Human Visual System

Prof. George Wolberg
Dept. of Computer Science
City College of New York

Objectives

- In this lecture we discuss:
- Structure of human eye
- Mechanics of human visual system (HVS)
- Brightness adaptation and discrimination
- Perceived brightness and simultaneous contrast
- Topics of image formation and acquisition, such as the pinhole camera model, lenses, sampling, and quantization

Human and Computer Vision

- We observe and evaluate images with our visual system
-We must therefore understand the functioning of the human visual system and its capabilities for brightness adaptation and discrimination:
- What intensity differences can we distinguish?
- What is the spatial resolution of our eye?
- How accurately do we estimate distances and areas?
- How do we sense colors?
- By which features can we detect/distinguish objects?

Structure of the Human Eye

- Shape is nearly spherical
- Average diameter $=24 \mathrm{~mm}$
- Three membranes:
- Cornea and Sclera
- Choroid
- Retina

Structure of the Human Eye: Cornea and Sclera

- Cornea
- Tough, transparent tissue that covers the anterior surface of the eye.
- Sclera
- Opaque membrane that encloses the remainder of the optical globe. It is the white part of the eye.

FIGURE 2.1
FIGURE 2.1
Simplified Simplified
diagram of a cross section of the human eye.

Structure of the Human Eye: Choroid

- Choroid
- Lies below the sclera
- Contains network of blood vessels that serve as the major source of nutrition to the eye.
- Choroid coat is heavily pigmented and hence helps to reduce the amount of extraneous light entering the eye and the backscatter within the optical globe

Structure of the Human Eye: Lens and Retina

- Lens
- Both infrared and ultraviolet light are absorbed appreciably by proteins within the lens structure and, in excessive amounts, can cause damage to the eye
- Retina
- Innermost membrane of the eye which lines the inside of the wall's entire posterior portion. When the eye is properly focused, light from an object outside the eye Is imaged on the retina.

Transmission of Light

- Light rays enter the eyeball through the cornea, where they are bent before they pass through the aqueous humor, where they are bent again.
- These rays then pass through the small aperture known as the pupil, whose size is controlled by muscles attached to the iris, the colored circular region surrounding the pupil.
- The rays are bent again by the lens, whose thickness is controlled by the ciliary muscle.
- The lens provides only about $1 / 3$ of the refractive power of the eyeball, the rest being achieved by the cornea and aqueous humor.
- The lens focuses the light to form an image on the retina at the back of the eyeball.
- After absorbing a photon, the photoreceptors in the retina are nourished by the choroid, the layer between the sclera and the retina.

Receptors

- The retina consists of two types of light receptors: cones and rods
- Cones
- 6-7 million cones lie in central portion of the retina, called the fovea.
- Highly sensitive to color and bright light.
- Resolve fine detail since each is connected to its own nerve end.
- Cone vision is called photopic or bright-light vision.
- L-, M-, and S-cones respond to long-, middle-, and short-wavelength light (RGB cones).
- Rods
- 100-150 million rods distributed over the retina surface.
- Reduced amount of detail discernable since several rods are connected to a single nerve end.
- Serves to give a general, overall picture of the field of view.
- Sensitive to low levels of illumination.
- Rod vision is called scotopic or dim-light vision.

Distribution of Cones and Rods

- Blind spot: no receptors in region of emergence of optic nerve.
- Distribution of receptors is radially symmetric about the fovea.
- Cones are most dense in the center of the retina (e.g., fovea)
- Rods increase in density from the center out to 20° and then decrease

Figure 2.3 Distribution of cones and rods in the retina. Based on B. A. Wandell. Foundations of Vision. Sunderland, Mass., Sinauer Associates, Inc., 1995.

Human Visual Perception (1)

- The human visual system can respond to levels of light ranging an astounding 14 orders of magnitude.
- The eye cannot process this range simultaneously but instead adapts using the different types of photoreceptors and by adjusting the size of the pupil

Figure 2.8 Scotopic, mesopic, and photopic vision at different light levels. While the human visual system is capable of sensing light in approximately a range of 10^{14} overall (from 10^{-6} to $10^{8} \mathrm{~cd} / \mathrm{m}^{2}$), light can be sensed in a range of 10^{3}, at any particular state of adaptation.

Human Visual Perception (2)

- Luminous efficiency function (LEF): captures the relative sensitivity of the visual system to different wavelengths.

Figure 2.2 Relative sensitivity of the $\mathrm{S}-, \mathrm{M}$-, and L -cones of the human visual system to different wavelengths. These functions are also known as the cone fundamentals. Based on data from http://www.cvrl.org.

Luminous Efficiency Functions (1)

-Photopic LEF: corresponds to normal light levels where the cones dominate due to the saturation of the rods.

- Scotopic LEF: corresponds to low light levels where the rods dominate due to the lack of sensitivity of the cones.
- Purkinje effect: the difference in peak wavelength.
- It explains why objects appear to have a more bluish tint as the light dims.

Luminous Efficiency Functions (2)

- The scotopic LEF closely matches the spectral sensitivity function, and the photopic LEF is well approximated as a weighted contribution of the $\mathrm{S}-\mathrm{M}$-, and L-cones.

Figure 2.9 Photopic and scotopic
luminous efficiency functions
(LEFs). Based on data from
http://www.cvrl.org.

Animal Vision (1)

- The imitation of natural systems is known as biomimicry (or biomimetics).
- It is an important approach to discovering novel solutions in both software and hardware.
- In a compound eye, the photoreceptors are arranged in small groups called ommatidia.
- Each ommatidium views the world from a different direction, yielding a mosaic of images providing a fairly low-resolution representation of the scene.

Animal Vision (2)

Figure 2.10 The common housefly has the fastest visual response of any animal, leading to extreme maneuverability in flight. Tiny flying robots (such as this one from Centeye) have been inspired to mimic the housefly's navigation ability based on optic flow.

Animal Vision (3)

Figure 2.11 Raptors, such as this hawk, have the highest visual acuity of any animal. Megapixel video cameras with similar ability are now commercially available.

Animal Vision (4)

Figure 2.12
Predators such as this tiger have two eyes facing forward, so that it can estimate the distance to its intended prey via stereo vision. Prey such as this rabbit have eyes on the sides of the head, providing a much wider field of view to detect danger.

Animal Vision (5)

Figure 2.13 The loreal pit between the eye and nostril on a pit viper leads to an organ that detects heat via infrared light. Forward-looking infrared (FLIR) cameras detect warm bodies by examining the infrared portion of the spectrum, as seen in this thermal image.

Animal Vision (6)

Figure 2.14 Bees have ultraviolet filters enabling them to detect the flower center, which is helpful for pollinization. The middle image shows the flower (left) as it appears to a bee. Ultraviolet cameras are also used to detect heavenly bodies, such as the sun (riaht).

Figure 2.16 The lobster eye focuses by reflection, not refraction, and is the inspiration for a new generation of telescope. Based on Trilobite EyesUltimate Optics by Kurt Wise https://answersingenesis. org/extinct-animals/trilobite-eyes-ultimate-optics/

Brightness Adaptation (1)

- The human eye's ability to discriminate between intensities is important.
- Experimental evidence suggests that subjective brightness (perceived) is a logarithmic function of light incident on eye. Notice approximately linear response in log-scale below.

FIGURE 2.4
Range of subjective brightness sensations
showing a
particular
adaptation level.

Wide range of intensity levels to which HVS can adapt: from scotopic threshold to glare limit (on the order of $10^{\wedge 10)}$

Range of subjective brightness that eye can perceive when adapted to level B_{a}

Brightness Adaptation (2)

- Essential point: the HVS cannot operate over such a large range simultaneously.
- It accomplishes this large variation by changes in its overall sensitivity: brightness adaptation.
- The total range of distinct intensity levels it can discriminate simultaneously is rather small when compared with the total adaptation range.
- For any given set of conditions, the current sensitivity level of the HVS is called the brightness adaptation level (Ba in figure).

Brightness Discrimination (1)

- The ability of the eye to discriminate between intensity changes at any adaptation level is of considerable interest.
- Let / be the intensity of a large uniform area that covers the entire field of view.
- This area typically is a diffuser, such as opaque glass, illuminated from behind by a light source I
- Let ΔI be the change in object brightness required to just distinguish the object from the background.
- The object is a short-duration flash that appears as a circle in the center of the uniformly illuminated field.
- Good brightness discrimination: $\Delta l / /$ is small.
- Bad brightness discrimination: $\Delta I / /$ is large.
- $\Delta l / /$ is called Weber's ratio.

Brightness Discrimination (2)

- Brightness discrimination is poor at low levels of illumination, where vision is carried out by rods. Notice Weber's ratio is large.
- Brightness discrimination improves at high levels of illumination, where vision is carried out by cones. Notice Weber's ratio is small.

FIGURE 2.6
Typical Weber ratio as a function of intensity.

Perceived Brightness

- Perceived brightness is not a simple function of intensity.
- The HVS tends to over/undershoot around intensity discontinuities.
- The scalloped brightness bands shown below are called Mach bands, after Ernst Mach who described this phenomenon in 1865.

Simultaneous Contrast (1)

- A region's perceived brightness does not depend simply on its intensity. It is also related to the surrounding background.

a b c
FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Simultaneous Contrast (2)

- An example with colored squares.

Choice of Grayscales (1)

- Let I take on 256 different intensities:
$-0 \leq I_{i} \leq 1$ for $i=0,1, \ldots, 255$.
-Which levels we use?
- Use eye characteristics: sensitive to ratios of intensity levels rather than to absolute values (Weber's law: $\Delta \mathrm{B} / \mathrm{B}=$ constant)
- For example, we perceive intensities .10 and .11 as differing just as much as intensities . 50 and .55 .

Choice of Grayscales (2)

- Levels should be spaced logarithmically rather than linearly to achieve equal steps in brightness:

$$
I_{0}, I_{1}=r I_{0}, I_{2}=r I_{1}=r^{2} I_{0}, \quad I_{3}=r I_{2}=r^{3} I_{0}, \ldots ., I_{255}=r^{255} I_{0}=1,
$$

where I_{0} is the lowest attainable intensity.

- $r=\left(1 / I_{0}\right)^{1 / 255}$,
- $I_{i}=r^{i} I_{0}=\left(1 / I_{0}\right)^{i / 255} I_{0}=I_{0}^{(1-i / 255)}=I_{0}^{(255-i) / 255}$
- In general, for $n+1$ intensities:

$$
\begin{aligned}
& r=\left(1 / I_{0}\right)^{1 / n} \\
& I_{i}=I_{0}^{(n-i) / n} \quad \text { for } 0 \leq i \leq n
\end{aligned}
$$

Choice of Grayscales (3)

- Example: let $\mathrm{n}=3$ and $\mathrm{I}_{0}=1 / 8$:
-r = 2
$-I_{0}=(1 / 8)^{(3 / 3)}$
$-I_{1}=(1 / 8)^{(2 / 3)}=1 / 4$
$-I_{2}=(1 / 8)^{(1 / 3)}=1 / 2$
$-I_{3}=(1 / 8)^{(0 / 3)}=1$
- Typically, $1 / 200<\mathrm{I}_{0}<1 / 40$.
- Linear grayscale is close to logarithmic for large number of graylevels (256).

Code to Evaluate Grayscales

\#include <cstdio>

```
#include <iostream>
#include <cmath>
using namespace std;
int main() {
    int n = 255; // max graylevel; total graylevels = n+1
    double I0 = 0.01; // minimum intensity (e.g., black)
    double r = pow((1.0/I0), 1.0/n); // ratio between adjacent graylevels
    double I[n+1]; // array of graylevels
    // print ratio r
    cout << "r = " << r << endl;
    // for every index i, compute grayscale based on logarithmic spacing; scale by n for display
    for(int i=0; i<n+1; i++) {
        I[i] = n * pow(I0, (double) (n-i)/n);
        cout << i << ": " << I[i] << endl;
    }
    return 0;

\section*{Grayscale Example (1)}
- Example: \(\mathrm{n}=255\) and \(\mathrm{I}_{0}=1 / 100 ; \mathrm{r}=1.0182280\).
\begin{tabular}{lllllll}
\(0: 2.55\) & \(20: 3.65934\) & \(40: 5.25129\) & \(60: 7.53578\) & \(80: 10.8141\) & \(100: 15.5186\) & \(120: 22.2698\) \\
\(1: 2.59647\) & \(21: 3.72603\) & \(41: 5.34698\) & \(61: 7.67311\) & \(81: 11.0112\) & \(101: 15.8015\) & \(121: 22.6757\) \\
2: 2.64379 & \(22: 3.79393\) & \(42: 5.44442\) & \(62: 7.81294\) & \(82: 11.2119\) & \(102: 16.0894\) & \(122: 23.0889\) \\
\(3: 2.69197\) & \(23: 3.86307\) & \(43: 5.54364\) & \(63: 7.95532\) & \(83: 11.4162\) & \(103: 16.3826\) & \(123: 23.5096\) \\
\(4: 2.74102\) & \(24: 3.93347\) & \(44: 5.64467\) & \(64: 8.1003\) & \(84: 11.6242\) & \(104: 16.6812\) & \(124: 23.9381\) \\
5: 2.79097 & \(25: 4.00515\) & \(45: 5.74753\) & \(65: 8.24791\) & \(85: 11.8361\) & \(105: 16.9852\) & \(125: 24.3743\) \\
6: 2.84184 & \(26: 4.07814\) & \(46: 5.85227\) & \(66: 8.39822\) & \(86: 12.0517\) & \(106: 17.2947\) & \(126: 24.8185\) \\
\(7: 2.89362\) & \(27: 4.15245\) & \(47: 5.95892\) & \(67: 8.55127\) & \(87: 12.2714\) & \(107: 17.6099\) & \(127: 25.2708\) \\
8: 2.94636 & \(28: 4.22813\) & \(48: 6.06751\) & \(68: 8.7071\) & \(88: 12.495\) & \(108: 17.9308\) & \(128: 25.7313\) \\
\(9: 3.00005\) & \(29: 4.30518\) & \(49: 6.17809\) & \(69: 8.86577\) & \(89: 12.7227\) & \(109: 18.2575\) & \(129: 26.2002\) \\
\(10: 3.05472\) & \(30: 4.38363\) & \(50: 6.29067\) & \(70: 9.02734\) & \(90: 12.9546\) & \(110: 18.5903\) & \(130: 26.6777\) \\
\(11: 3.11039\) & \(31: 4.46352\) & \(51: 6.40531\) & \(71: 9.19185\) & \(91: 13.1906\) & \(111: 18.929\) & \(131: 27.1638\) \\
\(12: 3.16707\) & \(32: 4.54486\) & \(52: 6.52204\) & \(72: 9.35936\) & \(92: 13.431\) & \(112: 19.274\) & \(132: 27.6589\) \\
\(13: 3.22479\) & \(33: 4.62768\) & \(53: 6.64089\) & \(73: 9.52992\) & \(93: 13.6758\) & \(113: 19.6252\) & \(133: 28.1629\) \\
\(14: 3.28355\) & \(34: 4.71202\) & \(54: 6.76191\) & \(74: 9.70359\) & \(94: 13.925\) & \(114: 19.9829\) & \(134: 28.6761\) \\
\(15: 3.34339\) & \(35: 4.79789\) & \(55: 6.88514\) & \(75: 9.88042\) & \(95: 14.1788\) & \(115: 20.347\) & \(135: 29.1987\) \\
\(16: 3.40432\) & \(36: 4.88532\) & \(56: 7.01061\) & \(76: 10.0605\) & \(96: 14.4371\) & \(116: 20.7178\) & \(136: 29.7308\) \\
\(17: 3.46636\) & \(37: 4.97435\) & \(57: 7.13837\) & \(77: 10.2438\) & \(97: 14.7002\) & \(117: 21.0954\) & \(137: 30.2726\) \\
\(18: 3.52953\) & \(38: 5.065\) & \(58: 7.26846\) & \(78: 10.4305\) & \(98: 14.9681\) & \(118: 21.4798\) & \(138: 30.8243\) \\
\(19: 3.59385\) & \(39: 5.1573\) & \(59: 7.40091\) & \(79: 10.6206\) & \(99: 15.2409\) & \(119: 21.8712\) & \(139: 31.386\)
\end{tabular}

\section*{Grayscale Example (2)}
- Example: \(\mathrm{n}=255\) and \(\mathrm{I}_{0}=1 / 100 ; \mathrm{r}=1.0182280\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline 140: 31.958 & 160: 45.8609 & 180: 65.812 & 200: 94.4425 & 220: 135.528 & 240: 194.488 \\
\hline 141:32.5404 & 161: 46.6966 & 181: 67.0113 & 201: 96.1636 & 221: 137.998 & 241: 198.032 \\
\hline 142: 33.1334 & 162: 47.5476 & 182: 68.2325 & 202: 97.9161 & 222: 140.513 & 242: 201.641 \\
\hline 143: 33.7372 & 163: 48.4141 & 183: 69.4759 & 203: 99.7004 & 223: 143.074 & 243: 205.316 \\
\hline 144: 34.352 & 164: 49.2963 & 184: 70.742 & 204: 101.517 & 224: 145.681 & 244: 209.057 \\
\hline 145: 34.978 & 165: 50.1947 & 185: 72.0312 & 205: 103.367 & 225: 148.336 & 245: 212.867 \\
\hline 146: 35.6154 & 166: 51.1094 & 186: 73.3439 & 206: 105.251 & 226: 151.039 & 246: 216.746 \\
\hline 147: 36.2645 & 167: 52.0408 & 187: 74.6804 & 207: 107.169 & 227: 153.792 & 247: 220.696 \\
\hline 148: 36.9253 & 168: 52.9892 & 188: 76.0414 & 208: 109.122 & 228: 156.594 & 248: 224.718 \\
\hline 149: 37.5983 & 169: 53.9548 & 189: 77.4271 & 209: 111.111 & 229: 159.448 & 249: 228.813 \\
\hline 150: 38.2834 & 170: 54.9381 & 190: 78.8381 & 210: 113.136 & 230: 162.354 & 250: 232.983 \\
\hline 151: 38.9811 & 171: 55.9393 & 191: 80.2748 & 211: 115.197 & 231: 165.312 & 251: 237.229 \\
\hline 152: 39.6915 & 172: 56.9587 & 192: 81.7377 & 212: 117.297 & 232: 168.325 & 252: 241.552 \\
\hline 153: 40.4148 & 173: 57.9967 & 193: 83.2273 & 213: 119.434 & 233: 171.392 & 253: 245.954 \\
\hline 154: 41.1513 & 174: 59.0536 & 194: 84.744 & 214: 121.611 & 234: 174.516 & 254: 250.436 \\
\hline 155: 41.9012 & 175: 60.1297 & 195: 86.2883 & 215: 123.827 & 235: 177.696 & 255: 255 \\
\hline 156: 42.6648 & 176: 61.2255 & 196: 87.8608 & 216: 126.083 & 236: 180.934 & \\
\hline 157: 43.4423 & 177: 62.3412 & 197: 89.4619 & 217: 128.381 & 237: 184.231 & \\
\hline 158: 44.234 & 178: 63.4773 & 198: 91.0922 & 218: 130.721 & 238: 187.589 & \\
\hline 159: 45.0401 & 179: 64.6341 & 199: 92.7523 & 219: 133.103 & 239: 191.007 & \\
\hline
\end{tabular}

\section*{Projectors}
-Why are projection screens white?
- Reflects all colors equally well to create contrast that you can see
- Since projected light cannot be negative, how are black areas produced?
- Exploit simultaneous contrast
- The bright area surrounding a dimly lit point makes that point appear darker

\section*{Visual Illusions (1)}


\section*{Visual Illusions (2)}
- Rotating snake illusion
- Rotation occurs in relation to eye movement
- Effect vanishes on steady fixation
- Illusion does not depend on color
- Rotation direction depends on the polarity of the luminance steps
- Asymmetric luminance steps are required to trigger motion detectors
```

