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Objectives

• In this lecture we review digital halftoning techniques to convert grayscale 
images to bitmaps:

- Unordered (random) dithering
- Ordered dithering
- Patterning
- Error diffusion
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Background

• An 8-bit grayscale image allows 256 distinct gray levels.
• Such images can be displayed on a computer monitor if the hardware supports the 

required number of intensity levels.
• However, some output devices print or display images with much fewer gray levels.
• In these cases, the grayscale images must be converted to binary images, where 

pixels are only black (0) or white (255). 
• Thresholding is a poor choice due to objectionable artifacts.
• Strategy: sprinkle black-and-white dots to simulate gray.
• Exploit spatial integration (averaging) performed by eye.
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Thresholding

• The simplest way to convert from grayscale to binary.

0 255 vinthr

vout

8 bpp (256 levels) 1 bpp (two-level)

Loss of information is unacceptable.
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Unordered Dither (1)

• Reduce quantization error by adding uniformly distributed white noise 
(dither signal) to the input image prior to quantization.

• Dither hides objectional artifacts.
• To each pixel of the image, add a random number in the range [-m, 

m], where m is MXGRAY/quantization-levels.

0 255 vinthr

vout

8 bpp (256 levels)

Uniform
noise

3 bpp (8 levels)
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Unordered Dither (2)

1 bpp

Quantization

Dither/
Quantization

2 bpp 3 bpp 4 bpp
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Ordered Dithering

• Objective: expand the range of available intensities. 
• Simulates n bpp images with m bpp, where n>m (usually m = 1).
• Exploit eye’s spatial integration. 

- Gray is due to average of black/white dot patterns.
- Each dot is a circle of black ink whose area is proportional to ( 1 – intensity).
- Graphics output devices approximate the variable circles of halftone reproductions.

• 2 x 2 pixel area of a bilevel display produces 5 intensity levels.
• n x n group of bilevel pixels produces n2+1 intensity levels.
• Tradeoff: spatial vs. intensity resolution.
 

0 1 2 3 4
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Dither Matrix (1)

• Consider the following 2x2 and 3x3 dither matrices:

• To display a pixel of intensity I, we turn on all pixels whose associated dither matrix 
values are less than I.

• The recurrence relation given below generates larger dither matrices of dimension n x n, 
where n is a power of 2.

 where U(n) is an n x n matrix of 1’s.
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• Example: a 4x4 dither matrix can be derived from the 2x2 matrix.

Dither Matrix (2)
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Patterning

• Let the output image be larger than the input image.
• Quantize the input image to [0…n2] gray levels.
• Threshold each pixel against all entries in the dither matrix.

- Each pixel forms a 4x4 block of black-and-white dots for a D(4) matrix.
- An n x n input image becomes a 4n x 4n output image.

• Multiple display pixels per input pixel.
• The dither matrix Dij

(n) is used as a spatially-varying threshold.
• Large input areas of constant value are displayed exactly as before.

n
n

4n

4n
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Implementation

• Let the input and output images share the same size.
• First quantize the input image to [0…n2] gray levels.
• Compare the dither matrix with the input image.

for(y=0; y<h; y++) // visit all input rows
 for(x=0; x<w; x++){ // visit all input cols
  i = x % n;  // dither matrix index
  j = y % n;  // dither matrix index

  // threshold pixel using dither value Dij(n)  
out[y*w+x] = (in[y*w+x] > Dij(n))? 255 : 0;

 }
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Examples

1 bpp (D4)

8 bpp (256 levels) 1 bpp (D3)

1 bpp (D8)
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Error Diffusion

• An error is made every time a grayvalue is assigned to be black or white at 
the output.

• Spread that error to its neighbors to compensate for over/undershoots in 
the output assignments

- If input pixel 130 is mapped to white (255) then its excessive brightness (255-130) must 
be subtracted from neighbors to enforce a bias towards darker values to compensate 
for the excessive brightness.

• Like ordered dithering, error diffusion permits the output image to share the 
same dimension as the input image.
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Floyd-Steinberg Algorithm
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Error Diffusion Weights

• Note that visual improvements are possible if left-to-right scanning among rows is replaced by 
serpentine scanning (zig-zag). That is, scan odd rows from left-to right, and scan even rows from 
right-to-left.

• Further improvements can be made by using larger neighborhoods.
• The sum of the weights should equal 1 to avoid emphasizing or suppressing the spread of errors.

16/116/516/3
16/7x→

Floyd-Steinberg

48/148/348/548/348/1
48/348/548/748/548/3
48/548/7x

Jarvis-Judice-Ninke

42/142/242/442/242/1
42/242/442/842/442/2
42/442/8x

Stucki



16Wolberg: Image Processing Course Notes

Examples (1)

Floyd-Steinberg Jarvis-Judice-Ninke
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Examples (2)

Floyd-Steinberg Jarvis-Judice-Ninke
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Examples (3)

Floyd-Steinberg Jarvis-Judice-Ninke
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Implementation
thr = MXGRAY /2;   // init threshold value
for(y=0; y<h; y++){   // visit all input rows
 for(x=0; x<w; x++) {  // visit all input cols
  *out = (*in < thr)?  // threshold
   BLACK : WHITE; // note: use LUT!

  e = *in - *out;  // eval error
  in[ 1 ] +=(e*7/16.);  // add error to E  nbr
  in[w-1] +=(e*3/16.);  // add error to SW nbr
  in[ w ] +=(e*5/16.); // add error to S  nbr
  in[w+1] +=(e*1/16.); // add error to SE nbr

  in++;    // advance input  ptr
  out++;    // advance output ptr
 }
}
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Comments

• Two potential problems complicate implementation:
- errors can be deposited beyond image border
- errors may force pixel grayvalues outside the [0,255] range

True for all
neighborhood ops

16/116/516/3
16/7x→

Floyd-Steinberg

Right border

Bottom border

48/148/348/548/348/1
48/348/548/748/548/3
48/548/7x

Jarvis-Judice-Ninke

Right border
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Solutions to Border Problem (1)

• Perform if statement prior to every error deposit
- Drawback: inefficient / slow

• Limit excursions of sliding weights to lie no closer than 1 pixel from 
image boundary (2 pixels for J-J-N weights).

- Drawback: output will be smaller than input
• Pad image with extra rows and columns so that limited excursions will 

yield smaller image that conforms with original input dimensions. 
Padding serves as placeholder.

- Drawback: excessive memory needs for intermediate image

input padded input output
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Solutions to Border Problem (2)

• Use of padding is further undermined by fact that 16-bit precision (short) 
is needed to accommodate pixel values outside [0, 255] range.

• A better solution is suggested by fact that only two rows are active while 
processing a single scanline in the Floyd-Steinberg algorithm (3 for JJN).

• Therefore, use a 2-row (or 3-row) circular buffer to handle the two (or three) 
current rows.

• The circular buffer will have the necessary padding and 16-bit precision.
• This significantly reduces memory requirements.
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Circular Buffer

0
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2
1
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3
4

0
1
2
3
4
5

input circular buffer
  (snapshots)

0
1
2
3
4
5

output
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New Implementation
thr = MXGRAY /2;  // init threshold value
copyRowToCircBuffer(0); // copy row 0 to circular buffer
for(y=0; y<h; y++){  // visit all input rows
 copyRowToCircBuffer(y+1); // copy next row to circ buffer
 in1 = buf[  y  %2] + 1; // circ buffer ptr; skip over pad
 in2 = buf[(y+1)%2] + 1; // circ buffer ptr; skip over pad
 for(x=0; x<w; x++) {  // visit all input cols
  *out = (*in1 < thr)? BLACK : WHITE; // threshold
    
  e = *in1 - *out; // eval error
  in1[ 1] +=(e*7/16.); // add error to E  nbr
  in2[-1] +=(e*3/16.); // add error to SW nbr
  in2[ 0] +=(e*5/16.); // add error to S  nbr
  in2[ 1] +=(e*1/16.); // add error to SE nbr

  in1++; in2++  // advance circ buffer ptrs
  out++;   // advance output ptr
 }
}
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200 90 100
50 200 80

? ? ?
? ? ?

Floyd-Steinberg

x 90 100
50 200 80

255 ? ?
? ? ?

x 66 100

33 197 80
e = 200 - 255 = -55

x x 100
33 177 80

255 0 ?
? ? ?

x x 128
45 217 94e = 65-0 = 65

x x x
45 197 94

255 0 255
? ? ?

e = 128-255 = -127
x x x
45 173 54

x x x
x 173 54

255 0 255
0 ? ?

x x x
x 193 54

e = 45 – 0 = 45

x x x
x x 54

255 0 255
0 255 ?

e = 193 – 255 = -62
x x x
x x 26

x x x
x x x

255 0 255
0 255 0

X
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Pintillism Art

•A new artform that leverages error 
diffusion to recreate images with tens 
of thousands of pins

• Image tonalities are reproduced by 
varying the pin density

- Dark regions use a higher density of pins
- Lighter regions use a lower pin density

•Pintillism is painting with pins
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Pointillism

• Developed by Impressionist artists Seurat and Signac in the 1880’s
• Art consists of intricate placement of spots of color
• Exploits viewer’s ability to visually blend together color spots
• Pintillism is related to pointillism since spots are replaced with pins
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Georges Seurat
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Georges Seurat
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Georges Seurat
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Stippling

• Uses small dots for creating imagery
• Stippling is completed in black and white, while pointillism uses color
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Stippling
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Stippling
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Pintillism Video
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Allure of Pintillism
• Distills images into primitive dot patterns
• Challenges our brain to fuse them to perceive continuous tones
• The economy of dots is a refreshing counterpoint to images marked by 

hyper-resolution and color vibrancy
• Pintillism sits at the opposite end of the spectrum

- Allows us to relish in its abstraction
- Engages us to interact with the piece to explore meaning from multiple 

viewpoints and levels of resolution
• Extruding flat dots into their 3D counterparts is a 21st century twist that 

allows us to add another dimension to the classic art form of pointillism
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Example

Input Remove background 
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Example
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Example
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