Transformations

Prof. George Wolberg Dept. of Computer Science City College of New York

Objectives

- Introduce standard transformations
 - Rotations
 - Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

• A transformation maps points to other points and/or vectors to other vectors

Pipeline Implementation

Homogeneous Notation

- 3D points and vectors are represented as 4D points in homogeneous coordinates
 - 3D Vector: [x y z 0]
 - 3D Point: [x y z 1]
- Matrices used in 3D graphics are typically 4x4:

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} & A_{03} \\ A_{10} & A_{11} & A_{12} & A_{13} \\ A_{20} & A_{21} & A_{22} & A_{23} \\ A_{30} & A_{31} & A_{32} & A_{33} \end{bmatrix}$$

Identity Matrix

$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Matrix Multiplication

Multiplying a point (or vector) by a matrix:

(AX + BY + CZ + D)		ſA	В	С	D		$X \setminus$
EX + FY + GZ + H		E	F	G	H	L	$\left(\begin{array}{c} Y \end{array}\right)$
IX + JY + KZ + L] —	Ι	J	K	L	~	Z
MX + NY + OZ + P/	1	LM	N	0	P		1/

usually done "right to left"

Translation

• Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - Three degrees of freedom
 - P'=P+d

Object Translation

Every point in object is displaced by same vector

object

Translation Using Representations

Using the homogeneous coordinate representation in some frame $\mathbf{p} = [\mathbf{x} \mathbf{y} \mathbf{z} \mathbf{1}]^{\mathrm{T}}$ $\mathbf{p'} = [x' y' z' 1]^T$ $\mathbf{d} = [\mathbf{d}\mathbf{x} \ \mathbf{d}\mathbf{y} \ \mathbf{d}\mathbf{z} \ \mathbf{0}]^{\mathrm{T}}$ Hence $\mathbf{p'} = \mathbf{p} + \mathbf{d}$ or x' = x + dxnote that this expression is in four dimensions and expresses y' = y + dythat point = vector + pointz' = z + dz

Translation Matrix

We can also express translation using a 4×4 matrix T in homogeneous coordinates p'=Tp where

$$\mathbf{T} = \mathbf{T}(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Translation Matrix

$$\begin{pmatrix} X + T_X \\ Y + T_Y \\ Z + T_Z \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & T_X \\ 0 & 1 & 0 & T_Y \\ 0 & 0 & 1 & T_Z \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

in GLM:

- glm::translate(x,y,z)
- *mat4* * *vec4*

Scaling

Expand or contract along each axis (fixed point of origin)

Scaling

$$\begin{pmatrix} X * S_X \\ Y * S_Y \\ Z * S_Z \\ 1 \end{pmatrix} = \begin{bmatrix} S_X & 0 & 0 & 0 \\ 0 & S_Y & 0 & 0 \\ 0 & 0 & S_Z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

in GLM:

- glm::scale(x,y,z)
- *mat4* * *vec4*

Reflection

corresponds to negative scale factors

Rotation (2D)

- Consider rotation about the origin by θ degrees
 - radius stays the same, angle increases by $\boldsymbol{\theta}$

Rotation about the z-axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant \boldsymbol{z}

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$z' = z$$

- or in homogeneous coordinates

$$\mathbf{p'=R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- Same argument as for rotation about *z*-axis
 - For rotation about *x*-axis, *x* is unchanged
 - For rotation about *y*-axis, *y* is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation Matrices

Rotation around X by θ degrees

$$\begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Rotation around Y by θ degrees

$$\begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Rotation around Z by θ degrees

$$\begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

- *glm::rotate(mat4, θ, x, y, z)*
- mat4 * vec4

In the mid-1700s, the mathematician Leonhard Euler showed that a rotation around any desired axis could be specified instead as a combination of rotations around the X, Y, and Z axes.

These three rotation angles, around the respective axes, have come to be known as <u>Euler angles</u>.

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ $\mathbf{R}^{-1}(\theta) = \mathbf{R}^{T}(\theta)$
 - Scaling: S⁻¹(s_x , s_y , s_z) = S(1/ s_x , 1/ s_y , 1/ s_z)

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a composite matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Muliplying a Matrix by a Matrix

$$\begin{bmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ M & N & O & P \end{bmatrix} \bigstar \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

Aa+Be+Ci+Dm *Ma+Ne+Oi+Pm*

Ab+Bf+Cj+Dn Mb+Nf+Oj+Pn

Ac+Bg+Ck+Do Ad+Bh+Cl+Dp Ea+Fe+Gi+HmEb+Ff+Gj+HnEc+Fg+Gk+HoEd+Fh+Gl+HpIa+Je+Ki+LmIb+Jf+Kj+LnIc+Jg+Kk+LoId+Jh+Kl+Lp *Ec+Fg+Gk+Ho Ed+Fh+Gl+Hp* Mc+Ng+Ok+Po Md+Nh+Ol+Pp

Matrix Multiplication is Associative

New Point = $Matrix_1 * (Matrix_2 * (Matrix_3 * Point))$ New Point = $(Matrix_1 * Matrix_2 * Matrix_3) * Point$

and thus, equivalently:

```
Matrix_{C} = Matrix_{1} * Matrix_{2} * Matrix_{3}
New Point = Matrix<sub>C</sub> * Point
```

In this example, $Matrix_{C}$ is often called the <u>concatenation</u> of Matrix₁, Matrix₂, and Matrix₃

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

 $\mathbf{p'} = \mathbf{ABCp} = \mathbf{A}(\mathbf{B}(\mathbf{Cp}))$

 Note many references use column matrices to present points. In terms of column matrices

 \mathbf{p}^{T} , $= \mathbf{p}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the *x*, *y*, and *z* axes

 $\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \mathbf{R}_{y}(\theta_{y}) \mathbf{R}_{x}(\theta_{x})$

 $\theta_{x} \theta_{y} \theta_{z}$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

 $\mathbf{M} = \mathbf{T}(\mathbf{p}_{f}) \mathbf{R}(\theta) \mathbf{T}(-\mathbf{p}_{f})$

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along *x* axis

 $x' = x + y \cot \theta$ y' = yz' = z

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Transformations

- A vertex is transformed by 4×4 matrices
- All matrices are stored column-major in OpenGL
 - this is opposite of what "C" programmers expect
- Matrices are always post-multiplied
 - product of matrix and vector is $M \vec{\nu}$

$$\mathbf{M} = \begin{bmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$

Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Characteristic of many important transformations
 - Translation
 - Rotation
 - Scaling
 - Shear
- Line preserving

OpenGL Transformations

Prof. George Wolberg Dept. of Computer Science City College of New York

Objectives

- Learn how to carry out transformations in OpenGL
 - Rotation
 - Translation
 - Scaling
- Introduce QMatrix4x4 and QVector3D transformations
 - Model-view
 - Projection

Current Transformation Matrix (CTM)

- Conceptually there is a 4 x 4 homogeneous coordinate matrix, the *current transformation matrix* (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit

CTM operations

The CTM can be altered either by loading a new CTM or by postmutiplication
 Load an identity matrix: C ← I
 Load an arbitrary matrix: C ← M

Load a translation matrix: $C \leftarrow T$ Load a rotation matrix: $C \leftarrow R$ Load a scaling matrix: $C \leftarrow S$

Postmultiply by an arbitrary matrix: $C \leftarrow CM$ Postmultiply by a translation matrix: $C \leftarrow CT$ Postmultiply by a rotation matrix: $C \leftarrow CR$ Postmultiply by a scaling matrix: $C \leftarrow CS$

Rotation about a Fixed Point

Start with identity matrix: $C \leftarrow I$ Move fixed point to origin: $C \leftarrow CT$ Rotate: $C \leftarrow CR$ Move fixed point back: $C \leftarrow CT^{-1}$

Result: $C = TR T^{-1}$ which is **backwards**.

This result is a consequence of doing postmultiplications. Let's try again.

Reversing the Order

We want $C = T^{-1} R T$ so we must do the operations in the following order

 $C \leftarrow I$ $C \leftarrow CT^{-1}$ $C \leftarrow CR$ $C \leftarrow CT$

Each operation corresponds to one function call in the program.

The last operation specified is the first executed in the program!

Rotation, Translation, Scaling

Create an identity matrix:

QMatrix4x4 m; m.setToIdentity();

Multiply on right by rotation matrix of **theta** in degrees where (**vx**, **vy**, **vz**) define axis of rotation

```
m.rotate(theta, QVector3D(vx, vy, vz));
```

Do same with translation and scaling:

m.scale(sx, sy, sz);
m.translate(dx, dy, dz);

Example

• Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

QMatrix4x4 m; m.setToIdentity(); m.translate(1.0, 2.0, 3.0); m.rotate (30.0, QVector3D(0.0, 0.0, 1.0)); m.translate(-1.0,-2.0,-3.0);

Remember that the last matrix specified is the first applied

Arbitrary Matrices

- Can load and multiply by matrices defined in the application program
- Matrices are stored as one dimensional array of 16 elements which are the components of the desired 4 x 4 matrix stored by <u>columns</u>
- OpenGL functions that have matrices as parameters allow the application to send the matrix or its transpose

Vertex Shader for Rotation of Cube (1)

```
in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;
```

```
void main()
```

```
{
```

```
// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians( theta );
vec3 c = cos( angles );
vec3 s = sin( angles );
```

Vertex Shader for Rotation of Cube (2)

// Remember: these matrices are column-major

Vertex Shader for Rotation of Cube (3)

}

Sending Angles from Application

```
GLuint thetaLoc; // theta uniform location
vec3 theta; // axis angles
void display( void )
{
    glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
    glUniform3fv( thetaLoc, 1, theta );
    glDrawArrays( GL_TRIANGLES, 0, NumVertices );
}
```