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Objectives

• This lecture reviews filtering theory.

- Linearity and spatial-invariance (LSI)

- Impulse response

- Sifting integral

- Convolution
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• We use two criteria for filters: linearity and spatial-invariance

Definitions
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• Physically realizable filters (lenses) are rarely LSI filters.

- Optical systems impose a limit in their maximum response.

- Power can’t be negative, imposing a limit on the minimum response.

- Lens aberrations and finite image area prevent LSI property.

• Nevertheless, close enough to approximate as LSI.

LSI Filter
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Impulse Response
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(x) is the impulse function, or Dirac delta function which is a 

continuous function.
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Convolution

• Any input signal can be represented by an infinite sum of shifted and 

scaled impulses:

Convolution:

Input
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Discrete Case

• Output function is a scaled shifted version of impulse response.

, *: convolution operator

h(x): convolution kernel, filter kernel

• If h(x) = (x) then we have an ideal filter: output = input.

• Usually h(x) extends over several neighbors.

• Discrete convolution:
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Example: Triangle Filter

• Linearity rule: scale h(x) according to f(x) and add g1, g2.

• Obtain f(x) for any x by sampling the reconstructed g(x).
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Convolution Summation

• g(x) is a continuous convolution summation to compute at 

particular values at x.
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If x1=0 and x2=1 then g(x)=f1(1-x)+f2x
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A Closer Look At the Convolution Integral
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Mirrored Kernel

• Why fold over (mirror) kernel h(x)?

• Why not use

• We typically use symmetric kernels: h(-x) = h(x)
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Impulse Function 

• Impulse function (or Dirac delta function) is defined as 

• It can be used to sample a continuous function f(x) at 

any point x0, as follows:
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Impulse Response 

• When an impulse is applied to a filter, an altered 

impulse, (the impulse response) is generated at the 

output.

• The first direct outcome of LSI is that the filter can be 

uniquely characterized by its impulse response.
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Sifting Integral

• Any continuous input signal can be represented in the 

limit by an infinite sum of shifted and scaled impulses.

• This is an outcome of the sifting integral:

which uses signal f(x) to scale the collection of impulses:
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Convolution Integral (1)

• The response g(x) of a digital filter to an arbitrary input 
signal f(x) is expressed in terms of the impulse response 
h(x) of the filter by means of convolution integral:

- where * denotes the convolution operation,

- h(x) is used as the convolution (filter) kernel, and 

-  is the dummy variable of integration.

• Kernel h(x) is treated as a sliding window that is shifted 
across the entire input signal.

• As h(x) makes its way across f(x), a sum of the pointwise 
products between the two functions is taken and assigned 
to output g(x).
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Convolution Integral (2)

• This process, known as convolution, is of fundamental 

importance to linear filtering theory.

• It simply states that the output of an LSI filter will be a 

superposition of shifted and scaled impulse responses.

• This is used to explain how a continuous image is blurred 

by a camera as it passes through the lens.

- In this context, h(x) is known as the point spread function (PSF), 

reflecting the limitation of the camera to accurately resolve a small 

point without somewhat blurring it.

output
Filter
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Evaluation

• We can arrive at g(x) in two ways:

- Graphical construction of a series of shifted/scaled impulse responses

- Computing the convolution summation at all points of interest

• Graphical construction more closely follows the physical 

process as an input signal passes through a filter.

• Convolution summation more closely follows the practical 

evaluation of g(x) at a finite number of desired points.

- instead of adding scaled and shifted unit impulse responses 

(responses of unit impulses), we center the unit impulse response at 

the point of interest.
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Graphical Construction
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Convolution Summation (1)

• Instead of adding scaled/shifted unit impulse responses, 
center unit impulse response at point of interest:

• As  increases, we scan f() from left to right. However, 
h(x0- ) is scanned from right to left.

• Reason: points to the left of x0 had contributed to x0 

through the right side of h (see graphical construction).
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Convolution Summation (2)

• More straightforward: implement convolution if both the

input and the kernel were scanned in the same direction.

• This permits direct pointwise multiplication among them.

• Thus, flip kernel before centering it on output position.
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f4=3
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Convolution Summation (3)

• will yield the value for g(x0), where hi = h(xi-x0).

• Rationale: multiplying the unit impulse response h with fi,
h is being scaled. The distance between x0 and xi

accounts for the effect of a shifted response function on

the current output.

• For most impulse response functions, h will taper off with

increasing distance from its center.

• If the kernel is symmetric (h(x)=h(-x)), it is not necessary

to flip the kernel before centering.
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• The kernel is often a discrete set of weights, i.e., a 3x3 filter kernel.

• As long as kernel is shifted in pixel (integer) increments across the 

image, there is no alignment problem with underlying image.

• However, for noninteger pixel increments the kernel values may have 

no corresponding image values.

Discrete Convolution (1)
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Discrete Convolution (2)

There are two possible solutions to this problem:

1. Represent h in analytic form for evaluation anywhere

Ex: Let bell-shape PSF be h(x)=2-4x2
. The appropriate weight to

apply to fi can be obtained by setting x to the difference between the

center of the bell (impulse response) and the position of the fi.

2. Supersample h so that a dense set of samples are used to

represent h. The supersampled version will then be aligned with

the image data, or at least it will have values that are nearby.

f1

f2
f3

f4

f5

Supersampled kernel

Closest kernel samples from supersampled set

If the kernel is known to be slid across the

image at fixed increments, then the kernel

can be sampled at known positions.

Ex: a 1/3 increment requires the kernel to

Be sampled three times per unit interval.



24Wolberg: Image Processing Course Notes

Example
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