Review for Final

Chapters 10 — 13
CSc 212 Data Structures

Trees and Traversals

Tree, Binary Tree, Complete Binary Tree
— child, parent, sibling, root, leaf, ancestor,...

Array Representation for Complete Binary Tree
— Difficult if not complete binary tree

A Class of binary tree node
— each node with two link fields

Tree Traversals
— recursive thinking makes things much easier

A general Tree Traversal
— A Function as a parameter of another function

Binary Search Trees (BSTs)

Binary search trees are a good implementation of
data types such as sets, bags, and dictionaries.

Searching for an item 1s generally quick since you
move from the root to the item, without looking at
many other 1tems.

Adding and deleting 1tems 1s also quick.

But as you'll see later, 1t 1s possible for the
quickness to fail in some cases -- can you see why?
(unbalanced)

Heaps

Heap Definition
— A complete binary tree with a nice property

Heap Applications
— priority queues (chapter 8), sorting (chapter 13)

Two Heap Operations — add, remove

— reheapification upward and downward

— why 1s a heap good for implementing a priority queue?
Heap Implementation

— using binary tree node class
— using fixed size or dynamic arrays

B-Trees

A B-tree 1s a tree for sorting entries following the
six rules

B-Tree 1s balanced - every leaf in a B-tree has the
same depth

Adding, erasing and searching an item in a B-tree
have worst-case time O(log n), where n 1s the
number of entries

However the implementation of adding and
erasing an item in a B-tree 1s not a trivial task.

Trees - Time Analysis
Big-O Notation :

— Order of an algorithm versus input size (n)
Worse Case Times for Tree Operations
— O(d), d = depth of the tree
Time Analysis for BSTs
— worst case: O(n)
Time Analysis for Heaps
— worst case O(log n)
Time Analysis for B-Trees
— worst case O(log n)

Logarithms and Logarithmic Algorithms
— doubling the input only makes time increase a fixed number

Searching

* Applications
— Database, Internet, Al..
e Most Common Methods
— Serial Search — O(n)
— Binary Search — O(log n)
— Search by Hashing - O(k)
* Run-Time Analysis
— Average-time analysis
— Time analysis of recursive algorithms

Quadratic Sorting

Both Selectionsort and Insertionsort have a worst-
case time of O(n?), making them impractical for
large arrays.

But they are easy to program, easy to debug.

Insertionsort also has good performance when the
array 1s nearly sorted to begin with.

But more sophisticated sorting algorithms are
needed when good performance 1s needed 1n all
cases for large arrays.

O(NlogN) Sorting

* Recursive Sorting Algorithms

— D1vide and Conquer technique
* An O(NlogN) Heap Sorting Algorithm
— making use of the heap properties
 STL Sorting Functions

— C++ sort function

— Original C version of gsort

Graphs

Examples/Applications
Terminologies
Representations

Graph Traversal

