
Image Processing

Spring 2024

Prof. George Wolberg

Homework 4

Due: Thursday, May 9

Objective: This assignment requires you to exercise your understanding of image reconstruction and an-

tialiasing.

1) HW_resize1D (float *IN, float *OUT, int INlen, int OUTlen, int kernel_type, double param)

Function HW_resize1D scales the list of numbers stored in IN into a new list OUT . IN has INlen ele-

ments of datatype float. OUT has OUTlen elements. If OUTLEN > INLEN , then magnification must be

performed. Else, minification takes place. In either case, the user specifies the filter through argument

kernel_type, which can be set to 0, 1, 2 to refer to nearest neighbor, linear interpolation, and cubic convo-

lution, respectively. In cubic convolution, the free variable a is passed through param. Values 3, 4, and 5

for kernel_type are reserved for windowed sinc functions. The corresponding window functions that

should be used are: Hann, Hamming, and Lanczos windows. Note that parameter N for the Hann and

Hamming windows (as used in the equations in the book) are passed through param. That is, param will

store the width of the window. In the case of the Lanczos window, param is used to store the number of

sinc lobes allowed to pass. For instance, the Lanczos2(x) window will be specified with param = 2, the

Lanczos3(x) window with param = 3, etc.

Test HW_resize1D for magnification for a 1-D impulse function. Initialize an array of 32 numbers

with 100 everywhere, and 200 at the center (location 16). Then magnify this list by a scale factor of 8 us-

ing all the above kernels. The output list of 256 elements should match with the samples of the respective

reconstruction kernels. Submit a plot of the output for each kernel. Remember to pad the input to avoid

problems at the borders where the convolution kernel falls off the edge of the image. Use pixel replica-

tion for padding.

Test HW_resize1D for minification for a 1-D sine wav e function having values lying between 0 and

255. Initialize an array of 128 numbers with a sine wav e having 16 cycles per scanline (or .125 cycles per

pixel). Then minify this list by a scale factor of 8 using all the above kernels. The output list will have 16

elements. Submit a plot of the output for each kernel. Remember to pad the input to avoid problems at

the borders where the convolution kernel falls off the edge of the image. Use pixel replication for

padding. Also, note that unlike the magnification case, minification will cause the kernel to be stretched

wider and reduced in amplitude in proportion to the scale factor.

2) HW_resize2D (ImagePtr I1, int new_h, int new_w, int kernel_type, int param, ImagePtr I2)

Function HW_resize2D scales an image stored in I1 and stores it in I2. The dimensions of the output

image is new_h (height; or rows) by new_w (width; or columns). This function implements scaling sepa-

rably by first resampling each image scanline with calls to HW_resize1D, putting the result into an inter-

mediate buffer. Then, HW_resize1D is invoked on each column to yield the output image. Run this

function on small images, such as eye50.pgm and text40.pgm, to demonstrate magnification. Magnify by

several scale factors, including 2, 4, and 10. Over what scale factors are the various kernels acceptable?



-2-

Describe the artifacts that appear, including their location and structure. Note that you will want to con-

vert the unsigned char elements in I1 to float for use in HW_resize1D, and then convert back to unsigned

char for storage in file I2.

Run HW_resize2D on large images with a lot of high frequencies (edges), such as star.pgm, to

demonstrate minification. Compare the results between the point sampling (nearest neighbor) and a

higher quality filter when minifying star.pgm or ramp.pgm. Why does point sampling work well for the

ramp.pgm image and not for star.pgm?


