
OpenGL Graphics Pipeline

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2

OpenGL

•Multiplatform 2D and 3D graphics API
• Incorporates hardware

- Provides a multi-stage graphics pipeline that is
partially programmable using a language called
GLSL (OpenGL Shading Language)

• Incorporates software
- Written in C; compatible with C/C++
- Programmer writes code that runs on CPU and

includes OpenGL calls: C++/OpenGL application
- Programmer’s GLSL code is installed on GPU

Components of a C++/OpenGL Application

Software components shown in pink

4

Overview

•Some of the code we write will be in C++ with
OpenGL calls

•Some of the code will be written in GLSL
•Our C++/OpenGL application will work with
GLSL modules, and the hardware, to create
our 3D graphics output

•Once the application is complete, the end
user will interact with the C++ application

5

GLSL

•GLSL is an example of a shader language
•Shader languages run on a GPU in the
context of a graphics pipeline

•There are other shader languages
- HLSL: works with Microsoft’s 3D framework DirectX

•GLSL is the specific shader language
compatible with OpenGL

•We will write shader code in GLSL, in addition
to our C++/OpenGL application code

6

OpenGL Pipeline

•Modern 3D graphics programming uses a
pipeline to convert a 3D scene into a 2D image

•The C++/OpenGL application sends graphics
data into the vertex shader

•Processing proceeds through the pipeline and
pixels emerge for display on the monitor

OpenGL Pipeline Overview

Stages shaded in blue are programmable

8

Programmable Stages

•The vertex, tessellation, geometry, and
fragment stages are programmable in GLSL

• It is one of the responsibilities of the
C++/OpenGL app to load GLSL programs into
these shader stages as follows:

- It uses C++ to obtain the GLSL shader code, either
from text files or hardcoded as strings

- It then creates OpenGL shader objects and loads the
GLSL code into them

- Finally, it uses OpenGL commands to compile and
link objects and install them on the GPU

9

Programmable Stages

•GLSL code for the vertex and fragment stages
is required

•The tessellation and geometry stages are
optional

10

Pipeline with Required Stages Only

•Process 3D objects one at a time in the
order they are generated by the application

- Can consider only local lighting
•Pipeline architecture

•All steps can be implemented in hardware
on the graphics card

application
program display

11

Following the Graphics Pipeline:
Vertex Processing

• Much of the work in the pipeline is in converting
object representations from one coordinate
system to another

- Object coordinates
- Camera (eye) coordinates
- Screen coordinates

• Every change of coordinates is equivalent to a
matrix transformation

• Vertex processor also computes vertex colors

12

Projection

•Projection is the process that combines
the 3D viewer with the 3D objects to
produce the 2D image

- Perspective projections: all projectors meet at
the center of projection

- Parallel projection: projectors are parallel,
center of projection is replaced by a direction of
projection

13

Perspective Projection

Projectors converge at center of projection (COP)

COP

14

Perspective Projection

15

Parallel Projection

16

Primitive Assembly

•The fundamental unit of rendering in OpenGL
is known as the primitive.

•The three basic primitive types are points,
lines, and triangles.

•Vertices must be collected into primitives
before clipping and rasterization can take place

17

Clipping

Just as a real camera cannot “see” the
whole world, the virtual camera can only
see part of the world or object space

- Objects that are not within this volume are said
to be clipped out of the scene

18

Specification of Virtual Camera

•Six degrees of freedom
- Position of center of lens
- Orientation

•Lens
•Film size
•Orientation of film plane

19

Rasterization

• If an object is not clipped out, the appropriate pixels in
the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each object
• Fragments are “potential pixels”

- Have a location in frame buffer
- Color and depth attributes

• Vertex attributes are interpolated over objects by the
rasterizer

Putting It All Together

20

• Vertices stream into vertex processor and are
transformed into new vertices

• These vertices are collected to form primitives
• Primitives are rasterized to form fragments
• Fragments are colored by fragment processor

21

Fragment Processing

•Fragments are processed to determine
the color of the corresponding pixel in the
frame buffer

•Colors can be determined by texture
mapping or interpolation of vertex colors

•Fragments may be blocked by other
fragments closer to the camera

- Hidden-surface removal

22

C++/OpenGL Application

•Bulk of graphics application is written in C++
•The application may interact with the end
user using standard C++ libraries

•For 3D rendering tasks, it uses OpenGL calls
•Several additional libraries may be used:

- GLEW (OpenGL extension wrangler)
- GLM (OpenGL Math library)
- SOIL2 (Simple OpenGL Image Loader)
- GLFW (OpenGL Framework)

23

C++/OpenGL Application

•GLFW library includes a class called
GLFWwindow on which we can draw 3D scenes

• In the next example, we use main() to:
- Call glfwInit() to initialize the GLFW library
- Call glfwCreateWindow() to instantiate a GLFWwindow
- Call glewInit() to initialize the GLEW library
- Call init() once for application-specific tasks
- Call display() repeatedly to draw to the GLFWwindow

•glClearColor() specifies the background color
•glClear() clears window with background color

void init(GLFWwindow* window) { }
void display(GLFWwindow* window, double currentTime) {

glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

}
int main(void) {

if (!glfwInit()) { exit(EXIT_FAILURE); }
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow* window = glfwCreateWindow(600, 600, "Chapter2 - program1", NULL, NULL);
glfwMakeContextCurrent(window);
if (glewInit() != GLEW_OK) { exit(EXIT_FAILURE); }
glfwSwapInterval(1);
init(window);
while (!glfwWindowShouldClose(window)) {

display(window, glfwGetTime());
glfwSwapBuffers(window);
glfwPollEvents();

}
glfwDestroyWindow(window);
glfwTerminate();
exit(EXIT_SUCCESS);

}

Simple C++/OpenGL Application

(#includes and namespace not shown)

25

C++/OpenGL Application

•The window hints specify that the machine must
be compatible with OpenGL version 4.3

•The parameters of glfwCreateWindow() specify
the width and height of the window (in pixels)
and the title placed at the top of the window

•The additional two parameters (NULL) allow for
full screen mode and resource sharing

•Vertical synchronization (VSync) is enabled by
using glfwSwapInterval() and glfwSwapBuffers()

26

C++/OpenGL Application

•By default, GLFW windows are double buffered
•Creating the GLFW window doesn’t
automatically make the OpenGL context current

- We must therefore call glfwMakeContextCurrent()
• glfwSwapBuffers() paints the screen
•glfwPollEvents() handles other window-related
events such as a key being pressed

•The loop terminates when GLFW detects an
event that should close the window (such as
clicking the X in the upper right corner)

Running the Application

28

Primitives

•OpenGL can only draw a few simple things:
- points, lines, or triangles

•These simple things are called primitives
•Most 3D models are made up of lots of
primitives, usually triangles

•Primitives are made up of vertices
- For example, a triangle consists of three vertices

•Vertices can come from a variety of sources
- Read from files and loaded into buffers
- Hardcoded in the C++ or GLSL code

29

C++/OpenGL program

• The C++/OpenGL program must first compile and link
appropriate GLSL vertex and fragment shader programs, and
load them into the pipeline

• The C++/OpenGL program also tells OpenGL to construct
triangles:

- glDrawArrays(GLenum mode, GLint first, GLsizei count)
- The mode is the type of primitive (GL_TRIANGLES)
- first indicates which vertex to start with (vertex 0 is first)
- The count specifies total number of vertices to be drawn

• When glDrawArrays() is called, the GLSL code in the pipeline
starts executing

30

Adding Vertex and Fragment Shaders

• All vertices pass through the vertex shader
• The shader is executed once per vertex
• Vertex shader may execute millions of times for large models
• To display vertex, we also need to provide a fragment shader
• For simplicity, we will declare the two shader programs as

arrays of strings

Adding Vertex and Fragment Shaders

#define numVAOs 1
GLuint renderingProgram;
GLuint vao[numVAOs];

void display(GLFWwindow* window, double currentTime) {
glUseProgram(renderingProgram);
glDrawArrays(GL_POINTS, 0, 1);

}

void init(GLFWwindow* window) {
renderingProgram = createShaderProgram();
glGenVertexArrays(numVAOs, vao);
glBindVertexArray(vao[0]);

}

(continued)

GLuint createShaderProgram() {
const char *vshaderSource =

"#version 430 \n"
"void main(void) \n"
"{ gl_Position = vec4(0.0, 0.0, 0.0, 1.0); }";

const char *fshaderSource =
"#version 430 \n"
"out vec4 color; \n"
"void main(void) \n"
"{ color = vec4(0.0, 0.0, 1.0, 1.0); }";

GLuint vShader = glCreateShader(GL_VERTEX_SHADER);
GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(vShader, 1, &vshaderSource, NULL);
glShaderSource(fShader, 1, &fshaderSource, NULL);
glCompileShader(vShader);
glCompileShader(fShader);
GLuint vfProgram = glCreateProgram();
glAttachShader(vfProgram, vShader);
glAttachShader(vfProgram, fShader);
glLinkProgram(vfProgram);
return vfProgram;

}

33

Notes
• GLuint refers to the unsigned int data type
• init() now calls createShaderProgram() to read two hard-

coded strings for the vertex and fragment shaders
- vshaderSource is the character string that stores vertex shader code
- fshaderSource is the character string that stores fragment shader code

• We call glCreateShader() twice to create the two shader
objects and return an integer ID for each that is an index
for referencing it later

- vShader and fShader are the two integer IDs
• glShaderSource() loads the GLSL code from the strings

into the empty shader objects indexed by the integer IDs.
- The number of lines of code in each shader is listed as one.

• The shaders are then compiled using glCompileShader()

34

Notes
• An empty OpenGL program object is created using

glCreateProgram() to hold a series of compiled shaders
• glAttachShader() is called twice to attach the compiled

vertex and fragment shaders
• glLinkProgram() is called to request the GLSL compiler to

ensure that the attached shaders are compatible

35

display()
• After init(), the display() function is called repeatedly
• It calls glUseProgram(), which loads the program

containing the two compiled shaders into the OpenGL
pipeline stages (onto the GPU)

• glUseProgram() doesn’t run the shaders; it just loads them
onto the hardware

• glDrawArrays() is called to initiate pipeline processing
• GL_POINTS (points) is the primitive type to be displayed
• Only a single point is displayed in this simple example

Running the Application

37

Vertex Shader
#version 430
void main(void) {

gl_Position = vec4(0.0, 0.0, 0.0, 1.0);
}
• The vertex shader is run once for each vertex
• The first line indicates the OpenGL version: 4.3
• The built-in variable gl_Position is used to set vertex position
• The GLSL datatype vec4 holds a 4-tuple (e.g., (0,0,0,1))
• The vertices move through the pipeline to the rasterizer

where they are transformed into pixel locations (fragments)
• These pixels (fragments) reach the fragment shader

38

Fragment Shader
#version 430
out vec4 color;
void main(void) {

color = vec4(0.0, 0.0, 1.0, 1.0);
}
• The fragment shader is run once for each fragment
• Its purpose is to set the RGBA color of pixel to be displayed
• In this case, the color is blue (0,0,1) and the opacity is 1
• The out tag indicates that the variable color is an output
• It wasn’t necessary to specify an out tag for gl_Position in

the vertex shader because it is a predefined output variable

39

Vertex Array Buffer
• init() contained the following two lines:

glGenVertexArrays(numVAOs, vao); // numVAOs = 1
glBindVertexArray(vao[0]);

• Data is organized into buffers when sent down the pipeline
• Those buffers are organized into Vertex Array Objects (VAOs)
• We didn’t need any buffers since we only displayed one point
• However, OpenGL still requires at least one VAO be created

whenever shaders are being used, even if the application isn’t
using any buffers

40

Rasterization
• How does the vertex that comes out of the vertex shader

become a pixel in the fragment shader?
• The rasterization stage between the vertex and fragment

shaders is responsible for converting primitives into pixels
• The default size of an OpenGL point is one pixel, so that is

why our single point was rendered as a single pixel
• If we add glPointSize(30.), then point is rendered as 30 pixels

41

Rasterization
• When a 3D object is rasterized, OpenGL converts the

primitives in the object (usually triangles) into fragments
• A fragment holds the information associated with a pixel
• Rasterization determines the pixel locations to be drawn in

order to produce the triangle specified by its three vertices
• The process starts by interpolating, pairwise, between the

three vertices of the triangle

42

Wire Frame
• Instead of filling with rasterization, we can draw a wireframe:

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

43

Example
• Torus with fully rasterized primitives (left) and with wireframe

grid superimposed (right)

Torus with fully rasterized primitives Wireframe grid superimposed

44

Pixel Operations
• We expect to see objects in front to block our view of

objects behind them
• We expect to see the front of an object, but not its back
• To achieve this, we need hidden surface removal (HSR)
• This phase is not programmable, but we need to

understand how it works and how to configure it
• It will be useful later when including shadows in our scene

45

Hidden Surface Removal
• Accomplished through the cleverly coordinated use of two

buffers: the color buffer and the depth (Z) buffer
• There is an entry in each buffer for every pixel on the

screen
• As various objects are drawn in a scene, pixel colors are

generated by the fragment shader and placed in the color
buffer, which is ultimately written to the screen

• When multiple objects occupy the same pixels in the color
buffer, a determination must be made as to which pixel
colors are retained, based on which object is nearest the
viewer

46

Hidden Surface Removal
• Hidden surface removal is done as follows:
• Fill the depth buffer with values representing maximum depth
• As a pixel color is output by the fragment shader, its distance

from the viewer is calculated
• If the computed distance is less than the distance stored in

the depth buffer for that pixel, then
- (a) the pixel color replaces the color in the color buffer, and
- (b) the computed distance replaces the value in the depth buffer
- (c) otherwise the pixel is discarded

• This procedure is called the Z-buffer algorithm

Color [] [] colorBuf = new Color [pixelRows][pixelCols];
double [] [] depthBuf = new double [pixelRows][pixelCols];

for (each row and column) { // initialize color and depth buffers
colorBuf [row][col] = backgroundColor;
depthBuf [row][col] = far away;

}

for (each shape) { // update buffers when new pixel is closer
for (each pixel in the shape) {

if (depth at pixel < depthBuf value) {
depthBuf [pixel.row][pixel.col] = depth at pixel;
colorBuf [pixel.row][pixel.col] = color at pixel;

}
}

}

return colorBuf;

Hidden Surface Removal (HSR)
(Z-Buffer Algorithm)

48

Building Objects from Vertices
• Consider drawing objects of more than just a single point
• We now extend our code to draw objects of many vertices
• Begin with a simple example: define three vertices and use

them to draw a triangle
- Our vertex shader will be modified to output three different vertices to

subsequent stages of the pipeline
- glDrawArrays() will be modified to specify that we are using three vertices

• In the glDrawArrays() function in the C++/OpenGL code, we
specify GL_TRIANGLES instead of GL_POINTS, and also
specify that there are three vertices sent through the pipeline

• This causes the vertex shader to run three times, and at each
iteration, the built-in variable gl_VertexID is automatically
incremented (it is initially set to 0)

Vertex Shader
#version 430
void main(void) {

switch(gl_VertexID) {
case 0: gl_Position = vec4(0.25, -0.25, 0.0, 1.0); break;
case 1: gl_Position = vec4(-0.25, -0.25, 0.0, 1.0); break;
default: gl_Position = vec4(0.25, 0.25, 0.0, 1.0); break;
}

}

C++/OpenGL application -- in display()
. . .
glDrawArrays(GL_TRIANGLES, 0, 3);

Building Objects from Vertices

The Application Draws a Triangle

51

• We constructed main() to make a single call to init() and call
display() repeatedly

• While preceding examples may have appeared to be a single
fixed rendered scene, in actuality the loop in main() was
causing it to be drawn over and over again

• Our main() is already structured to support animation
• We simply design our display() to alter what it draws over time
• Each rendering of our scene is called a frame, and the

frequency of the calls to display() is called the frame rate

Adding Animation

in C++/OpenGL application:
. . .
float x = 0.0f; // location of triangle on x axis
float inc = 0.01f; // offset for moving the triangle

void display(GLFWwindow* window, double currentTime) {
glClear(GL_DEPTH_BUFFER_BIT);
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT); // clear the background to black, each time
glUseProgram(renderingProgram);
x += inc; // move the triangle along the x axis
if (x > 1.0f) inc = -0.01f; // switch to moving the triangle to the left
if (x < -1.0f) inc = 0.01f; // switch to moving the triangle to the right

GLuint offsetLoc = glGetUniformLocation(renderingProgram, "offset"); // get pointer to “offset”
glProgramUniform1f(renderingProgram, offsetLoc, x); // send value in “x” to “offset”
glDrawArrays(GL_TRIANGLES, 0, 3);

}
(continued)

Adding Animation

in Vertex shader:

#version 430
uniform float offset;
void main(void)
{ if (gl_VertexID == 0) gl_Position = vec4(0.25 + offset, -0.25, 0.0, 1.0);

else if (gl_VertexID == 1) gl_Position = vec4(-0.25 + offset, -0.25, 0.0, 1.0);
else gl_Position = vec4(0.25 + offset, 0.25, 0.0, 1.0);

}

Adding Animation

	OpenGL Graphics Pipeline
	OpenGL
	Slide Number 3
	Overview
	GLSL
	OpenGL Pipeline
	Slide Number 7
	Programmable Stages
	Programmable Stages
	Pipeline with Required Stages Only
	Following the Graphics Pipeline:�Vertex Processing
	Projection
	Perspective Projection
	Perspective Projection
	Parallel Projection
	Primitive Assembly
	Clipping
	Specification of Virtual Camera
	Rasterization
	Putting It All Together
	Fragment Processing
	C++/OpenGL Application
	C++/OpenGL Application
	Slide Number 24
	C++/OpenGL Application
	C++/OpenGL Application
	Slide Number 27
	Primitives
	C++/OpenGL program
	Adding Vertex and Fragment Shaders
	Slide Number 31
	Slide Number 32
	Notes
	Notes
	display()
	Slide Number 36
	Vertex Shader
	Fragment Shader
	Vertex Array Buffer
	Rasterization
	Rasterization
	Wire Frame
	Example
	Pixel Operations
	Hidden Surface Removal
	Hidden Surface Removal
	Slide Number 47
	Building Objects from Vertices
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53

