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Objectives

• In this lecture we describe point operations commonly used in image processing:
- Thresholding
- Quantization (aka posterization)
- Gamma correction
- Contrast/brightness manipulation
- Histogram equalization/matching
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Point Operations

• Output pixels are a function of only one input point: g(x,y) = T[f(x,y)]
• Transformation T is implemented with a lookup table:

- An input value indexes into a table and the data stored there is copied to 
the corresponding output position.

- The LUT for an 8-bit image has 256 entries.

LUT

g(x,y)=T[f(x,y)]

Input: f(x,y) Output: g(x,y)
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Graylevel Transformations

• Point transformation: changes a pixel’s value without changing its location.
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Graylevel Transformation T

Contrast enhancement:
Darkens levels below m
Brightens levels above m

Thresholding:
Replace values below m to black (0)
Replace values above m to white (255)
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Thresholding

• Thresholding: takes a grayscale image and sets every output pixel to 
1 if its input gray level is above a certain threshold, or to 0 otherwise:
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Lookup Table: Threshold

g(x,y)=T[f(x,y)]

Input: f(x,y) Output: g(x,y)
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0

0

0

0

255

255

255

255

255

LUT
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2

m

…

255

• Init LUT with samples taken from thresholding function T

…

…

…
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Threshold Program
• Straightforward implementation:

// iterate over all pixels
for(i=0; i<total; i++) { 
 if(in[i] < thr) out[i] = BLACK;
 else   out[i] = WHITE;
} 

• Better approach: exploit LUT to avoid total comparisons:

// init lookup tables
for(i=0; i<thr; i++) lut[i] = BLACK;
for(; i<MXGRAY; i++) lut[i] = WHITE;

// iterate over all pixels
for(i=0; i<total; i++) out[i] = lut[in[i]];
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Quantization
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Quantization
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Lookup Table: Quantization

g(x,y)=T[f(x,y)]

Input: f(x,y) Output: g(x,y)

0

0

64

64

128

128

192

192

255

LUT
0

…

64

128

…

255

• Init LUT with samples taken from quantization function T

192

…
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Quantization Program
• Straightforward implementation:

// iterate over all pixels
scale = MXGRAY / levels;
for(i=0; i<total; i++)
  out[i] = scale * (int) (in[i]/scale);

• Better approach: exploit LUT to avoid total mults/divisions:

// init lookup tables
scale = MXGRAY / levels;
for(i=0; i<MXGRAY; i++) 
  lut[i] = scale * (int) (i/scale);

// iterate over all pixels
for(i=0; i<total; i++) out[i] = lut[in[i]];
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Quantization Artifacts 

• False contours associated with quantization are most noticeable in smooth areas
• These artifacts are obscured in highly textured regions

Original image

Quantized to 8 levels
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Dither Signal  

• Reduce quantization error by adding uniformly distributed white noise (dither 
signal) to the input image prior to quantization.

• Dither hides objectional artifacts.
• To each pixel of the image, add a random number in the range [-m, m], where m 

is MXGRAY/quantization-levels.

0 255 vinthr

vout

8 bpp (256 levels)

Uniform
noise

3 bpp (8 levels)
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Comparison

1 bpp

Quantization

Dither/
Quantization

2 bpp 3 bpp 4 bpp
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Arithmetic Operations

•A useful class of graylevel transformations is the set of arithmetic 
operations, depicted in graphical form in the following figure:
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Saturation Arithmetic

Clamp arithmetic operation to lie in [0, 255] range:
 [216 171 134 97 52] + 100 = [255 255 234 197 152]
 [216 171 134 97 52]  - 100 = [116  71   34    0     0  ]
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Gain-Bias Transformations
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Piecewise-Linear Transformation Functions

• Advantage: The form of piecewise functions can be arbitrarily complex
• Disadvantage: Their specification requires considerably more user input
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Linear Contrast Stretching
• Low contrast may be due to poor illumination, a lack of dynamic range in the imaging sensor, or even a 

wrong setting of a lens aperture during acquisition.
• Applied contrast stretching: (r1,s1) = (rmin,0) and (r2,s2) = (rmax,L-1)
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Linear Contrast Stretching Transformation

•Linear contrast stretch: A transformation that specifies a line 
segment that maps gray levels between gmin and gmax in the 
input image to the gray levels g’min and g’max in the output 
image according to a linear function:
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Linear Contrast Stretching Examples
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Analytic Transformations

•Graylevel transformations can be specified using analytic 
functions such as the logarithm, exponential, or power functions:
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Analytic Transformation Examples

• Linear function
- Negative and identity 

transformations

• Logarithmic function
- Log and inverse-log 

transformations

• Power-law function
- nth power and nth root 

transformations
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Image Negatives

• Negative transformation : s = (L–1) – r
• Reverses the intensity levels of an image.
• Suitable for enhancing white or gray detail embedded in dark 

regions of an image, especially when black area is large.
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Log Transformations

• Log transformation : s = c log (1+r)
• c is constant and r ≥ 0
• Log curve maps a narrow range of low graylevels in input into a wider range of output levels.
• Expands range of dark image pixels while shrinking bright range.
• Inverse log expands range of bright image pixels while shrinking dark range.
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Example of Logarithm Image

• Fourier spectrum image can have intensity range from 0 to 106 or higher. 
• Log transform lets us see the detail dominated by large intensity peak.
- Must now display [0,6] range instead of [0,106] range.
- Rescale [0,6] to the [0,255] range.
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Power-Law Transformations

s = crγ
• c and γ are 

positive constants 
• Power-law curves 

with fractional 
values of γ map a 
narrow range of 
dark input values 
into a wider range 
of output values, 
with the opposite 
being true for 
higher values of 
input levels.

• c = γ = 1  
identity function
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Gamma Correction

• Gamma correction is an operation that is rooted in the nonlinear mapping of 
intensities displayed by cathode ray tubes (CRTs).

• CRTs worked by shooting electrons at the phosphor that coated the CRT 
monitor. The excited phosphor would display the pixel at an intensity 
proportional to the input value.

• The monitor would produce out = 𝑖𝑖𝑖𝑖γ, where γ = 2.2 and in is in [0,1] range.
• Since images appeared darker than desired, gamma correction achieved a 

perceptually desirable result by altering the input to brighter values that 
would appear correct after passing through the nonlinear mapping of the 
display.
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Gamma Correction Example

• Cathode ray tube 
(CRT) devices 
have an intensity-
to-voltage 
response that is a 
power function, 
with γ varying from 
1.8 to 2.5

• This darkens the 
picture.

• Gamma correction 
is done by 
preprocessing the 
image before 
inputting it to the 
monitor.

0 1

1

0 1

1

0 1 0 1

1 1

(in)γ

[(in)1/γ]γ
↓

gamma correction
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Gamma Correction Program
// init lookup table
double exponent = 1.0 / gamma; // gamma correction exponent
for(i=0; i<=MaxGray; i++){
  // 1) normalize input graylevel i into [0,1] range
  // 2) raise i to the 1/gamma for gamma correction
  // 3) restore the [0,1] range back to [0,max]
  lut[i] = MaxGray * pow(((double) i/MaxGray), exponent);
}

// iterate over all pixels
for(i=0; i<total; i++) out[i] = lut[in[i]];
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Example: MRI

(a) Dark MRI. Expand 
graylevel range for 
contrast manipulation 
 γ < 1

(b) γ = 0.6, c=1
(c) γ = 0.4  (best result)
(d) γ = 0.3 (limit of    

acceptability)
When γ is reduced too 

much, the image 
begins to reduce 
contrast to the point 
where it starts to have 
a “washed-out” look, 
especially in the 
background
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Example: Aerial Image
Washed-out 
image. Shrink 
graylevel range 
 γ > 1

(b) γ = 3.0 
(suitable)

(c) γ = 4.0 
(suitable)

(d) γ = 5.0
 (High contrast; 

the image has 
areas that are 
too dark; some 
detail is lost)
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Graylevel Slicing
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Bit-plane slicing

• Highlighting the contribution 
made to total image 
appearance by specific bits

• Suppose each pixel is 
represented by 8 bits

• Higher-order bits contain the 
majority of the visually 
significant data

• Useful for analyzing the 
relative importance played by 
each bit of the image

Bit-plane 7
(most significant)

Bit-plane 0
(least significant)

One 8-bit byte
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Example

• The (binary) image for bit-
plane 7 can be obtained 
by processing the input 
image with a thresholding 
graylevel transformation.

- Map all levels between 0 
and 127 to 0

- Map all levels between 
129 and 255 to 255

An 8-bit fractal image
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8-Bit Planes

Bit-plane 7 Bit-plane 6

Bit-
plane 5

Bit-
plane 4

Bit-
plane 3

Bit-
plane 2

Bit-
plane 1

Bit-
plane 0
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Hardware LUTs 

• All point operations can be implemented by LUTs.
• Hardware LUTs operate on the data as it is being displayed.
• It’s an efficient means of applying transformations because changing display 

characteristics only requires loading a new table and not the entire image.
• For a 1024x1024 8-bit image, this translates to 256 entries instead of one million.
• LUTs do not alter the contents of original image (nondestructive).

0 0 0 1

2 2 1 1

2 1 1 1

2 2 3 3

20

40

100

100

20  20  20  40

100  100 40  40

100  40  40  40

100 100 100 100

Refresh memory
For display Lookup table Display screen

Vin(i,j) Vout(i,j)
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Graylevel Histograms

•Histogram: a simple but powerful technique for 
visualizing the statistical properties of an image.

• The space in which the data resides is divided into bins, and 
the histogram records the number of occurrences in each bin.

• Graylevel histogram: a histogram of image gray levels
• Normalized histogram: computed from the histogram by simply dividing each 

value by the total number of pixels in the image
• Probability density function (PDF): the normalized histogram
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Graylevel Histogram

• A histogram of a digital image with gray levels in the range [0, L-1] is a 
discrete function h(rk) = nk

- rk : the kth gray level
- nk : the number of pixels in the image having gray level rk

• The sum of all histogram entries is equal to the total number of pixels in 
the image.

r

h(r) 
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Histogram Examples
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Histogram Evaluation

5x5 image

 

Histogram evaluation:
for(i=0; i<MXGRAY; i++) H[i] = 0;
for(i=0; i<total; i++) H[in[i]]++;

Graylevel Count

0 2

1 5

2 3

3 4

4 5

5 2

6 4

Total 25

2 3 4 4 6

1 2 4 5 6

1 1 5 6 6

0 1 3 3 4

0 1 2 3 4

Plot of the Histogram 

0

1

2

3

4

5

6

Pixel value

Co
un

t
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Normalized Histogram

• Divide each histogram entry at gray level rk by the total number of 
pixels in the image, n 

p( rk ) = nk / n
• p( rk ) gives an estimate of the probability of occurrence of gray level rk

• The sum of all components of a normalized histogram is equal to 1.
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Pseudocode
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Histogram Processing

•Basic for numerous spatial domain processing techniques.
•Used effectively for image enhancement:

- Histogram stretching
- Histogram equalization
- Histogram matching

• Information inherent in histograms also is useful in image 
compression and segmentation.
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Example: Dark/Bright Images

Dark image

Bright image

Components of 
histogram are 
concentrated on the 
low side of the gray 
scale.

Components of 
histogram are 
concentrated on the 
high side of the gray 
scale.
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Example: Low/High Contrast Images

Low-contrast image

High-contrast image

histogram is narrow 
and centered toward 
the middle of the 
gray scale

histogram covers broad 
range of the gray scale 
and the distribution of 
pixels is not too far from 
uniform, with very few 
vertical lines being much 
higher than the others
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Histogram Stretching (1)

MIN MAX

h(f)

f 0 255

h(g)

g

MINMAX
MINfg

−
−

=
)(255

1) Slide histogram down to 0

2) Normalize histogram to [0,1] range

3) Rescale to [0,255] range
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Histogram Stretching (2)

MINMAX
MINfg

−
−

=
)(255

1) Slide histogram down to 0

2) Normalize histogram to [0,1] range

3) Rescale to [0,255] range

This is an instance of linear contrast stretching where the input range 
[𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚] = [MIN,MAX] is mapped to output range [𝑔𝑔′𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔′𝑚𝑚𝑚𝑚𝑚𝑚] = [0, 255].
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Example (1)

11 207

Wide dynamic range
permits for only a small
improvement after histogram
stretching

0 255

Image appears virtually
identical to original
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Example (2)

• Improve effectiveness of histogram stretching by clipping intensities first

Flat histogram: every graylevel
is equally present in image

12811 0 255
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Histogram Equalization

• Produce image with flat histogram
• All graylevels are equally likely
• Appropriate for images with wide range of graylevels
• Inappropriate for images with few graylevels (see below)
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Example (1)
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Example (2)

before after Histogram 
equalization
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Example (3)

before after Histogram 
equalization

The quality is 
not improved 
much because 
the original 
image already 
has a wide  
graylevel scale 
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Implementation (1)

2 3 3 2

4 2 4 3

3 2 3 5

2 4 2 4

4x4 image 
Gray scale = [0,9]

histogram
0 1

1

2

2

3

3

4

4

5

5

6

6

7 8 9

No. of pixels

Gray level
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Implementation (2)

Gray 
Level(j)

0 1 2 3 4 5 6 7 8 9

No. of 
pixels 0 0 6 5 4 1 0 0 0 0

0 0 6 11 15 16 16 16 16 16

0 0 6/16 11/16 15/16 16/16 16/16 16/16 16/16 16/16

s x 9 0 0
3.3
≈3

6.1
≈6

8.4
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∑
=
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j
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n
n

s
0

∑
=
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j
jn

0

Cumulative
Distribution
Function (CDF)

Cumulative
histogram
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Implementation (3)

3 6 6 3

8 3 8 6

6 3 6 9

3 8 3 8

Output image 
Gray scale = [0,9]

Histogram equalization
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1
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2

3

3

4

4

5

5

6

6

7 8 9

No. of pixels

Gray level
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Input image 
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Pseudocode
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Why It Works
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Note (1)

• Histogram equalization distributes the graylevels to reach maximum gray 
(white) because the cumulative distribution function equals 1 when 0 ≤ r ≤ L-1

• If        is slightly different among consecutive k , those graylevels will be 
mapped to (nearly) identical values as we have to produce an integer 
grayvalue as output

• Thus, the discrete transformation function cannot guarantee a one-to-one 
mapping

∑
=

k

j
jn

0
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Note (2)

• The implementation given above is widely interpreted as histogram equalization.
• It is readily implemented with a LUT.
• It does not produce a strictly flat histogram.
• There is a more accurate solution. However, it may require a one-to-many 

mapping that cannot be implemented with a LUT.
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Histogram Equalization Objective

Objective: we want a uniform histogram. 
Rationale: maximize image entropy.

This is a special case of histogram matching.
Perfectly flat histogram: H[i] = total/MXGRAY for 0≤ i < MXGRAY.
If H[v] = k * havg then v must be mapped onto k different levels, from v1 to 

vk. This is a one-to many mapping.

avgoutout

avg

out

hvvc
h

MXGRAY
totalvh

*)1()(
            

constant)(

1

1

+=

=

==
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Histogram Equalization Mappings

Rule 1: Always map v onto (v1+vk)/2. (This does not result in a flat 
histogram, but one where brightness levels are spaced apart).

Rule 2: Assign at random one of the levels in [v1,vk]. This can result in a 
loss of contrast if the original histogram had two distinct peaks that were 
far apart (i.e., an image of text).

Rule 3: Examine neighborhood of pixel, and assign it a level from [v1,vk] 
which is closest to neighborhood average. This can result in bluriness; 
more complex.

Rule (1) creates a lookup table beforehand.
Rules (2) and (3) are runtime operations.
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Rule 2: Implementation (1)
void histoEqRand(imagePtr I1, imagePtr I2) {
 // copy image header of input image I1 to output image I2
 IP_copyImageHeader(I1, I2);

 // total number of pixels
 int total = I1->width() * I1->height();

 // scale dynamic range of I1 to full intensity range [0,MaxGray], where MaxGray=255
 IP_embedRange(I1, 0., (double) MaxGray, I2);

 // declarations for input and output image channel pointers
 ChannelPtr<uchar> p1, p2;
 int type; // datatype of returned channel pointer
 int histo[MaxGray+1];
 
 // Note: IP_getChannel(I, ch, p1, type) gets pointer p1 of channel ch in image I.
 // The pixel datatype (e.g., uchar, short, …) of that channel is returned in type.
 // It is ignored here since we assume that our input images consist exclusively of uchars.
 // IP_getChannel() returns 1 when channel ch exists; 0 otherwise.

 // visit all channels and evaluate output image
 for(int ch=0; IP_getChannel(I1, ch, p1, type); ch++) { // get input pointer
  IP_getChannel(I2, ch, p2, type);    // get output pointer

  // compute histogram
  for(int i=0; i<=MaxGray; i++) histo[i] = 0;     // clear histogram
  for(int i=0; i<total;  i++)      histo[p1[i]]++; // eval  histogram



66Wolberg: Image Processing Course Notes

Rule 2: Implementation (2)
  int right=0;   // right end of interval
  int left [MaxGray+1], width[MaxGray+1]; // left end and width of target interval for each input graylevel
  long Hsum = 0;  // cumulative histogram summation
  long Havg = total / (MaxGray+1); // value for each entry of target histogram
 
  // evaluate remapping of all input gray levels: each input gray value maps to an interval of valid output values.
  // The endpoints of the intervals are left[] and left[]+width[].

  for(int i=0; i<=MaxGray; i++) {
   left[i] = right; // left end of grayscale interval into which i maps
   Hsum += histo[i]; // compute cumulative histogram summation
   while(Hsum>Havg && R<MaxGray) { // make interval wider
    Hsum -= Havg; // adjust Hsum
    right++;  // update right end of interval
   }
   width[i] = right - left[i] + 1; // width of interval
  }

  // visit all input pixels and remap the intensities
  for(int i=0; i<total; i++) {
   if(width[p1[i]] == 1) p2[i] = left[p1[i]];
   else { // p1[i] spills over into width[] possible values
    // randomly pick from 0 to width[i]
    int r = ((double) rand() / RAND_MAX) * width[p1[i]];   // 0 <= r < width[i]
   } p2[i] = left[p1[i]] + r;
  }
 }
}
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Note

• Histogram equalization has a disadvantage:
it can generate only one type of output image.

• With histogram specification we can specify the shape of the histogram that 
we wish the output image to have.

• It doesn’t have to be a uniform histogram.
• Histogram specification is a trial-and-error process.
• There are no rules for specifying histograms, and one must resort to analysis 

on a case-by-case basis for any given enhancement task.
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In the figure above, h() refers to the histogram, and c() refers to its 
cumulative histogram. Function c() is a monotonically increasing 
function defined as: 

Histogram Matching

vinv’
in

C0( v’in)

h0( vin)

vout

C1( v’out)

v’
out

C0( vout)

vout=T(vin)

h1( vout)

∫=
v

duuhvc
0

)()(
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Histogram Matching Rule

Let vout =T(vin) If T() is a unique, monotonic function then

This can be restated in terms of the histogram matching rule: 

Where c1(vout) = # pixels ≤ vout, and c0(vin) = # pixels ≤ vin..
This requires that 

which is the basic equation for histogram matching techniques.

∫ ∫=
out inv v

duuhduuh
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Pseudocode
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Histograms are Discrete

• Impossible to match all histogram pairs because they are discrete.

1 1 1 1

1 1 2 2

3 3 4 4

4 4 4 4

?
1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

Lookup table Display screen

Vin(i,j) Vout(i,j)

Refresh memory
For display

vinvout vin

C1( vout)

vout

C0( vin) ?

Continuous case Discrete case
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Problems with Discrete Case

• The set of input pixel values is a discrete set, and all the pixels of a given 
value are mapped to the same output value. For example, all six pixels of 
value one are mapped to the same value so it is impossible to have only 
four corresponding output pixels.

• No inverse for c1 in vout= c1
-1(c0(vin)) because of discrete domain. Solution: 

choose vout for which c1(vout) is closest to c0(vin).

• vin→ vout such that |c1(vout) - c0(vin)| is a minimum
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Histogram Matching Example (1)

Histogram 
match

Input image

Output image

Input
Histogram

Target
Histogram
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Histogram Matching Example (2)
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Implementation (1)
void histoMatch(imagePtr I1, ImagePtr targetHisto, imagePtr I2)
{
 // copy image header of input image I1 to output image I2
 IP_copyImageHeader(I1, I2);

 // total number of pixels
 int total1 = I1->width() * I1->height();

 // scale dynamic range of I1 to full intensity range [0,MaxGray], where MaxGray=255
 IP_embedRange(I1, 0., (double) MaxGray, I2);

 // declarations for input and output image channel pointers
 ChannelPtr<uchar> p1, p2, lutp;
 int type; // datatype of returned channel pointer
 int histo1[MaxGray+1], histo2[MaxGray+1];
 
 // Note: IP_getChannel(I, ch, p1, type) gets pointer p1 of channel ch in image I.
 // The pixel datatype (e.g., uchar, short, …) of that channel is returned in type.
 // It is ignored here since we assume that our input images consist exclusively of uchars.
 // IP_getChannel() returns 1 when channel ch exists; 0 otherwise.

 // visit all channels and evaluate output image
 for(int ch=0; IP_getChannel(I1, ch, p1, type); ch++) { // get input pointer
  IP_getChannel(I2, ch, p2, type);    // get output pointer

  // compute histogram
  for(int i=0; i<=MaxGray; i++) histo1[i] = 0;     // clear histogram
  for(int i=0; i<total;  i++)      histo1[p1[i]]++; // eval  histogram
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Implementation (2)
  IP_getChannel(targetHisto, 0, lutp, type);
  histo2 = (int *) &lutp[0];

  // compute sum of target histogram for normalization
  int total2 = 0;
  for(int i=0; i<=MaxGray; i++)
   total2 += histo2[i];

  // scale histo2 to conform with dimensions of I1
  double scale = (double) total1 / total2;
  if(scale != 1) {
       int sum = 0;
       for(int i=0; i<=MaxGray; i++) {
   histo2[i] = ROUND(histo2[i] * scale);

   // update histo2[] if cumulative histogram overshoots due to rounding operations
   sum += histo2[i];
   if(sum > total1) {   // check for overshoot
    histo2[i] -= (sum – total1); // clamp last non-zero histo2[]
    for(; i <=MaxGray; i++) histo2[i] = 0; // clear the remainder of histo2[]
   }
        }
  }
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Implementation (3)
  int r=0;   // right end of interval
  int left [MaxGray+1];  // left end and width of target interval for each input graylevel
  long Hsum = 0;  // cumulative histogram summation

  for(int i=0; I <=  MaxGray; i++) {
   left[i] = r;  // left end of grayscale interval into which i maps
   Hsum += histo1[i]; // compute cumulative histogram summation
   while(Hsum>histo2[r] && r<MaxGray) { // compute width of interval
    Hsum -= histo2[r];  // adjust Hsum as interval widens
    r++;   // update
   }
   right[i] = r;    // save right end of interval
  }

  // clear histo1[] and reuse it below
  for(int i=0; i <= MaxGray; i++) histo1[i] = 0;

  // visit all input pixels and remap the intensities
  int p;
  for(int i=0; i<total; i++) {
   p = left[p1[i]];
   if(histo1[p] < histo2[p]) // mapping satisfies target histogram (histo2)
    p2[i] = p;
   else p2[i] = p = left[p1[i]] = MIN(p+1, right[p1[i]]);
   histo1[p]++;
  }
 }
}
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Local Pixel Value Mappings

• Histogram processing methods are global, in the sense that pixels are modified 
by a transformation function based on the graylevel content of an entire image.

• We sometimes need to enhance details over small areas in an image, which is 
called a local enhancement.

• Solution: apply transformation functions based on graylevel distribution within 
pixel neighborhood.
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General Procedure

• Define a square or rectangular neighborhood.
• Move the center of this area from pixel to pixel.
• At each location, the histogram of the points in the neighborhood is 

computed and histogram equalization, histogram matching, or other 
graylevel mapping is performed.

• Exploit easy histogram update since only one new row or column of 
neighborhood changes during pixel-to-pixel translation.

• Another approach used to reduce computation is to utilize nonoverlapping 
regions, but this usually produces an undesirable checkerboard effect.
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Example: Local Enhancement

a) Original image (slightly blurred to reduce noise)
b) global histogram equalization enhances noise & slightly increases 

contrast but the structural details are unchanged
c) local histogram equalization using 7x7 neighborhood reveals the 

small squares inside of the larger ones in the original image. 
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Definitions (1)
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Definitions (2) 

• The nth moment of r about its mean is defined as

• It follows that:

• The second moment is known as variance 
• The standard deviation is the square root of the variance.
• The mean and standard deviation are measures of 

average grayvalue and average contrast, respectively.
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Example: Statistical Differencing

• Produces the same contrast throughout the image.
• Stretch f(x, y) away from or towards the local mean to achieve a balanced 

local standard deviation throughout the image.
• σ0 is the desired standard deviation and it controls the amount of stretch.
• The local mean can also be adjusted:

• m0 is the mean to force locally and α controls the degree to which it is forced.
• To avoid problems when σ(x, y) = 0, 

• Speedups can be achieved by dividing the image into blocks (tiles), exactly 
computing the mean and standard deviation at the center of each block, and 
then linearly interpolating between blocks in order to compute an 
approximation at any arbitrary position. In addition, the mean and standard 
deviation can be computed incrementally.
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Example: Local Statistics (1)

The filament in the center is clear.
There is another filament on the right side that is darker and hard to see. 
Goal: enhance dark areas while leaving the light areas unchanged.
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Example: Local Statistics (2)

Solution: Identify candidate pixels to be dark pixels with low contrast.
Dark: local mean < k0*global mean, where 0 < k0 < 1.
Low contrast: k1*global variance < local variance < k2 * global variance,
where k1 < k2.
Multiply identified pixels by constant E>1. Leave other pixels alone.
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Example: Local Statistics (3)

Results for E=4, k0=0.4, k1=0.02, k2=0.4.  3x3 neighborhoods used.
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Enhancement

• Point operations are used to enhance an image. 
• Processed image should be more suitable than the original image 
for a specific application.

• Suitability is application-dependent.
• A method which is quite useful for enhancing one image may not 
necessarily be the best approach for enhancing another image.

• Very subjective
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Two Enhancement Domains

• Spatial Domain: (image plane)
- Techniques are based on direct manipulation of pixels in an image

• Frequency Domain: 
- Techniques are based on modifying the Fourier transform of an image

• There are some enhancement techniques based on various 
combinations of methods from these two categories.
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Enhanced Images

• For human vision
- The visual evaluation of image quality is a highly subjective process.
- It is hard to standardize the definition of a good image.

• For machine perception
- The evaluation task is easier.
- A good image is one which gives the best machine recognition results.

• A certain amount of trial and error usually is required before a 
particular image enhancement approach is selected.
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