
Point Operations

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2Wolberg: Image Processing Course Notes

Objectives

• In this lecture we describe point operations commonly used in image processing:
- Thresholding
- Quantization (aka posterization)
- Gamma correction
- Contrast/brightness manipulation
- Histogram equalization/matching

3Wolberg: Image Processing Course Notes

Point Operations

• Output pixels are a function of only one input point: g(x,y) = T[f(x,y)]
• Transformation T is implemented with a lookup table:

- An input value indexes into a table and the data stored there is copied to
the corresponding output position.

- The LUT for an 8-bit image has 256 entries.

LUT

g(x,y)=T[f(x,y)]

Input: f(x,y) Output: g(x,y)

4Wolberg: Image Processing Course Notes

Graylevel Transformations

• Point transformation: changes a pixel’s value without changing its location.

5Wolberg: Image Processing Course Notes

Graylevel Transformation T

Contrast enhancement:
Darkens levels below m
Brightens levels above m

Thresholding:
Replace values below m to black (0)
Replace values above m to white (255)

6Wolberg: Image Processing Course Notes

Thresholding

• Thresholding: takes a grayscale image and sets every output pixel to
1 if its input gray level is above a certain threshold, or to 0 otherwise:

7Wolberg: Image Processing Course Notes

Lookup Table: Threshold

g(x,y)=T[f(x,y)]

Input: f(x,y) Output: g(x,y)

0

0

0

0

0

255

255

255

255

255

LUT
0

1

2

m

…

255

• Init LUT with samples taken from thresholding function T

…

…

…

8Wolberg: Image Processing Course Notes

Threshold Program
• Straightforward implementation:

// iterate over all pixels
for(i=0; i<total; i++) {
 if(in[i] < thr) out[i] = BLACK;
 else out[i] = WHITE;
}

• Better approach: exploit LUT to avoid total comparisons:

// init lookup tables
for(i=0; i<thr; i++) lut[i] = BLACK;
for(; i<MXGRAY; i++) lut[i] = WHITE;

// iterate over all pixels
for(i=0; i<total; i++) out[i] = lut[in[i]];

9Wolberg: Image Processing Course Notes

Quantization

10Wolberg: Image Processing Course Notes

Quantization

11Wolberg: Image Processing Course Notes

Lookup Table: Quantization

g(x,y)=T[f(x,y)]

Input: f(x,y) Output: g(x,y)

0

0

64

64

128

128

192

192

255

LUT
0

…

64

128

…

255

• Init LUT with samples taken from quantization function T

192

…

12Wolberg: Image Processing Course Notes

Quantization Program
• Straightforward implementation:

// iterate over all pixels
scale = MXGRAY / levels;
for(i=0; i<total; i++)
 out[i] = scale * (int) (in[i]/scale);

• Better approach: exploit LUT to avoid total mults/divisions:

// init lookup tables
scale = MXGRAY / levels;
for(i=0; i<MXGRAY; i++)
 lut[i] = scale * (int) (i/scale);

// iterate over all pixels
for(i=0; i<total; i++) out[i] = lut[in[i]];

13Wolberg: Image Processing Course Notes

Quantization Artifacts

• False contours associated with quantization are most noticeable in smooth areas
• These artifacts are obscured in highly textured regions

Original image

Quantized to 8 levels

14Wolberg: Image Processing Course Notes

Dither Signal

• Reduce quantization error by adding uniformly distributed white noise (dither
signal) to the input image prior to quantization.

• Dither hides objectional artifacts.
• To each pixel of the image, add a random number in the range [-m, m], where m

is MXGRAY/quantization-levels.

0 255 vinthr

vout

8 bpp (256 levels)

Uniform
noise

3 bpp (8 levels)

15Wolberg: Image Processing Course Notes

Comparison

1 bpp

Quantization

Dither/
Quantization

2 bpp 3 bpp 4 bpp

16Wolberg: Image Processing Course Notes

Arithmetic Operations

•A useful class of graylevel transformations is the set of arithmetic
operations, depicted in graphical form in the following figure:

17Wolberg: Image Processing Course Notes

Saturation Arithmetic

Clamp arithmetic operation to lie in [0, 255] range:
 [216 171 134 97 52] + 100 = [255 255 234 197 152]
 [216 171 134 97 52] - 100 = [116 71 34 0 0]

18Wolberg: Image Processing Course Notes

Gain-Bias Transformations

19Wolberg: Image Processing Course Notes

Piecewise-Linear Transformation Functions

• Advantage: The form of piecewise functions can be arbitrarily complex
• Disadvantage: Their specification requires considerably more user input

20Wolberg: Image Processing Course Notes

Linear Contrast Stretching
• Low contrast may be due to poor illumination, a lack of dynamic range in the imaging sensor, or even a

wrong setting of a lens aperture during acquisition.
• Applied contrast stretching: (r1,s1) = (rmin,0) and (r2,s2) = (rmax,L-1)

21Wolberg: Image Processing Course Notes

Linear Contrast Stretching Transformation

•Linear contrast stretch: A transformation that specifies a line
segment that maps gray levels between gmin and gmax in the
input image to the gray levels g’min and g’max in the output
image according to a linear function:

22Wolberg: Image Processing Course Notes

Linear Contrast Stretching Examples

23Wolberg: Image Processing Course Notes

Analytic Transformations

•Graylevel transformations can be specified using analytic
functions such as the logarithm, exponential, or power functions:

24Wolberg: Image Processing Course Notes

Analytic Transformation Examples

• Linear function
- Negative and identity

transformations

• Logarithmic function
- Log and inverse-log

transformations

• Power-law function
- nth power and nth root

transformations

25Wolberg: Image Processing Course Notes

Image Negatives

• Negative transformation : s = (L–1) – r
• Reverses the intensity levels of an image.
• Suitable for enhancing white or gray detail embedded in dark

regions of an image, especially when black area is large.

26Wolberg: Image Processing Course Notes

Log Transformations

• Log transformation : s = c log (1+r)
• c is constant and r ≥ 0
• Log curve maps a narrow range of low graylevels in input into a wider range of output levels.
• Expands range of dark image pixels while shrinking bright range.
• Inverse log expands range of bright image pixels while shrinking dark range.

27Wolberg: Image Processing Course Notes

Example of Logarithm Image

• Fourier spectrum image can have intensity range from 0 to 106 or higher.
• Log transform lets us see the detail dominated by large intensity peak.
- Must now display [0,6] range instead of [0,106] range.
- Rescale [0,6] to the [0,255] range.

28Wolberg: Image Processing Course Notes

Power-Law Transformations

s = crγ
• c and γ are

positive constants
• Power-law curves

with fractional
values of γ map a
narrow range of
dark input values
into a wider range
of output values,
with the opposite
being true for
higher values of
input levels.

• c = γ = 1
identity function

29Wolberg: Image Processing Course Notes

Gamma Correction

• Gamma correction is an operation that is rooted in the nonlinear mapping of
intensities displayed by cathode ray tubes (CRTs).

• CRTs worked by shooting electrons at the phosphor that coated the CRT
monitor. The excited phosphor would display the pixel at an intensity
proportional to the input value.

• The monitor would produce out = 𝑖𝑖𝑖𝑖γ, where γ = 2.2 and in is in [0,1] range.
• Since images appeared darker than desired, gamma correction achieved a

perceptually desirable result by altering the input to brighter values that
would appear correct after passing through the nonlinear mapping of the
display.

30Wolberg: Image Processing Course Notes

Gamma Correction Example

• Cathode ray tube
(CRT) devices
have an intensity-
to-voltage
response that is a
power function,
with γ varying from
1.8 to 2.5

• This darkens the
picture.

• Gamma correction
is done by
preprocessing the
image before
inputting it to the
monitor.

0 1

1

0 1

1

0 1 0 1

1 1

(in)γ

[(in)1/γ]γ
↓

gamma correction

31Wolberg: Image Processing Course Notes

Gamma Correction Program
// init lookup table
double exponent = 1.0 / gamma; // gamma correction exponent
for(i=0; i<=MaxGray; i++){
 // 1) normalize input graylevel i into [0,1] range
 // 2) raise i to the 1/gamma for gamma correction
 // 3) restore the [0,1] range back to [0,max]
 lut[i] = MaxGray * pow(((double) i/MaxGray), exponent);
}

// iterate over all pixels
for(i=0; i<total; i++) out[i] = lut[in[i]];

32Wolberg: Image Processing Course Notes

Example: MRI

(a) Dark MRI. Expand
graylevel range for
contrast manipulation
 γ < 1

(b) γ = 0.6, c=1
(c) γ = 0.4 (best result)
(d) γ = 0.3 (limit of

acceptability)
When γ is reduced too

much, the image
begins to reduce
contrast to the point
where it starts to have
a “washed-out” look,
especially in the
background

33Wolberg: Image Processing Course Notes

Example: Aerial Image
Washed-out
image. Shrink
graylevel range
 γ > 1

(b) γ = 3.0
(suitable)

(c) γ = 4.0
(suitable)

(d) γ = 5.0
 (High contrast;

the image has
areas that are
too dark; some
detail is lost)

34Wolberg: Image Processing Course Notes

Graylevel Slicing

35Wolberg: Image Processing Course Notes

Bit-plane slicing

• Highlighting the contribution
made to total image
appearance by specific bits

• Suppose each pixel is
represented by 8 bits

• Higher-order bits contain the
majority of the visually
significant data

• Useful for analyzing the
relative importance played by
each bit of the image

Bit-plane 7
(most significant)

Bit-plane 0
(least significant)

One 8-bit byte

36Wolberg: Image Processing Course Notes

Example

• The (binary) image for bit-
plane 7 can be obtained
by processing the input
image with a thresholding
graylevel transformation.

- Map all levels between 0
and 127 to 0

- Map all levels between
129 and 255 to 255

An 8-bit fractal image

37Wolberg: Image Processing Course Notes

8-Bit Planes

Bit-plane 7 Bit-plane 6

Bit-
plane 5

Bit-
plane 4

Bit-
plane 3

Bit-
plane 2

Bit-
plane 1

Bit-
plane 0

38Wolberg: Image Processing Course Notes

Hardware LUTs

• All point operations can be implemented by LUTs.
• Hardware LUTs operate on the data as it is being displayed.
• It’s an efficient means of applying transformations because changing display

characteristics only requires loading a new table and not the entire image.
• For a 1024x1024 8-bit image, this translates to 256 entries instead of one million.
• LUTs do not alter the contents of original image (nondestructive).

0 0 0 1

2 2 1 1

2 1 1 1

2 2 3 3

20

40

100

100

20 20 20 40

100 100 40 40

100 40 40 40

100 100 100 100

Refresh memory
For display Lookup table Display screen

Vin(i,j) Vout(i,j)

39Wolberg: Image Processing Course Notes

Graylevel Histograms

•Histogram: a simple but powerful technique for
visualizing the statistical properties of an image.

• The space in which the data resides is divided into bins, and
the histogram records the number of occurrences in each bin.

• Graylevel histogram: a histogram of image gray levels
• Normalized histogram: computed from the histogram by simply dividing each

value by the total number of pixels in the image
• Probability density function (PDF): the normalized histogram

40Wolberg: Image Processing Course Notes

Graylevel Histogram

• A histogram of a digital image with gray levels in the range [0, L-1] is a
discrete function h(rk) = nk

- rk : the kth gray level
- nk : the number of pixels in the image having gray level rk

• The sum of all histogram entries is equal to the total number of pixels in
the image.

r

h(r)

41Wolberg: Image Processing Course Notes

Histogram Examples

42Wolberg: Image Processing Course Notes

Histogram Evaluation

5x5 image

Histogram evaluation:
for(i=0; i<MXGRAY; i++) H[i] = 0;
for(i=0; i<total; i++) H[in[i]]++;

Graylevel Count

0 2

1 5

2 3

3 4

4 5

5 2

6 4

Total 25

2 3 4 4 6

1 2 4 5 6

1 1 5 6 6

0 1 3 3 4

0 1 2 3 4

Plot of the Histogram

0

1

2

3

4

5

6

Pixel value

Co
un

t

43Wolberg: Image Processing Course Notes

Normalized Histogram

• Divide each histogram entry at gray level rk by the total number of
pixels in the image, n

p(rk) = nk / n
• p(rk) gives an estimate of the probability of occurrence of gray level rk

• The sum of all components of a normalized histogram is equal to 1.

44Wolberg: Image Processing Course Notes

Pseudocode

45Wolberg: Image Processing Course Notes

Histogram Processing

•Basic for numerous spatial domain processing techniques.
•Used effectively for image enhancement:

- Histogram stretching
- Histogram equalization
- Histogram matching

• Information inherent in histograms also is useful in image
compression and segmentation.

46Wolberg: Image Processing Course Notes

Example: Dark/Bright Images

Dark image

Bright image

Components of
histogram are
concentrated on the
low side of the gray
scale.

Components of
histogram are
concentrated on the
high side of the gray
scale.

47Wolberg: Image Processing Course Notes

Example: Low/High Contrast Images

Low-contrast image

High-contrast image

histogram is narrow
and centered toward
the middle of the
gray scale

histogram covers broad
range of the gray scale
and the distribution of
pixels is not too far from
uniform, with very few
vertical lines being much
higher than the others

48Wolberg: Image Processing Course Notes

Histogram Stretching (1)

MIN MAX

h(f)

f 0 255

h(g)

g

MINMAX
MINfg

−
−

=
)(255

1) Slide histogram down to 0

2) Normalize histogram to [0,1] range

3) Rescale to [0,255] range

49Wolberg: Image Processing Course Notes

Histogram Stretching (2)

MINMAX
MINfg

−
−

=
)(255

1) Slide histogram down to 0

2) Normalize histogram to [0,1] range

3) Rescale to [0,255] range

This is an instance of linear contrast stretching where the input range
[𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚] = [MIN,MAX] is mapped to output range [𝑔𝑔′𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔′𝑚𝑚𝑚𝑚𝑚𝑚] = [0, 255].

50Wolberg: Image Processing Course Notes

Example (1)

11 207

Wide dynamic range
permits for only a small
improvement after histogram
stretching

0 255

Image appears virtually
identical to original

51Wolberg: Image Processing Course Notes

Example (2)

• Improve effectiveness of histogram stretching by clipping intensities first

Flat histogram: every graylevel
is equally present in image

12811 0 255

52Wolberg: Image Processing Course Notes

Histogram Equalization

• Produce image with flat histogram
• All graylevels are equally likely
• Appropriate for images with wide range of graylevels
• Inappropriate for images with few graylevels (see below)

53Wolberg: Image Processing Course Notes

Example (1)

54Wolberg: Image Processing Course Notes

Example (2)

before after Histogram
equalization

55Wolberg: Image Processing Course Notes

Example (3)

before after Histogram
equalization

The quality is
not improved
much because
the original
image already
has a wide
graylevel scale

56Wolberg: Image Processing Course Notes

Implementation (1)

2 3 3 2

4 2 4 3

3 2 3 5

2 4 2 4

4x4 image
Gray scale = [0,9]

histogram
0 1

1

2

2

3

3

4

4

5

5

6

6

7 8 9

No. of pixels

Gray level

57Wolberg: Image Processing Course Notes

Implementation (2)

Gray
Level(j)

0 1 2 3 4 5 6 7 8 9

No. of
pixels 0 0 6 5 4 1 0 0 0 0

0 0 6 11 15 16 16 16 16 16

0 0 6/16 11/16 15/16 16/16 16/16 16/16 16/16 16/16

s x 9 0 0
3.3
≈3

6.1
≈6

8.4
≈8

9 9 9 9 9

∑
=

=
k

j

j

n
n

s
0

∑
=

k

j
jn

0

Cumulative
Distribution
Function (CDF)

Cumulative
histogram

58Wolberg: Image Processing Course Notes

Implementation (3)

3 6 6 3

8 3 8 6

6 3 6 9

3 8 3 8

Output image
Gray scale = [0,9]

Histogram equalization

0 1

1

2

2

3

3

4

4

5

5

6

6

7 8 9

No. of pixels

Gray level

2 3 3 2

4 2 4 3

3 2 3 5

2 4 2 4

Input image

59Wolberg: Image Processing Course Notes

Pseudocode

60Wolberg: Image Processing Course Notes

Why It Works

61Wolberg: Image Processing Course Notes

Note (1)

• Histogram equalization distributes the graylevels to reach maximum gray
(white) because the cumulative distribution function equals 1 when 0 ≤ r ≤ L-1

• If is slightly different among consecutive k , those graylevels will be
mapped to (nearly) identical values as we have to produce an integer
grayvalue as output

• Thus, the discrete transformation function cannot guarantee a one-to-one
mapping

∑
=

k

j
jn

0

62Wolberg: Image Processing Course Notes

Note (2)

• The implementation given above is widely interpreted as histogram equalization.
• It is readily implemented with a LUT.
• It does not produce a strictly flat histogram.
• There is a more accurate solution. However, it may require a one-to-many

mapping that cannot be implemented with a LUT.

63Wolberg: Image Processing Course Notes

Histogram Equalization Objective

Objective: we want a uniform histogram.
Rationale: maximize image entropy.

This is a special case of histogram matching.
Perfectly flat histogram: H[i] = total/MXGRAY for 0≤ i < MXGRAY.
If H[v] = k * havg then v must be mapped onto k different levels, from v1 to

vk. This is a one-to many mapping.

avgoutout

avg

out

hvvc
h

MXGRAY
totalvh

*)1()(

constant)(

1

1

+=

=

==

64Wolberg: Image Processing Course Notes

Histogram Equalization Mappings

Rule 1: Always map v onto (v1+vk)/2. (This does not result in a flat
histogram, but one where brightness levels are spaced apart).

Rule 2: Assign at random one of the levels in [v1,vk]. This can result in a
loss of contrast if the original histogram had two distinct peaks that were
far apart (i.e., an image of text).

Rule 3: Examine neighborhood of pixel, and assign it a level from [v1,vk]
which is closest to neighborhood average. This can result in bluriness;
more complex.

Rule (1) creates a lookup table beforehand.
Rules (2) and (3) are runtime operations.

65Wolberg: Image Processing Course Notes

Rule 2: Implementation (1)
void histoEqRand(imagePtr I1, imagePtr I2) {
 // copy image header of input image I1 to output image I2
 IP_copyImageHeader(I1, I2);

 // total number of pixels
 int total = I1->width() * I1->height();

 // scale dynamic range of I1 to full intensity range [0,MaxGray], where MaxGray=255
 IP_embedRange(I1, 0., (double) MaxGray, I2);

 // declarations for input and output image channel pointers
 ChannelPtr<uchar> p1, p2;
 int type; // datatype of returned channel pointer
 int histo[MaxGray+1];

 // Note: IP_getChannel(I, ch, p1, type) gets pointer p1 of channel ch in image I.
 // The pixel datatype (e.g., uchar, short, …) of that channel is returned in type.
 // It is ignored here since we assume that our input images consist exclusively of uchars.
 // IP_getChannel() returns 1 when channel ch exists; 0 otherwise.

 // visit all channels and evaluate output image
 for(int ch=0; IP_getChannel(I1, ch, p1, type); ch++) { // get input pointer
 IP_getChannel(I2, ch, p2, type); // get output pointer

 // compute histogram
 for(int i=0; i<=MaxGray; i++) histo[i] = 0; // clear histogram
 for(int i=0; i<total; i++) histo[p1[i]]++; // eval histogram

66Wolberg: Image Processing Course Notes

Rule 2: Implementation (2)
 int right=0; // right end of interval
 int left [MaxGray+1], width[MaxGray+1]; // left end and width of target interval for each input graylevel
 long Hsum = 0; // cumulative histogram summation
 long Havg = total / (MaxGray+1); // value for each entry of target histogram

 // evaluate remapping of all input gray levels: each input gray value maps to an interval of valid output values.
 // The endpoints of the intervals are left[] and left[]+width[].

 for(int i=0; i<=MaxGray; i++) {
 left[i] = right; // left end of grayscale interval into which i maps
 Hsum += histo[i]; // compute cumulative histogram summation
 while(Hsum>Havg && R<MaxGray) { // make interval wider
 Hsum -= Havg; // adjust Hsum
 right++; // update right end of interval
 }
 width[i] = right - left[i] + 1; // width of interval
 }

 // visit all input pixels and remap the intensities
 for(int i=0; i<total; i++) {
 if(width[p1[i]] == 1) p2[i] = left[p1[i]];
 else { // p1[i] spills over into width[] possible values
 // randomly pick from 0 to width[i]
 int r = ((double) rand() / RAND_MAX) * width[p1[i]]; // 0 <= r < width[i]
 } p2[i] = left[p1[i]] + r;
 }
 }
}

67Wolberg: Image Processing Course Notes

Note

• Histogram equalization has a disadvantage:
it can generate only one type of output image.

• With histogram specification we can specify the shape of the histogram that
we wish the output image to have.

• It doesn’t have to be a uniform histogram.
• Histogram specification is a trial-and-error process.
• There are no rules for specifying histograms, and one must resort to analysis

on a case-by-case basis for any given enhancement task.

68Wolberg: Image Processing Course Notes

In the figure above, h() refers to the histogram, and c() refers to its
cumulative histogram. Function c() is a monotonically increasing
function defined as:

Histogram Matching

vinv’
in

C0(v’in)

h0(vin)

vout

C1(v’out)

v’
out

C0(vout)

vout=T(vin)

h1(vout)

∫=
v

duuhvc
0

)()(

69Wolberg: Image Processing Course Notes

Histogram Matching Rule

Let vout =T(vin) If T() is a unique, monotonic function then

This can be restated in terms of the histogram matching rule:

Where c1(vout) = # pixels ≤ vout, and c0(vin) = # pixels ≤ vin..
This requires that

which is the basic equation for histogram matching techniques.

∫ ∫=
out inv v

duuhduuh
0 0

01)()(

)()(01 inout vcvc =

))((0
1

1 inout vccv −=

70Wolberg: Image Processing Course Notes

Pseudocode

71Wolberg: Image Processing Course Notes

Histograms are Discrete

• Impossible to match all histogram pairs because they are discrete.

1 1 1 1

1 1 2 2

3 3 4 4

4 4 4 4

?
1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

Lookup table Display screen

Vin(i,j) Vout(i,j)

Refresh memory
For display

vinvout vin

C1(vout)

vout

C0(vin) ?

Continuous case Discrete case

72Wolberg: Image Processing Course Notes

Problems with Discrete Case

• The set of input pixel values is a discrete set, and all the pixels of a given
value are mapped to the same output value. For example, all six pixels of
value one are mapped to the same value so it is impossible to have only
four corresponding output pixels.

• No inverse for c1 in vout= c1
-1(c0(vin)) because of discrete domain. Solution:

choose vout for which c1(vout) is closest to c0(vin).

• vin→ vout such that |c1(vout) - c0(vin)| is a minimum

73Wolberg: Image Processing Course Notes

Histogram Matching Example (1)

Histogram
match

Input image

Output image

Input
Histogram

Target
Histogram

74Wolberg: Image Processing Course Notes

Histogram Matching Example (2)

75Wolberg: Image Processing Course Notes

Implementation (1)
void histoMatch(imagePtr I1, ImagePtr targetHisto, imagePtr I2)
{
 // copy image header of input image I1 to output image I2
 IP_copyImageHeader(I1, I2);

 // total number of pixels
 int total1 = I1->width() * I1->height();

 // scale dynamic range of I1 to full intensity range [0,MaxGray], where MaxGray=255
 IP_embedRange(I1, 0., (double) MaxGray, I2);

 // declarations for input and output image channel pointers
 ChannelPtr<uchar> p1, p2, lutp;
 int type; // datatype of returned channel pointer
 int histo1[MaxGray+1], histo2[MaxGray+1];

 // Note: IP_getChannel(I, ch, p1, type) gets pointer p1 of channel ch in image I.
 // The pixel datatype (e.g., uchar, short, …) of that channel is returned in type.
 // It is ignored here since we assume that our input images consist exclusively of uchars.
 // IP_getChannel() returns 1 when channel ch exists; 0 otherwise.

 // visit all channels and evaluate output image
 for(int ch=0; IP_getChannel(I1, ch, p1, type); ch++) { // get input pointer
 IP_getChannel(I2, ch, p2, type); // get output pointer

 // compute histogram
 for(int i=0; i<=MaxGray; i++) histo1[i] = 0; // clear histogram
 for(int i=0; i<total; i++) histo1[p1[i]]++; // eval histogram

76Wolberg: Image Processing Course Notes

Implementation (2)
 IP_getChannel(targetHisto, 0, lutp, type);
 histo2 = (int *) &lutp[0];

 // compute sum of target histogram for normalization
 int total2 = 0;
 for(int i=0; i<=MaxGray; i++)
 total2 += histo2[i];

 // scale histo2 to conform with dimensions of I1
 double scale = (double) total1 / total2;
 if(scale != 1) {
 int sum = 0;
 for(int i=0; i<=MaxGray; i++) {
 histo2[i] = ROUND(histo2[i] * scale);

 // update histo2[] if cumulative histogram overshoots due to rounding operations
 sum += histo2[i];
 if(sum > total1) { // check for overshoot
 histo2[i] -= (sum – total1); // clamp last non-zero histo2[]
 for(; i <=MaxGray; i++) histo2[i] = 0; // clear the remainder of histo2[]
 }
 }
 }

77Wolberg: Image Processing Course Notes

Implementation (3)
 int r=0; // right end of interval
 int left [MaxGray+1]; // left end and width of target interval for each input graylevel
 long Hsum = 0; // cumulative histogram summation

 for(int i=0; I <= MaxGray; i++) {
 left[i] = r; // left end of grayscale interval into which i maps
 Hsum += histo1[i]; // compute cumulative histogram summation
 while(Hsum>histo2[r] && r<MaxGray) { // compute width of interval
 Hsum -= histo2[r]; // adjust Hsum as interval widens
 r++; // update
 }
 right[i] = r; // save right end of interval
 }

 // clear histo1[] and reuse it below
 for(int i=0; i <= MaxGray; i++) histo1[i] = 0;

 // visit all input pixels and remap the intensities
 int p;
 for(int i=0; i<total; i++) {
 p = left[p1[i]];
 if(histo1[p] < histo2[p]) // mapping satisfies target histogram (histo2)
 p2[i] = p;
 else p2[i] = p = left[p1[i]] = MIN(p+1, right[p1[i]]);
 histo1[p]++;
 }
 }
}

78Wolberg: Image Processing Course Notes

Local Pixel Value Mappings

• Histogram processing methods are global, in the sense that pixels are modified
by a transformation function based on the graylevel content of an entire image.

• We sometimes need to enhance details over small areas in an image, which is
called a local enhancement.

• Solution: apply transformation functions based on graylevel distribution within
pixel neighborhood.

79Wolberg: Image Processing Course Notes

General Procedure

• Define a square or rectangular neighborhood.
• Move the center of this area from pixel to pixel.
• At each location, the histogram of the points in the neighborhood is

computed and histogram equalization, histogram matching, or other
graylevel mapping is performed.

• Exploit easy histogram update since only one new row or column of
neighborhood changes during pixel-to-pixel translation.

• Another approach used to reduce computation is to utilize nonoverlapping
regions, but this usually produces an undesirable checkerboard effect.

80Wolberg: Image Processing Course Notes

Example: Local Enhancement

a) Original image (slightly blurred to reduce noise)
b) global histogram equalization enhances noise & slightly increases

contrast but the structural details are unchanged
c) local histogram equalization using 7x7 neighborhood reveals the

small squares inside of the larger ones in the original image.

81Wolberg: Image Processing Course Notes

Definitions (1)

∑

∑

−=

=

ji

ji

yxjif
n

yx

jif
n

yx

,

2

,

)),(),((1),(

),(1),(

µσ

µ mean

standard deviation

• Let p(ri) denote the normalized histogram entry for grayvalue ri
 for 0 ≤ i < L where L is the number of graylevels.
• It is an estimate of the probability of occurrence of graylevel ri.
• Mean m can be rewritten as

∑
−

=

=
1

0
)(

L

i
ii rprm

82Wolberg: Image Processing Course Notes

Definitions (2)

• The nth moment of r about its mean is defined as

• It follows that:

• The second moment is known as variance
• The standard deviation is the square root of the variance.
• The mean and standard deviation are measures of

average grayvalue and average contrast, respectively.

)()()(
1

0
i

L

i

n
in rpmrr ∑

−

=

−=µ

)()()(

0)(
1)(

2
1

0
2

1

0

i

L

i
i rpmrr

r
r

−=

=
=

∑
−

=

µ

µ
µ 0th moment

1st moment

2nd moment

)(2 rσ

83Wolberg: Image Processing Course Notes

Example: Statistical Differencing

• Produces the same contrast throughout the image.
• Stretch f(x, y) away from or towards the local mean to achieve a balanced

local standard deviation throughout the image.
• σ0 is the desired standard deviation and it controls the amount of stretch.
• The local mean can also be adjusted:

• m0 is the mean to force locally and α controls the degree to which it is forced.
• To avoid problems when σ(x, y) = 0,

• Speedups can be achieved by dividing the image into blocks (tiles), exactly
computing the mean and standard deviation at the center of each block, and
then linearly interpolating between blocks in order to compute an
approximation at any arbitrary position. In addition, the mean and standard
deviation can be computed incrementally.

),(
)),(),((),()1(),(0

0 yx
yxyxfyxmyxg

σ
σ

µµαα −+−+=

),(
)),(),((),()1(),(

0

0
0 yx

yxyxfyxmyxg
βσσ
βσµµαα

+
−+−+=

84Wolberg: Image Processing Course Notes

Example: Local Statistics (1)

The filament in the center is clear.
There is another filament on the right side that is darker and hard to see.
Goal: enhance dark areas while leaving the light areas unchanged.

85Wolberg: Image Processing Course Notes

Example: Local Statistics (2)

Solution: Identify candidate pixels to be dark pixels with low contrast.
Dark: local mean < k0*global mean, where 0 < k0 < 1.
Low contrast: k1*global variance < local variance < k2 * global variance,
where k1 < k2.
Multiply identified pixels by constant E>1. Leave other pixels alone.

86Wolberg: Image Processing Course Notes

Example: Local Statistics (3)

Results for E=4, k0=0.4, k1=0.02, k2=0.4. 3x3 neighborhoods used.

87Wolberg: Image Processing Course Notes

Enhancement

• Point operations are used to enhance an image.
• Processed image should be more suitable than the original image
for a specific application.

• Suitability is application-dependent.
• A method which is quite useful for enhancing one image may not
necessarily be the best approach for enhancing another image.

• Very subjective

88Wolberg: Image Processing Course Notes

Two Enhancement Domains

• Spatial Domain: (image plane)
- Techniques are based on direct manipulation of pixels in an image

• Frequency Domain:
- Techniques are based on modifying the Fourier transform of an image

• There are some enhancement techniques based on various
combinations of methods from these two categories.

89Wolberg: Image Processing Course Notes

Enhanced Images

• For human vision
- The visual evaluation of image quality is a highly subjective process.
- It is hard to standardize the definition of a good image.

• For machine perception
- The evaluation task is easier.
- A good image is one which gives the best machine recognition results.

• A certain amount of trial and error usually is required before a
particular image enhancement approach is selected.

	Point Operations
	Objectives
	Point Operations
	Graylevel Transformations
	Graylevel Transformation T
	Thresholding
	Lookup Table: Threshold
	Threshold Program
	Quantization
	Quantization
	Lookup Table: Quantization
	Quantization Program
	Quantization Artifacts
	Dither Signal
	Comparison
	Arithmetic Operations
	Saturation Arithmetic
	Gain-Bias Transformations
	Piecewise-Linear Transformation Functions
	Linear Contrast Stretching
	Linear Contrast Stretching Transformation
	Linear Contrast Stretching Examples
	Analytic Transformations
	Analytic Transformation Examples
	Image Negatives
	Log Transformations
	Example of Logarithm Image
	Power-Law Transformations
	Gamma Correction
	Gamma Correction Example
	Gamma Correction Program
	Example: MRI
	Example: Aerial Image
	Graylevel Slicing
	Bit-plane slicing
	Example
	8-Bit Planes
	Hardware LUTs
	Graylevel Histograms
	Graylevel Histogram
	Histogram Examples
	Histogram Evaluation
	Normalized Histogram
	Pseudocode
	Histogram Processing
	Example: Dark/Bright Images
	Example: Low/High Contrast Images
	Histogram Stretching (1)
	Histogram Stretching (2)
	Example (1)
	Example (2)
	Histogram Equalization
	Example (1)
	Example (2)
	Example (3)
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Pseudocode
	Why It Works
	Note (1)
	Note (2)
	Histogram Equalization Objective
	Histogram Equalization Mappings
	Rule 2: Implementation (1)
	Rule 2: Implementation (2)
	Note
	Histogram Matching
	Histogram Matching Rule
	Pseudocode
	Histograms are Discrete
	Problems with Discrete Case
	Histogram Matching Example (1)
	Histogram Matching Example (2)
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Local Pixel Value Mappings
	General Procedure
	Example: Local Enhancement
	Definitions (1)
	Definitions (2)
	Example: Statistical Differencing
	Example: Local Statistics (1)
	Example: Local Statistics (2)
	Example: Local Statistics (3)
	Enhancement
	Two Enhancement Domains
	Enhanced Images

