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Objectives

* Introduce standard transformations
- Rotations
- Translation
- Scaling
- Shear

* Derive homogeneous coordinate
transformation matrices

Learn to build arbitrary transformation
matrices from simple transformations



General Transformations

A transformation maps points to other
points and/or vectors to other vectors




Pipeline Implementation

T (from application program)
l frame
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Homogeneous Notation

* 3D points and vectors are represented as 4D
points in homogeneous coordinates
- 3D Vector: [xy z O]
- 3D Point: [xy z 1]
* Matrices used in 3D graphics are typically 4x4.:



Identity Matrix
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Matrix Multiplication

Multiplying a point (or vector) by a matrix:

AX+BY +CZ+ D A
EX+FY+GZ+H E
|

*

IX+]Y +KZ +L
MX+NY+0Z+P/ |Mm

ik R

X
Y
Z
1

=~ T
QxR QOO

usually done “right to left”



Translation

* Move (translate, displace) a point to a

new location o

o

* Displacement determined by a vector d

- Three degrees of freedom
- P’=P+d



Object Translation

Every point in object is displaced by same vector

d

translation: every point 1s displaced
by same vector




Translation Using Representations

Using the homogeneous coordinate
representation in some frame

p=[xyzl]'

p=[xy z 1]

d = [dx dy dz 0]!
Hencep’=p+dor

X’ = x+dx \ note that this expression 1s in
’ __ four dimensions and expresses
y’ = y+dy

, that point = vector + point
7z’ = z7+dz
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Translation Matrix

We can also express translation using a
4 x 4 matrix T in homogeneous coordinates
p'=Tp where

X

y

T = T(d,, d,, d,) =

Z

o = O O
()

o O O =
oS O = O

This form is better for implementation because all affine
transformations can be expressed this way and
multiple transformations can be concatenated together
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Translation Matrix

X + Ty 1 0 0 Tyl /X
Y+Ty |_|0 1 0 Ty| [V
7Z+T, 0 0 1 T,| \zZ

1 0 0 0 1 1
in GLM:

* glm::translate(x,y,z)
 mat4 * vec4
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Scaling

Expand or contract along each axis (fixed point of origin)

X’ =8, X
y'=s,y
7’=S8,7
pP'=Sp
s 0
0 S,
S = S(s,, Sy S,) =
0O O

13



in GLM:

Sy 0 0
1o s O
1o o0 S,

0 0 O

glm::scale(x,y,z)
mat4 * vec4

_ O O O

— N <X
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Reflection

corresponds to negative scale factors

Y
A
B, &
e ] o ..
s, =-ls,=1 E{{ L ,\f}ﬁ original
' et
sy =-1s8,=-1 ﬁ E s, = 1s,=-1
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Rotation (2D)

» Consider rotation about the origin by 6 degrees
- radius stays the same, angle increases by 6

X’ =1 cos (¢ + 0)

/ y’ =r sin (¢ + 0)
(x', y)

-

X’=Xcos0—ysmn0
y’=xsm0+ycos0

\ X =T COS (

il y =1 sin ¢

(x, y)




Rotation about the z-axis

 Rotation about z axis in three dimensions leaves
all points with the same z

- Equivalent to rotation in two dimensions in
planes of constant z

X’=xcosO—ysmn0
y’=xsm0+ycos0
7z =1z

- or in homogeneous coordinates
P=R,(0)p
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Rotation Matrix

R=R (6) =

cos 0
sin 0
0

0

—sin® 0 0O
cosO 0 O
0 1 O

0 0 1
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Rotation about x and y axes

« Same argument as for rotation about z-axis
- For rotation about x-axis, x is unchanged

- For rotation about y-axis, y is unchanged
1 0 0 0]

0 cosO -sinf O
R=Ri0)= 10 sin0 cosd 0
0 0 0 1

[ cosO 0 sin6 0
R = Ry(e) _ 0 1 0 0
-smnBO 0 cosO O

0 0 0 1




Rotation Matrices

_ X\ [1 0 0 0] /X
Rotation around v'\_|0 cos6 —sing of (Y
X by 6 degrees Z'| |0 sind cos6 O Z

1 0 0 o 1] \1

_ X' [ cosf 0 sinf 0] /X
Rotation around vi_| o 1 o of[vY
Y by 6 degrees Z'| |-sind 0 cos6 O A

1 0o o o 1l \1

_ X' ‘cos —sinf@ 0 O] X

Rotation around Y'|_|sin6 cos® 0 O [V
7' 0 o 1 ol \z
Z by O degrees . . o o 1] \3

glm::rotate(mat4, 6, x, y, z)
mat4 * vec4
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Euler Angles

In the mid-1700s, the mathematician Leonhard
Euler showed that a rotation around any desired
axis could be specified instead as a combination of
rotations around the X, Y, and Z axes.

These three rotation angles, around the respective
axes, have come to be known as Euler angles.
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Inverses

 Although we could compute inverse matrices
by general formulas, we can use simple
geometric observations
- Translation: T-'(d,, d,, d,) = T(-d,, -d,, -d,)
- Rotation: R "1(6) = R(-6)
Holds for any rotation matrix
Note that since cos(-0) = cos(0) and sin(-0)=-sin(0)
R7'0)=R (0

-Scaling: S°(s,, s,, s,) =S(1/s,, 1/s,, 1/s,)

Y’Z
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Concatenation

* We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

* Because the same transformation is applied to
many vertices, the cost of forming a composite
matrix M=ABCD is not significant compared to
the cost of computing Mp for many vertices p

* The difficult part is how to form a desired
transformation from the specifications in the
application
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Muliplying a Matrix by a Matrix
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E
|

M
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Mc+Ng+0Ok+Po Md+Nh+OI+Pp




Matrix Multiplication is Associative
New Point = Matrix, * (Matrix, * (Matrix; * Point))
New Point = (Matrix, * Matrix, * Matrix;) * Point
and thus, equivalently:

Matrix. = Matrix, * Matrix, * Matrix
New Point = Matrix * Point

In this example, Matrix. is often called the concatenation
of Matrix,, Matrix,, and Matrix,




Order of Transformations

* Note that matrix on the right is the first
applied
* Mathematically, the following are
equivalent
p' = ABCp = A(B(Cp))
* Note many references use column

matrices to present points. In terms of
column matrices

pT’ — pTCTBTAT
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General Rotation About the Origin

A rotation by 0 about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(6) = R,(0,) R,(6,) R,(6,)

0, 0, 0, are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

z
27



Rotation About a Fixed
Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(py) R(0) T(-py)

Y

’ y y o
A _
; Py
I. .
o P,
X
iz

VT

i
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Shear

» Helpful to add one more basic transformation
* Equivalent to pulling faces in opposite directions

Y Y

| |
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Shear Matrix

Consider simple shear along x axis

y
A

+ycotH

(x, y) (x', v
® .

X =X
9

y =Yy

7' =7

_ _ - Ne
cot O e \ -

H(0) =

oo o ==
S
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3D Transformations

* A vertex is transformed by 4x4 matrices

* All matrices are stored column-major in OpenGL
- this is opposite of what “C” programmers expect

» Matrices are always post-multiplied
- product of matrix and vector is Mv

my, m, Mg My Vi

m m m m V,
M = 1 5 9 13 v =

m, mg; my, My &

msy o m, nmy NMys | Vs _




Affine Transformations

m,

0

» Characteristic of many important transformations

- Translation
- Rotation

- Scaling

- Shear

Line preserving

m,

mg

0

m

0

m,,
1

|
— N e R
l
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OpenGL Transformations
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Objectives

* Learn how to carry out transformations in OpenGL
- Rotation
- Translation
- Scaling
* Introduce QMatrix4x4 and QVector3D transformations
- Model-view
- Projection
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Current Transformation Matrix (CTM)

* Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation matrix

(CTM) that is part of the state and is applied to all
vertices that pass down the pipeline

* The CTM is defined in the user program and loaded

into a transformation unit

vertices

C

l

CTM

J

p=Cp
- vertices
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CTM operations

* The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C « |
Load an arbitrary matrix: C <« M

Postmu
Postmu
Postmu
Postmu

tip
tip
tip
tip

_oad a translation matrix: C « T
_oad a rotation matrix;: C < R
_oad a scaling matrix: C < S

y by an arbitrary matrix: C < CM
y by a translation matrix: C < CT
y by a rotation matrix: C < CR
y by a scaling matrix: C« C S
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Rotation about a Fixed Point

Start with identity matrix: C « 1
Move fixed point to origin: C < CT
Rotate: C « CR

Move fixed point back: C < CT -!

Result: C=TR T ! which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.
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Reversing the Order

WewantC=T 'R T so we must do the operations in the
following order

C«1
C«CT

C<«CR
C«CT

Each operation corresponds to one function call in the program.

The last operation specified is the first executed in the program!
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Rotation, Translation, Scaling

Create an identity matrix:

OMatrix4x4 m;
m.setToIdentity () ;

Multiply on right by rotation matrix of theta in degrees
where (vX, vy, vz) define axis of rotation

m.rotate (theta, QVector3D(vx, vy, vz));

Do same with translation and scaling:

m.scale(sx, sy, sz);
m.translate(dx, dy, dz);
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Example

* Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

OMatrix4dx4 m;

m.setToIdentity () ;

m.translate( 1.0, 2.0, 3.0);
m.rotate (30.0, QVector3D(0.0, 0.0, 1.0));

m.translate(-1.0,-2.0,-3.0);

 Remember that the last matrix specified is the
first applied
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Arbitrary Matrices

* Can load and multiply by matrices defined
iIn the application program

* Matrices are stored as one dimensional
array of 16 elements which are the
components of the desired 4 x 4 matrix
stored by columns

* OpenGL functions that have matrices as
parameters allow the application to send
the matrix or its transpose
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Vertex Shader for
Rotation of Cube (1)

in vec4 vPosition;
in vec4 vColor;

out vec4 color;
uniform vec3 theta;

void main()

{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians( theta );

vec3 c = cos( angles );

vec3 s = sin( angles );



Vertex Shader for
Rotation of Cube (2)

// Remember: these matrices are column-major

matd rx = matd( 1.
Q.
0.
0.

0.9, 0.0, 0.0,
C.X, S.X, 0.0,
-S.X, C.X, 0.0,
9.0, 0.9, 1.0 );

\o

O O OO O
“

\o

mat4 ry = mat4( c.y, 0.0, -s.y, 0.0,
.0, 1.0, 0.9, 0.0,
0.9, c.y, 0.0,

.0, 0.0, 0.0, 1.0 );

O n © N
<
-



Vertex Shader for
Rotation of Cube (3)

mat4 rz = mat4( c.z, -s.z, 0.0, 0.0,

s.z, C.z, 0.0, 0.0,
.0, 0.0, 1.0, 0.0,
0.0, 0.9, 0.9, 1.0 );

color = vColor;

gl Position = rz * ry * rx * vPosition;



Sending Angles from Application

GLuint thetalLoc; // theta uniform location
vec3 theta; // axis angles

void display( void )

{
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glUniform3fv( thetaloc, 1, theta );
glDrawArrays( GL_TRIANGLES, ©, NumVertices );



