Digital Halftoning

Prof. George Wolberg
Dept. of Computer Science
City College of New York
Objectives

• In this lecture we review digital halftoning techniques to convert grayscale images to bitmaps:
 - Unordered (random) dithering
 - Ordered dithering
 - Patterning
 - Error diffusion
Background

- An 8-bit grayscale image allows 256 distinct gray levels.
- Such images can be displayed on a computer monitor if the hardware supports the required number of intensity levels.
- However, some output devices print or display images with much fewer gray levels.
- In these cases, the grayscale images must be converted to binary images, where pixels are only black (0) or white (255).
- Thresholding is a poor choice due to objectionable artifacts.
- Strategy: sprinkle black-and-white dots to simulate gray.
- Exploit spatial integration (averaging) performed by eye.
Thresholding

• The simplest way to convert from grayscale to binary.

Loss of information is unacceptable.
Unordered Dither (1)

- Reduce quantization error by adding uniformly distributed white noise (dither signal) to the input image prior to quantization.
- Dither hides objectional artifacts.
- To each pixel of the image, add a random number in the range \([-m, m]\), where \(m\) is MXGRAY/quantization-levels.

![Diagram](image.png)
Unordered Dither (2)

Quantization

Dither/Quantization

1 bpp 2 bpp 3 bpp 4 bpp
Ordered Dithering

• Objective: expand the range of available intensities.
• Simulates n bpp images with m bpp, where n>m (usually m = 1).
• Exploit eye’s spatial integration.
 - Gray is due to average of black/white dot patterns.
 - Each dot is a circle of black ink whose area is proportional to \((1 - \text{intensity})\).
 - Graphics output devices approximate the variable circles of halftone reproductions.

• 2 x 2 pixel area of a bilevel display produces 5 intensity levels.
• \(n \times n\) group of bilevel pixels produces \(n^2+1\) intensity levels.
• Tradeoff: spatial vs. intensity resolution.
Dither Matrix (1)

- Consider the following 2x2 and 3x3 dither matrices:
 \[D^{(2)} = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \quad D^{(3)} = \begin{bmatrix} 6 & 8 & 4 \\ 1 & 0 & 3 \\ 5 & 2 & 7 \end{bmatrix} \]

- To display a pixel of intensity \(I \), we turn on all pixels whose associated dither matrix values are less than \(I \).

- The recurrence relation given below generates larger dither matrices of dimension \(n \times n \), where \(n \) is a power of 2.

\[
D^{(n)} = \begin{bmatrix}
4D^{(n/2)} + D_{00}^{(2)}U^{(n/2)} & 4D^{(n/2)} + D_{01}^{(2)}U^{(n/2)} \\
4D^{(n/2)} + D_{10}^{(2)}U^{(n/2)} & 4D^{(n/2)} + D_{11}^{(2)}U^{(n/2)}
\end{bmatrix}
\]

where \(U^{(n)} \) is an \(n \times n \) matrix of 1’s.
Dither Matrix (2)

• Example: a 4x4 dither matrix can be derived from the 2x2 matrix.

\[
D^{(4)} = \begin{bmatrix}
0 & 8 & 2 & 10 \\
12 & 4 & 14 & 6 \\
3 & 11 & 1 & 9 \\
15 & 7 & 13 & 5 \\
\end{bmatrix}
\]
Patterning

- Let the output image be larger than the input image.
- Quantize the input image to \([0 \ldots n^2]\) gray levels.
- Threshold each pixel against all entries in the dither matrix.
 - Each pixel forms a 4x4 block of black-and-white dots for a \(D(4)\) matrix.
 - An \(n \times n\) input image becomes a \(4n \times 4n\) output image.
- Multiple display pixels per input pixel.
- The dither matrix \(D_{ij}^{(n)}\) is used as a spatially-varying threshold.
- Large input areas of constant value are displayed exactly as before.
Implementation

• Let the input and output images share the same size.
• First quantize the input image to \([0\ldots n^2]\) gray levels.
• Compare the dither matrix with the input image.

```c
for(y=0; y<h; y++) // visit all input rows
  for(x=0; x<w; x++){ // visit all input cols
    i = x % n; // dither matrix index
    j = y % n; // dither matrix index

    out[y*w+x] = (in[y*w+x] > D_{ij}^{(n)})? 255 : 0;
  }
```
Examples

8 bpp (256 levels)

1 bpp (D³)

1 bpp (D⁴)

1 bpp (D⁵)
Error Diffusion

• An error is made every time a grayvalue is assigned to be black or white at the output.
• Spread that error to its neighbors to compensate for over/undershoots in the output assignments
 - If input pixel 130 is mapped to white (255) then its excessive brightness (255-130) must be subtracted from neighbors to enforce a bias towards darker values to compensate for the excessive brightness.
• Like ordered dithering, error diffusion permits the output image to share the same dimension as the input image.
Floyd-Steinberg Algorithm

\[f^*(x, y) = f(x, y) + \sum_{i} \sum_{j} w_{ij} e(x-i, y-j) \]

where \(f^*(x, y) \) is the "corrected intensity value"

\[g(x, y) = \begin{cases}
255 & \text{if } f^*(x, y) > \text{MXGRAY} / 2 \\
0 & \text{otherwise}
\end{cases} \]

\[e(x, y) = f^*(x, y) - g(x, y) \]

\[\sum_{i} \sum_{j} w_{ij} = 1 \]
Error Diffusion Weights

- Note that visual improvements are possible if left-to-right scanning among rows is replaced by serpentine scanning (zig-zag). That is, scan odd rows from left-to-right, and scan even rows from right-to-left.
- Further improvements can be made by using larger neighborhoods.
- The sum of the weights should equal 1 to avoid emphasizing or suppressing the spread of errors.

\[\frac{1}{1} \quad \frac{4}{5} \quad \frac{4}{3} \quad \frac{4}{7} \quad x \]

- Floyd-Steinberg
- Jarvis-Judice-Ninke
- Stucki
Examples (1)

Floyd-Steinberg

Jarvis-Judice-Ninke
Examples (2)

Floyd-Steinberg

Jarvis-Judice-Ninke
Examples (3)

Floyd-Steinberg

Jarvis-Judice-Ninke
Implementation

```
thr = MXGRAY / 2; // init threshold value
for(y=0; y<h; y++) { // visit all input rows
    for(x=0; x<w; x++) { // visit all input cols
        *out = (*in < thr)? // threshold
            BLACK : WHITE; // note: use LUT!
        e = *in - *out;  // eval error
        in[ 1 ] += (e*7/16.); // add error to E nbr
        in[w-1] += (e*3/16.); // add error to SW nbr
        in[ w ] += (e*5/16.); // add error to S nbr
        in[w+1] += (e*1/16.); // add error to SE nbr
        in++; // advance input ptr
        out++; // advance output ptr
    }
}
```
• Two potential problems complicate implementation:
 - errors can be deposited beyond image border
 - errors may force pixel grayvalues outside the [0,255] range

Floyd-Steinberg

Jarvis-Judice-Ninke

Right border

Bottom border

True for all neighborhood ops
Solutions to Border Problem (1)

- Perform if statement prior to every error deposit
 - Drawback: inefficient / slow

- Limit excursions of sliding weights to lie no closer than 1 pixel from image boundary (2 pixels for J-J-N weights).
 - Drawback: output will be smaller than input

- Pad image with extra rows and columns so that limited excursions will yield smaller image that conforms with original input dimensions. Padding serves as placeholder.
 - Drawback: excessive memory needs for intermediate image
Solutions to Border Problem (2)

• Use of padding is further undermined by fact that 16-bit precision (short) is needed to accommodate pixel values outside [0, 255] range.
• A better solution is suggested by fact that only two rows are active while processing a single scanline in the Floyd-Steinberg algorithm (3 for JJN).
• Therefore, use a 2-row (or 3-row) circular buffer to handle the two (or three) current rows.
• The circular buffer will have the necessary padding and 16-bit precision.
• This significantly reduces memory requirements.
Circular Buffer
New Implementation

thr = MXGRAY / 2; // init threshold value
copyRowToCircBuffer(0); // copy row 0 to circular buffer
for (y = 0; y < h; y++) {
 copyRowToCircBuffer(y + 1); // copy next row to circ buffer
 in1 = buf[y % 2] + 1; // circ buffer ptr; skip over pad
 in2 = buf[(y + 1) % 2] + 1; // circ buffer ptr; skip over pad
 for (x = 0; x < w; x++) {
 *out = (*in1 < thr) ? BLACK : WHITE; // threshold
 e = *in1 - *out; // eval error
 in1[1] += (e * 7/16.); // add error to E nbr
 in2[-1] += (e * 3/16.); // add error to SW nbr
 in2[0] += (e * 5/16.); // add error to S nbr
 in2[1] += (e * 1/16.); // add error to SE nbr
 in1++; in2++ // advance circ buffer ptrs
 out++; // advance output ptr
 }
}

Wolberg: Image Processing Course Notes