the concatenation
of Matrix,, Matrix,, and Matrix,

Order of Transformations

* Note that matrix on the right is the first
applied
* Mathematically, the following are
equivalent
p' = ABCp = A(B(Cp))
* Note many references use column

matrices to present points. In terms of
column matrices

pT’ — pTCTBTAT

26

General Rotation About the Origin

A rotation by 0 about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(6) = R,(0,) R,(6,) R,(6,)

0, 0, 0, are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

z
27

Rotation About a Fixed
Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(py) R(0) T(-py)

Y

’ y y o
A _
; Py
I. .
o P,
X
iz

VT

i

28

Shear

» Helpful to add one more basic transformation
* Equivalent to pulling faces in opposite directions

Y Y

| |

29

Shear Matrix

Consider simple shear along x axis

y
A

+ycotH

(x, y) (x', v
® .

X =X
9

y =Yy

7' =7

_ _ - Ne
cot O e \ -

H(0) =

oo o ==
S

30

3D Transformations

* A vertex is transformed by 4x4 matrices

* All matrices are stored column-major in OpenGL
- this is opposite of what “C” programmers expect

» Matrices are always post-multiplied
- product of matrix and vector is Mv

my, m, Mg My Vi

m m m m V,
M = 1 5 9 13 v =

m, mg; my, My &

msy o m, nmy NMys | Vs _

Affine Transformations

m,

0

» Characteristic of many important transformations

- Translation
- Rotation

- Scaling

- Shear

Line preserving

m,

mg

0

m

0

m,,
1

|
— N e R
l

32

OpenGL Transformations

Prof. George Wolberg
Dept. of Computer Science
City College of New York

Objectives

* Learn how to carry out transformations in OpenGL
- Rotation
- Translation
- Scaling
* Introduce QMatrix4x4 and QVector3D transformations
- Model-view
- Projection

34

Current Transformation Matrix (CTM)

* Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation matrix

(CTM) that is part of the state and is applied to all
vertices that pass down the pipeline

* The CTM is defined in the user program and loaded

into a transformation unit

vertices

C

l

CTM

J

p=Cp
- vertices

35

CTM operations

* The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C « |
Load an arbitrary matrix: C <« M

Postmu
Postmu
Postmu
Postmu

tip
tip
tip
tip

_oad a translation matrix: C « T
_oad a rotation matrix;: C < R
_oad a scaling matrix: C < S

y by an arbitrary matrix: C < CM
y by a translation matrix: C < CT
y by a rotation matrix: C < CR
y by a scaling matrix: C« C S

36

Rotation about a Fixed Point

Start with identity matrix: C « 1
Move fixed point to origin: C < CT
Rotate: C « CR

Move fixed point back: C < CT -!

Result: C=TR T ! which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.

37

Reversing the Order

WewantC=T 'R T so we must do the operations in the
following order

C«1
C«CT

C<«CR
C«CT

Each operation corresponds to one function call in the program.

The last operation specified is the first executed in the program!

38

Rotation, Translation, Scaling

Create an identity matrix:

OMatrix4x4 m;
m.setToIdentity () ;

Multiply on right by rotation matrix of theta in degrees
where (vX, vy, vz) define axis of rotation

m.rotate (theta, QVector3D(vx, vy, vz));

Do same with translation and scaling:

m.scale(sx, sy, sz);
m.translate(dx, dy, dz);

39

Example

* Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

OMatrix4dx4 m;

m.setToIdentity () ;

m.translate(1.0, 2.0, 3.0);
m.rotate (30.0, QVector3D(0.0, 0.0, 1.0));

m.translate(-1.0,-2.0,-3.0);

 Remember that the last matrix specified is the
first applied

40

Arbitrary Matrices

* Can load and multiply by matrices defined
iIn the application program

* Matrices are stored as one dimensional
array of 16 elements which are the
components of the desired 4 x 4 matrix
stored by columns

* OpenGL functions that have matrices as
parameters allow the application to send
the matrix or its transpose

41

Vertex Shader for
Rotation of Cube (1)

in vec4 vPosition;
in vec4 vColor;

out vec4 color;
uniform vec3 theta;

void main()

{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians(theta);

vec3 c = cos(angles);

vec3 s = sin(angles);

Vertex Shader for
Rotation of Cube (2)

// Remember: these matrices are column-major

matd rx = matd(1.
Q.
0.
0.

0.9, 0.0, 0.0,
C.X, S.X, 0.0,
-S.X, C.X, 0.0,
9.0, 0.9, 1.0);

\o

O O OO O
“

\o

mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
.0, 1.0, 0.9, 0.0,
0.9, c.y, 0.0,

.0, 0.0, 0.0, 1.0);

O n © N
<
-

Vertex Shader for
Rotation of Cube (3)

mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,

s.z, C.z, 0.0, 0.0,
.0, 0.0, 1.0, 0.0,
0.0, 0.9, 0.9, 1.0);

color = vColor;

gl Position = rz * ry * rx * vPosition;

Sending Angles from Application

GLuint thetalLoc; // theta uniform location
vec3 theta; // axis angles

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUniform3fv(thetaloc, 1, theta);
glDrawArrays(GL_TRIANGLES, ©, NumVertices);

