
Digital Halftoning

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2Wolberg: Image Processing Course Notes

Objectives

• In this lecture we review digital halftoning techniques to convert grayscale
images to bitmaps:

- Unordered (random) dithering
- Ordered dithering
- Patterning
- Error diffusion

3Wolberg: Image Processing Course Notes

Background

• An 8-bit grayscale image allows 256 distinct gray levels.
• Such images can be displayed on a computer monitor if the hardware supports the

required number of intensity levels.
• However, some output devices print or display images with much fewer gray levels.
• In these cases, the grayscale images must be converted to binary images, where

pixels are only black (0) or white (255).
• Thresholding is a poor choice due to objectionable artifacts.
• Strategy: sprinkle black-and-white dots to simulate gray.
• Exploit spatial integration (averaging) performed by eye.

4Wolberg: Image Processing Course Notes

Thresholding

• The simplest way to convert from grayscale to binary.

0 255 vinthr

vout

8 bpp (256 levels) 1 bpp (two-level)

Loss of information is unacceptable.

5Wolberg: Image Processing Course Notes

Unordered Dither (1)

• Reduce quantization error by adding uniformly distributed white noise
(dither signal) to the input image prior to quantization.

• Dither hides objectional artifacts.
• To each pixel of the image, add a random number in the range [-m,

m], where m is MXGRAY/quantization-levels.

0 255 vinthr

vout

8 bpp (256 levels)

Uniform
noise

3 bpp (8 levels)

6Wolberg: Image Processing Course Notes

Unordered Dither (2)

1 bpp

Quantization

Dither/
Quantization

2 bpp 3 bpp 4 bpp

7Wolberg: Image Processing Course Notes

Ordered Dithering

• Objective: expand the range of available intensities.
• Simulates n bpp images with m bpp, where n>m (usually m = 1).
• Exploit eye’s spatial integration.

- Gray is due to average of black/white dot patterns.
- Each dot is a circle of black ink whose area is proportional to (1 – intensity).
- Graphics output devices approximate the variable circles of halftone reproductions.

• 2 x 2 pixel area of a bilevel display produces 5 intensity levels.
• n x n group of bilevel pixels produces n2+1 intensity levels.
• Tradeoff: spatial vs. intensity resolution.

0 1 2 3 4

8Wolberg: Image Processing Course Notes

Dither Matrix (1)

• Consider the following 2x2 and 3x3 dither matrices:

• To display a pixel of intensity I, we turn on all pixels whose associated dither matrix
values are less than I.

• The recurrence relation given below generates larger dither matrices of dimension n x n,
where n is a power of 2.

 where U(n) is an n x n matrix of 1’s.

=

=

725
301
486

13
20)3()2(DD

++
++

=)2/()2(
11

)2/()2/()2(
10

)2/(

)2/()2(
01

)2/()2/()2(
00

)2/(
)(

44
44

nnnn

nnnn
n

UDDUDD
UDDUDD

D

9Wolberg: Image Processing Course Notes

• Example: a 4x4 dither matrix can be derived from the 2x2 matrix.

Dither Matrix (2)

=

513715
91113
614412

10280

)4(D

13 14 15 16

9

5

1 2 3 4

12

8

10Wolberg: Image Processing Course Notes

Patterning

• Let the output image be larger than the input image.
• Quantize the input image to [0…n2] gray levels.
• Threshold each pixel against all entries in the dither matrix.

- Each pixel forms a 4x4 block of black-and-white dots for a D(4) matrix.
- An n x n input image becomes a 4n x 4n output image.

• Multiple display pixels per input pixel.
• The dither matrix Dij

(n) is used as a spatially-varying threshold.
• Large input areas of constant value are displayed exactly as before.

n
n

4n

4n

11Wolberg: Image Processing Course Notes

Implementation

• Let the input and output images share the same size.
• First quantize the input image to [0…n2] gray levels.
• Compare the dither matrix with the input image.

for(y=0; y<h; y++) // visit all input rows
 for(x=0; x<w; x++){ // visit all input cols
 i = x % n; // dither matrix index
 j = y % n; // dither matrix index

 // threshold pixel using dither value Dij(n)
out[y*w+x] = (in[y*w+x] > Dij(n))? 255 : 0;

 }

12Wolberg: Image Processing Course Notes

Examples

1 bpp (D4)

8 bpp (256 levels) 1 bpp (D3)

1 bpp (D8)

13Wolberg: Image Processing Course Notes

Error Diffusion

• An error is made every time a grayvalue is assigned to be black or white at
the output.

• Spread that error to its neighbors to compensate for over/undershoots in
the output assignments

- If input pixel 130 is mapped to white (255) then its excessive brightness (255-130) must
be subtracted from neighbors to enforce a bias towards darker values to compensate
for the excessive brightness.

• Like ordered dithering, error diffusion permits the output image to share the
same dimension as the input image.

14Wolberg: Image Processing Course Notes

Floyd-Steinberg Algorithm

Threshold

Distribute

Error (wij)

f(x, y) f *(x, y) g(x, y)

e(x, y)

∑∑

∑∑

=

−=

 >

=

=−−+=

i j
ij

i j
ij

w
yxgyxfyxe

MXGRAYyxf
yxg

jyixewyxfyxf

1
),(),(),(

otherwise0
2/),(if255

),(

value"intensity corrected"),(),(),(

*

*

*

15Wolberg: Image Processing Course Notes

Error Diffusion Weights

• Note that visual improvements are possible if left-to-right scanning among rows is replaced by
serpentine scanning (zig-zag). That is, scan odd rows from left-to right, and scan even rows from
right-to-left.

• Further improvements can be made by using larger neighborhoods.
• The sum of the weights should equal 1 to avoid emphasizing or suppressing the spread of errors.

16/116/516/3
16/7x→

Floyd-Steinberg

48/148/348/548/348/1
48/348/548/748/548/3
48/548/7x

Jarvis-Judice-Ninke

42/142/242/442/242/1
42/242/442/842/442/2
42/442/8x

Stucki

16Wolberg: Image Processing Course Notes

Examples (1)

Floyd-Steinberg Jarvis-Judice-Ninke

17Wolberg: Image Processing Course Notes

Examples (2)

Floyd-Steinberg Jarvis-Judice-Ninke

18Wolberg: Image Processing Course Notes

Examples (3)

Floyd-Steinberg Jarvis-Judice-Ninke

19Wolberg: Image Processing Course Notes

Implementation
thr = MXGRAY /2; // init threshold value
for(y=0; y<h; y++){ // visit all input rows
 for(x=0; x<w; x++) { // visit all input cols
 *out = (*in < thr)? // threshold
 BLACK : WHITE; // note: use LUT!

 e = *in - *out; // eval error
 in[1] +=(e*7/16.); // add error to E nbr
 in[w-1] +=(e*3/16.); // add error to SW nbr
 in[w] +=(e*5/16.); // add error to S nbr
 in[w+1] +=(e*1/16.); // add error to SE nbr

 in++; // advance input ptr
 out++; // advance output ptr
 }
}

20Wolberg: Image Processing Course Notes

Comments

• Two potential problems complicate implementation:
- errors can be deposited beyond image border
- errors may force pixel grayvalues outside the [0,255] range

True for all
neighborhood ops

16/116/516/3
16/7x→

Floyd-Steinberg

Right border

Bottom border

48/148/348/548/348/1
48/348/548/748/548/3
48/548/7x

Jarvis-Judice-Ninke

Right border

21Wolberg: Image Processing Course Notes

Solutions to Border Problem (1)

• Perform if statement prior to every error deposit
- Drawback: inefficient / slow

• Limit excursions of sliding weights to lie no closer than 1 pixel from
image boundary (2 pixels for J-J-N weights).

- Drawback: output will be smaller than input
• Pad image with extra rows and columns so that limited excursions will

yield smaller image that conforms with original input dimensions.
Padding serves as placeholder.

- Drawback: excessive memory needs for intermediate image

input padded input output

22Wolberg: Image Processing Course Notes

Solutions to Border Problem (2)

• Use of padding is further undermined by fact that 16-bit precision (short)
is needed to accommodate pixel values outside [0, 255] range.

• A better solution is suggested by fact that only two rows are active while
processing a single scanline in the Floyd-Steinberg algorithm (3 for JJN).

• Therefore, use a 2-row (or 3-row) circular buffer to handle the two (or three)
current rows.

• The circular buffer will have the necessary padding and 16-bit precision.
• This significantly reduces memory requirements.

23Wolberg: Image Processing Course Notes

Circular Buffer

0
1

2
1

2
3

3
4

0
1
2
3
4
5

input circular buffer
 (snapshots)

0
1
2
3
4
5

output

24Wolberg: Image Processing Course Notes

New Implementation
thr = MXGRAY /2; // init threshold value
copyRowToCircBuffer(0); // copy row 0 to circular buffer
for(y=0; y<h; y++){ // visit all input rows
 copyRowToCircBuffer(y+1); // copy next row to circ buffer
 in1 = buf[y %2] + 1; // circ buffer ptr; skip over pad
 in2 = buf[(y+1)%2] + 1; // circ buffer ptr; skip over pad
 for(x=0; x<w; x++) { // visit all input cols
 *out = (*in1 < thr)? BLACK : WHITE; // threshold

 e = *in1 - *out; // eval error
 in1[1] +=(e*7/16.); // add error to E nbr
 in2[-1] +=(e*3/16.); // add error to SW nbr
 in2[0] +=(e*5/16.); // add error to S nbr
 in2[1] +=(e*1/16.); // add error to SE nbr

 in1++; in2++ // advance circ buffer ptrs
 out++; // advance output ptr
 }
}

25Wolberg: Image Processing Course Notes

200 90 100
50 200 80

? ? ?
? ? ?

Floyd-Steinberg

x 90 100
50 200 80

255 ? ?
? ? ?

x 66 100

33 197 80
e = 200 - 255 = -55

x x 100
33 177 80

255 0 ?
? ? ?

x x 128
45 217 94e = 65-0 = 65

x x x
45 197 94

255 0 255
? ? ?

e = 128-255 = -127
x x x
45 173 54

x x x
x 173 54

255 0 255
0 ? ?

x x x
x 193 54

e = 45 – 0 = 45

x x x
x x 54

255 0 255
0 255 ?

e = 193 – 255 = -62
x x x
x x 26

x x x
x x x

255 0 255
0 255 0

X

26

Pintillism Art

•A new artform that leverages error
diffusion to recreate images with tens
of thousands of pins

• Image tonalities are reproduced by
varying the pin density

- Dark regions use a higher density of pins
- Lighter regions use a lower pin density

•Pintillism is painting with pins

27

Pointillism

• Developed by Impressionist artists Seurat and Signac in the 1880’s
• Art consists of intricate placement of spots of color
• Exploits viewer’s ability to visually blend together color spots
• Pintillism is related to pointillism since spots are replaced with pins

28

Georges Seurat

29

Georges Seurat

30

Georges Seurat

31

Stippling

• Uses small dots for creating imagery
• Stippling is completed in black and white, while pointillism uses color

32

Stippling

33

Stippling

34

Pintillism Video

35

Allure of Pintillism
• Distills images into primitive dot patterns
• Challenges our brain to fuse them to perceive continuous tones
• The economy of dots is a refreshing counterpoint to images marked by

hyper-resolution and color vibrancy
• Pintillism sits at the opposite end of the spectrum

- Allows us to relish in its abstraction
- Engages us to interact with the piece to explore meaning from multiple

viewpoints and levels of resolution
• Extruding flat dots into their 3D counterparts is a 21st century twist that

allows us to add another dimension to the classic art form of pointillism

36

Example

Input Remove background

37

Example

38

Example

	Digital Halftoning
	Objectives
	Background
	Thresholding
	Unordered Dither (1)
	Unordered Dither (2)
	Ordered Dithering
	Dither Matrix (1)
	Dither Matrix (2)
	Patterning
	Implementation
	Examples
	Error Diffusion
	Floyd-Steinberg Algorithm
	Error Diffusion Weights
	Examples (1)
	Examples (2)
	Examples (3)
	Implementation
	Comments
	Solutions to Border Problem (1)
	Solutions to Border Problem (2)
	Circular Buffer
	New Implementation
	Slide Number 25
	Pintillism Art
	Pointillism
	Georges Seurat
	Georges Seurat
	Georges Seurat
	Stippling
	Stippling
	Stippling
	Pintillism Video
	Allure of Pintillism
	Example
	Example
	Example

