Transformations

Prof. George Wolberg
Dept. of Computer Science City College of New York

Objectives

- Introduce standard transformations
- Rotations
- Translation
- Scaling
- Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

- A transformation maps points to other points and/or vectors to other vectors

Pipeline Implementation

Homogeneous Notation

-3D points and vectors are represented as 4D points in homogeneous coordinates

- 3D Vector: [x y z 0]
- 3D Point: [x y z 1]
- Matrices used in 3D graphics are typically 4×4 :

$$
\left[\begin{array}{llll}
A_{00} & A_{01} & A_{02} & A_{03} \\
A_{10} & A_{11} & A_{12} & A_{13} \\
A_{20} & A_{21} & A_{22} & A_{23} \\
A_{30} & A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

Identity Matrix

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Multiplication

Multiplying a point (or vector) by a matrix:

$$
\left(\begin{array}{c}
A X+B Y+C Z+D \\
E X+F Y+G Z+H \\
I X+J Y+K Z+L \\
M X+N Y+O Z+P
\end{array}\right)=\left[\begin{array}{cccc}
A & B & C & D \\
E & F & G & H \\
I & J & K & L \\
M & N & O & P
\end{array}\right] *\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

usually done "right to left"

Translation

- Move (translate, displace) a point to a new location

-Displacement determined by a vector d
- Three degrees of freedom
- $P^{\prime}=P+d$

Object Translation

Every point in object is displaced by same vector

translation: every point is displaced by same vector

Translation Using Representations

Using the homogeneous coordinate representation in some frame

$$
\begin{aligned}
& \mathbf{p}=\left[\begin{array}{lll}
\text { x y y } & 1
\end{array}\right]^{\mathrm{T}} \\
& \mathbf{p}=\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime} \\
1
\end{array}\right]^{\mathrm{T}} \\
& \mathbf{d}=\left[\begin{array}{lll}
\mathrm{d} & \mathrm{~d} y & \mathrm{dz}
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

Hence $\mathbf{p}^{\prime}=\mathbf{p}+\mathbf{d}$ or

$$
\begin{aligned}
& x^{\prime}=x+d x \\
& y^{\prime}=y+d y \\
& z^{\prime}=z+d z
\end{aligned}
$$

note that this expression is in four dimensions and expresses that point $=$ vector + point

Translation Matrix

We can also express translation using a
4×4 matrix \mathbf{T} in homogeneous coordinates
$\mathbf{p}^{\prime}=\mathbf{T p}$ where
$\mathbf{T}=\mathbf{T}\left(d_{x}, d_{y}, d_{z}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Translation Matrix

$$
\left(\begin{array}{c}
X+T_{X} \\
Y+T_{Y} \\
Z+T_{Z} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & T_{X} \\
0 & 1 & 0 & T_{Y} \\
0 & 0 & 1 & T_{Z} \\
0 & 0 & 0 & 1
\end{array}\right] *\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

in GLM:

- glm::translate(x,y,z)
- mat4 * vec4

Scaling

Expand or contract along each axis (fixed point of origin)

Scaling

$$
\left(\begin{array}{c}
X * S_{X} \\
Y * S_{Y} \\
Z * S_{Z} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
S_{X} & 0 & 0 & 0 \\
0 & S_{Y} & 0 & 0 \\
0 & 0 & S_{Z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

in GLM:

- glm::scale(x, y, z)
- mat4 * vec4

Reflection

corresponds to negative scale factors

Rotation (2D)

- Consider rotation about the origin by θ degrees
- radius stays the same, angle increases by θ

Rotation about the \mathbf{z}-axis

- Rotation about z axis in three dimensions leaves all points with the same z
- Equivalent to rotation in two dimensions in planes of constant z

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta \\
& z^{\prime}=z
\end{aligned}
$$

- or in homogeneous coordinates

$$
\mathbf{p}^{\prime}=\mathbf{R}_{\mathbf{z}}(\theta) \mathbf{p}
$$

Rotation Matrix

$$
\mathbf{R}=\mathbf{R}_{\mathrm{z}}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation about x and y axes

- Same argument as for rotation about z-axis
- For rotation about x-axis, x is unchanged
- For rotation about y-axis, y is unchanged

$$
\begin{aligned}
& \mathbf{R}=\mathbf{R}_{\mathrm{x}}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}=\mathbf{R}_{\mathrm{y}}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotation Matrices

Rotation around X by θ degrees

$$
\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Rotation around Y by θ degrees

$$
\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Rotation around
Z by θ degrees

$$
\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

- glm::rotate(mat4, $\theta, x, y, z)$
- mat4 * vec4

Euler Angles

In the mid-1700s, the mathematician Leonhard Euler showed that a rotation around any desired axis could be specified instead as a combination of rotations around the X, Y, and Z axes.

These three rotation angles, around the respective axes, have come to be known as Euler angles.

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
- Translation: $\mathbf{T}^{-1}\left(\mathrm{~d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)=\mathrm{T}\left(-\mathrm{d}_{\mathrm{x}},-\mathrm{d}_{\mathrm{y}},-\mathrm{d}_{\mathrm{z}}\right)$
- Rotation: $\mathbf{R}^{-1}(\theta)=\mathbf{R}(-\theta)$
- Holds for any rotation matrix
- Note that since $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$
$\mathbf{R}^{-1}(\theta)=\mathbf{R}^{\mathrm{T}}(\theta)$
- Scaling: $\mathbf{S}^{-1}\left(\mathrm{~s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}, \mathrm{s}_{\mathrm{z}}\right)=\mathbf{S}\left(1 / \mathrm{s}_{\mathrm{x}}, 1 / \mathrm{s}_{\mathrm{y}}, 1 / \mathrm{s}_{\mathrm{z}}\right)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a composite matrix $\mathbf{M}=\mathbf{A B C D}$ is not significant compared to the cost of computing Mp for many vertices \mathbf{p}
- The difficult part is how to form a desired transformation from the specifications in the application

Muliplying a Matrix by a Matrix

$$
\left[\begin{array}{llll}
A & B & C & D \\
E & F & G & H \\
I & J & K & L \\
M & N & O & P
\end{array}\right] \boldsymbol{*}\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]
$$

$\left[\begin{array}{llll}A a+B e+C i+D m & A b+B f+C j+D n & A c+B g+C k+D o & A d+B h+C l+D p \\ E a+F e+G i+H m & E b+F f+G j+H n & E c+F g+G k+H o & E d+F h+G l+H p \\ I a+J e+K i+L m & I b+J f+K j+L n & I c+J g+K k+L o & I d+J h+K I+L p \\ M a+N e+O i+P m & M b+N f+O j+P n & M c+N g+O k+P o & M d+N h+O I+P p\end{array}\right]$

Matrix Multiplication is Associative

New Point $=$ Matrix $_{1}{ }^{*}\left(\right.$ Matrix $_{2}{ }^{*}\left(\right.$ Matrix $_{3}{ }^{*}$ Point) $)$
New Point $=\left(\right.$ Matrix $_{1}{ }^{*}$ Matrix $_{2}$ * Matrix $\left.{ }_{3}\right)$ * Point

and thus, equivalently:
Matrix $_{C}=$ Matrix $_{1}{ }^{*}$ Matrix $_{2}{ }^{*}$ Matrix $_{3}$
New Point $=$ Matrix $_{C}{ }^{*}$ Point

In this example, Matrix ${ }_{C}$ is often called the concatenation of Matrix ${ }_{1}$, Matrix ${ }_{2}$, and Matrix ${ }_{3}$

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$
\mathbf{p}^{\prime}=\mathbf{A B C} \mathbf{p}=\mathbf{A}(\mathbf{B}(\mathbf{C p}))
$$

- Note many references use column matrices to present points. In terms of column matrices

$$
\mathbf{p}^{\mathrm{T}}=\mathbf{p}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}
$$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$
\mathbf{R}(\theta)=\mathbf{R}_{\mathrm{z}}\left(\theta_{\mathrm{z}}\right) \mathbf{R}_{\mathrm{y}}\left(\theta_{\mathrm{y}}\right) \mathbf{R}_{\mathrm{x}}\left(\theta_{\mathrm{x}}\right)
$$

$\theta_{\mathrm{x}} \theta_{\mathrm{y}} \theta_{\mathrm{z}}$ are called the Euler angles
Note that rotations do not commute We can use rotations in another order but with different angles

Rotation About a Fixed Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
$\mathbf{M}=\mathbf{T}\left(\mathrm{p}_{\mathrm{f}}\right) \mathbf{R}(\theta) \mathbf{T}\left(-\mathrm{p}_{\mathrm{f}}\right)$

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{x}+\mathrm{y} \cot \theta \\
& \mathrm{y}=\mathrm{y} \\
& \mathrm{z}=\mathrm{z}
\end{aligned} \mathrm{H}(\theta)=\left[\begin{array}{cccc}
1 & \cot \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

3D Transformations

- A vertex is transformed by 4×4 matrices
- All matrices are stored column-major in OpenGL
- this is opposite of what " C " programmers expect
- Matrices are always post-multiplied
- product of matrix and vector is $\mathbf{M} \bar{v}$

$$
\mathbf{M}=\left[\begin{array}{llll}
m_{0} & m_{4} & m_{8} & m_{12} \\
m_{1} & m_{5} & m_{9} & m_{13} \\
m_{2} & m_{6} & m_{10} & m_{14} \\
m_{3} & m_{7} & m_{11} & m_{15}
\end{array}\right] \quad v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]
$$

Affine Transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
m_{0} & m_{4} & m_{8} & m_{12} \\
m_{1} & m_{5} & m_{9} & m_{13} \\
m_{2} & m_{6} & m_{10} & m_{14} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

-Characteristic of many important transformations

- Translation
- Rotation
- Scaling
- Shear
-Line preserving

OpenGL Transformations

Prof. George Wolberg
Dept. of Computer Science
City College of New York

Objectives

- Learn how to carry out transformations in OpenGL
- Rotation
- Translation
- Scaling
- Introduce QMatrix4x4 and QVector3D transformations
- Model-view
- Projection

Current Transformation Matrix (CTM)

- Conceptually there is a 4×4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit

CTM operations

- The CTM can be altered either by loading a new CTM or by postmutiplication
Load an identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$
Load an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{M}$
Load a translation matrix: $\mathbf{C} \leftarrow \mathbf{T}$
Load a rotation matrix: $\mathbf{C} \leftarrow \mathbf{R}$
Load a scaling matrix: $\mathbf{C} \leftarrow \mathbf{S}$
Postmultiply by an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{C M}$ Postmultiply by a translation matrix: $\mathbf{C} \leftarrow \mathbf{C T}$ Postmultiply by a rotation matrix: $\mathbf{C} \leftarrow \mathbf{C} \mathbf{R}$ Postmultiply by a scaling matrix: $\mathbf{C} \leftarrow \mathbf{C} \mathbf{S}$

Rotation about a Fixed Point

Start with identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$
Move fixed point to origin: $\mathbf{C} \leftarrow \mathbf{C T}$
Rotate: $\mathbf{C} \leftarrow \mathbf{C R}$
Move fixed point back: $\mathbf{C} \leftarrow \mathbf{C T}^{-1}$
Result: $\mathbf{C}=\mathbf{T R} \mathbf{T}^{-1}$ which is backwards.
This result is a consequence of doing postmultiplications. Let's try again.

Reversing the Order

We want $\mathbf{C}=\mathbf{T}^{-1} \mathbf{R} \mathbf{T}$ so we must do the operations in the following order
$\mathbf{C} \leftarrow \mathbf{I}$
$\mathbf{C} \leftarrow \mathbf{C T}^{-1}$
$\mathbf{C} \leftarrow \mathbf{C R}$
$\mathbf{C} \leftarrow \mathbf{C T}$
Each operation corresponds to one function call in the program.
The last operation specified is the first executed in the program!

Rotation, Translation, Scaling

Create an identity matrix:
QMatrix4x4 m;
m.setToIdentity();

Multiply on right by rotation matrix of theta in degrees where ($\mathbf{v x}, \mathbf{v y}, \mathbf{v z}$) define axis of rotation
m.rotate (theta, QVector3D(vx, vy, vz));

Do same with translation and scaling:

```
m.scale(sx, sy, sz);
m.translate(dx, dy, dz);
```


Example

- Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)
QMatrix4x4 m;
m.setToIdentity();
m.translate ($1.0,2.0,3.0$);
m.rotate (30.0, QVector3D(0.0, 0.0, 1.0)); m.translate (-1.0,-2.0,-3.0) ;
- Remember that the last matrix specified is the first applied

Arbitrary Matrices

- Can load and multiply by matrices defined in the application program
- Matrices are stored as one dimensional array of 16 elements which are the components of the desired 4×4 matrix stored by columns
- OpenGL functions that have matrices as parameters allow the application to send the matrix or its transpose

Vertex Shader for Rotation of Cube (1)

in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;
void main()
\{
// Compute the sines and cosines of theta for // each of the three axes in one computation. vec3 angles = radians(theta);
vec3 c = cos(angles);
vec3 s = sin(angles);

Vertex Shader for Rotation of Cube (2)

// Remember: these matrices are column-major
mat4 $r x=\operatorname{mat} 4(1.0,0.0,0.0,0.0$,

$$
\begin{array}{lcc}
0.0, & c . x, & \text { s.x, } 0.0, \\
0.0, & -s . x, & c . x, \\
0.0, & 0.0, & 0.0, \\
0.0
\end{array}
$$

mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,

$$
\left.\begin{array}{ll}
0.0, & 1.0, \\
\text { s.y, } 0.0, & 0.0, \\
0.0, & 0.0,
\end{array} 0.0,1.0\right) ;
$$

Vertex Shader for Rotation of Cube (3)

mat4 $\mathrm{rz}=\operatorname{mat4}(\mathrm{c} . \mathrm{z},-\mathrm{s} . \mathrm{z}, 0.0,0.0$,

$$
\begin{array}{ll}
\text { s.z, c.z, 0.0, 0.0, } \\
0.0, & 0.0,1.0,0.0, \\
0.0, & 0.0, \\
0.0, & 1.0)
\end{array}
$$

color = vColor;
gl_Position = rz * ry * rx * vPosition;
\}

Sending Angles from Application

GLuint thetaLoc; // theta uniform location vec3 theta; // axis angles
void display(void)
\{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUniform3fv(thetaLoc, 1, theta); glDrawArrays(GL_TRIANGLES, 0, NumVertices); \}

