
@ George Wolberg, 2020 1

CSC212

Data Structure

Lecture 21

Recursive Sorting, Heapsort &

STL Quicksort

Instructor: George Wolberg

Department of Computer Science

City College of New York

@ George Wolberg, 2020 2

Topics

Recursive Sorting Algorithms

Divide and Conquer technique

An O(NlogN) Sorting Alg. using a Heap

making use of the heap properties

STL Sorting Functions

C++ sort function

Original C version of qsort

@ George Wolberg, 2020 3

The Divide-and-Conquer Technique

Basic Idea:

If the problem is small, simply solve it.

Otherwise,

divide the problem into two smaller sub-problems,

each of which is about half of the original problem

Solve each sub-problem, and then

Combine the solutions of the sub-problems

@ George Wolberg, 2020 4

The Divide-and-Conquer Sorting Paradigm

1. Divide the elements to be sorted into two

groups of (almost) equal size

2. Sort each of these smaller groups of

elements (by recursive calls)

3. Combine the two sorted groups into one

large sorted list

@ George Wolberg, 2020 5

Mergesort

Divide the
array in the
middle

Sort the two
half-arrays
by recursion

Merge the
two halves

void mergesort(int data[], size_t n)

{

size_t n1; // Size of the first subarray

size_t n2; // Size of the second subarray

if (n > 1)

{

// Compute sizes of the subarrays.

n1 = n / 2;

n2 = n - n1;

// Sort from data[0] through data[n1-1]

mergesort(data, n1);

// Sort from data[n1] to the end

mergesort((data + n1), n2);

// Merge the two sorted halves.

merge(data, n1, n2);

}

}

@ George Wolberg, 2020 6

Mergesort – an Example

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

@ George Wolberg, 2020 7

Mergesort – an Example

2 3 6 7 10 12 16 18

16 12 7 6 3 2 18 10

?

@ George Wolberg, 2020 8

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10divide

@ George Wolberg, 2020 9

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

divide

divide

@ George Wolberg, 2020 10

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

divide

divide

divide

@ George Wolberg, 2020 11

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

12 16 6 7 2 3 10 18

16 12 7 6 3 2 18 10

divide

divide

divide

merge

@ George Wolberg, 2020 12

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

12 16 6 7 2 3 10 18

16 12 7 6 3 2 18 10

6 7 12 16 2 3 10 18

divide

divide

divide

merge

merge

@ George Wolberg, 2020 13

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

12 16 6 7 2 3 10 18

16 12 7 6 3 2 18 10

6 7 12 16 2 3 10 18

2 3 6 7 10 12 16 18

divide

divide

divide

merge

merge

merge

@ George Wolberg, 2020 14

Mergesort – two issues

Specifying a subarray with pointer arithmetic

int data[10];

(data+i)[0] is the same as data[i]

(data+i][1] is the same as data[i+1]

Merging two sorted subarrays into a sorted list

need a temporary array (by new and then delete)

step through the two sub-arrays with two cursors,
and copy the elements in the right order

@ George Wolberg, 2020 15

Mergesort - merge

6 7 12 16 2 3 10 18

? ? ? ? ? ? ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 16

Mergesort - merge

6 7 12 16 2 3 10 18

2 ? ? ? ? ? ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 17

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 ? ? ? ? ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 18

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 6 ? ? ? ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 19

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 6 7 ? ? ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 20

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 6 7 10 ? ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 21

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 6 7 10 12 ? ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 22

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 6 7 10 12 16 ?

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 23

Mergesort - merge

6 7 12 16 2 3 10 18

2 3 6 7 10 12 16 18

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

c1 c2

d

@ George Wolberg, 2020 24

Mergesort - merge

2 3 6 7 10 12 16 18

data

temp

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

2 3 6 7 10 12 16 18

@ George Wolberg, 2020 25

Mergesort - merge

data

[0] [1] [2] [3] [4] [5] [6] [7]

2 3 6 7 10 12 16 18

@ George Wolberg, 2020 26

Mergesort – Time Analysis

The worst-case running time, the average-

case running time and the best-case running

time for mergesort are all O(n log n)

@ George Wolberg, 2020 27

Mergesort – an Example

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

16 12 7 6 3 2 18 10

12 16 6 7 2 3 10 18

16 12 7 6 3 2 18 10

6 7 12 16 2 3 10 18

2 3 6 7 10 12 16 18

divide

divide

divide

merge

merge

merge

@ George Wolberg, 2020 28

Mergesort – Time Analysis

At the top (0) level, 1 call to merge creates an array with n elements

At the 1st level, 2 calls to merge creates 2 arrays, each with n/2 elements

At the 2nd level, 4 calls to merge creates 4 arrays, each with n/4 elements

At the 3rd level, 8 calls to merge creates 8 arrays, each with n/8 elements

At the dth level, 2d calls to merge creates 2d arrays, each with n/2d elements

Each level does total work proportional to n => c n, where c is a constant

Assume at the dth level, the size of the subarrays is n/2d =1, which means all the
work is done at this level, therefore

the number of levels d = log2 n

The total cost of the mergesort is c nd = c n log2 n

therefore the Big-O is O(n log2 n)

@ George Wolberg, 2020 29

Heapsort

Heapsort – Why a Heap? (two properties)

Heapsort – How to? (two steps)

Heapsort – How good? (time analysis)

@ George Wolberg, 2020 30

Heap Definition

A heap is a binary tree where the entries of

the nodes can be compared with the less

than operator of a strict weak ordering.

In addition, two rules are followed:

The entry contained by the node is NEVER less

than the entries of the node’s children

The tree is a COMPLETE tree.

@ George Wolberg, 2020 31

Why a Heap for Sorting?

Two properties

The largest element is always at the root

Adding and removing an entry from a heap is

O(log n)

@ George Wolberg, 2020 32

Heapsort – Basic Idea

Step 1. Make a heap from elements

add an entry to the heap one at a time

reheapification upward n times – O(n log n)

Step 2. Make a sorted list from the heap

Remove the root of the heap to a sorted list and

Reheapification downward to re-organize into
an updated heap

n times – O(n log n)

@ George Wolberg, 2020 33

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

@ George Wolberg, 2020 34

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

@ George Wolberg, 2020 35

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12

@ George Wolberg, 2020 36

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12 7

@ George Wolberg, 2020 37

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12 7

6

@ George Wolberg, 2020 38

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12 7

6 3

@ George Wolberg, 2020 39

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12 7

6 3 2

@ George Wolberg, 2020 40

Heapsort – Step 1: Make a Heap

16 12 7 6 3 2 18 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12 7

6 3 2 18

reheapification upward: push

the out-of-place node upward

@ George Wolberg, 2020 41

Heapsort – Step 1: Make a Heap

16 12 18 6 3 2 7 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

16

12 18

6 3 2 7

reheapification upward: push

the out-of-place node upward

@ George Wolberg, 2020 42

Heapsort – Step 1: Make a Heap

18 12 16 6 3 2 7 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

18

12 16

6 3 2 7

reheapification upward: push

the out-of-place node upward

until it is in the right place

@ George Wolberg, 2020 43

Heapsort – Step 1: Make a Heap

18 12 16 6 3 2 7 10

[0] [1] [2] [3] [4] [5] [6] [7]

add an entry

to the heap

one at a time

18

12 16

6 3 2 7

10

reheapification upward: push

the out-of-place node upward

until it is in the right place

@ George Wolberg, 2020 44

Heapsort – Step 1: Make a Heap

add an entry

to the heap

one at a time

18

12 16

10 3 2 7

6

reheapification upward: push

the out-of-place node upward

until it is in the right place

18 12 16 10 3 2 7 6

[0] [1] [2] [3] [4] [5] [6] [7]

@ George Wolberg, 2020 45

Heapsort – Step 1: Make a Heap

A heap is created: it

is saved in the

original array- the

tree on the right is

only for illustration!

18

12 16

10 3 2 7

6

18 12 16 10 3 2 7 6

[0] [1] [2] [3] [4] [5] [6] [7]

Sorted???

@ George Wolberg, 2020 46

Heapsort – Step 2: Sorting from Heap

18

12 16

10 3 2 7

6

18 12 16 10 3 2 7 6

[0] [1] [2] [3] [4] [5] [6] [7]

heap ->

sorted list from smallest to

largest

Q: where is the largest

entry?

@ George Wolberg, 2020 47

Heapsort – Step 2: Sorting from Heap

18

12 16

10 3 2 7

6

18 12 16 10 3 2 7 6

[0] [1] [2] [3] [4] [5] [6] [7]

Idea: remove the root of

the heap and place it in

the sorted list

=> recall: how to remove

the root?

@ George Wolberg, 2020 48

Heapsort – Step 2: Sorting from Heap

6

12 16

10 3 2 7

6 12 16 10 3 2 7 18

[0] [1] [2] [3] [4] [5] [6] [7]

How to remove the root?

move the last entry in the

root...

and for the sake of

sorting, put the root entry

in the “sorted side”

almost a heap... sorted side

@ George Wolberg, 2020 49

Heapsort – Step 2: Sorting from Heap

6

12 16

10 3 2 7

6 12 16 10 3 2 7 18

[0] [1] [2] [3] [4] [5] [6] [7]

How to remove the root?

move the last entry in the

root...

then reposition the out-of

place node to update the

heap

sorted sidealmost a heap...

@ George Wolberg, 2020 50

Heapsort – Step 2: Sorting from Heap

16

12 6

10 3 2 7

16 12 6 10 3 2 7 18

[0] [1] [2] [3] [4] [5] [6] [7]

How to remove the root?

move the last entry in the

root...

then reposition the out-of

place node to update the

heap

sorted side

reheapification

downward

almost a heap...

@ George Wolberg, 2020 51

Heapsort – Step 2: Sorting from Heap

16

12 7

10 3 2 6

16 12 7 10 3 2 6 18

[0] [1] [2] [3] [4] [5] [6] [7]

How to remove the root?

move the last entry in the

root...

then reposition the out-of

place node to update the

heap

sorted side

reheapification

downward

a heap in the unsorted side

@ George Wolberg, 2020 52

Heapsort – Step 2: Sorting from Heap

16

12 7

10 3 2 6

16 12 7 10 3 2 6 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidea heap in the unsorted side

@ George Wolberg, 2020 53

Heapsort – Step 2: Sorting from Heap

6

12 7

10 3 2

6 12 7 10 3 2 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidealmost a heap...

@ George Wolberg, 2020 54

Heapsort – Step 2: Sorting from Heap

12

6 7

10 3 2

12 6 7 10 3 2 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidealmost a heap...

@ George Wolberg, 2020 55

Heapsort – Step 2: Sorting from Heap

12

10 7

6 3 2

12 10 7 6 3 2 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidealmost a heap...

@ George Wolberg, 2020 56

Heapsort – Step 2: Sorting from Heap

12

10 7

6 3 2

12 10 7 6 3 2 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidea heap again!

@ George Wolberg, 2020 57

Heapsort – Step 2: Sorting from Heap

2

10 7

6 3

2 10 7 6 3 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidealmost a heap...

@ George Wolberg, 2020 58

Heapsort – Step 2: Sorting from Heap

10

2 7

6 3

10 2 7 6 3 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidealmost a heap...

@ George Wolberg, 2020 59

Heapsort – Step 2: Sorting from Heap

10

6 7

2 3

10 6 7 2 3 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidea heap again!

@ George Wolberg, 2020 60

Heapsort – Step 2: Sorting from Heap

3

6 7

2

3 6 7 2 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidealmost a heap...

@ George Wolberg, 2020 61

Heapsort – Step 2: Sorting from Heap

7

6 3

2

7 6 3 2 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidea heap again !

@ George Wolberg, 2020 62

Heapsort – Step 2: Sorting from Heap

2

6 3

2 6 3 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

a heap ?? sorted side

@ George Wolberg, 2020 63

Heapsort – Step 2: Sorting from Heap

6

2 3

6 2 3 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sidea heap !!

@ George Wolberg, 2020 64

Heapsort – Step 2: Sorting from Heap

3

2

3 2 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sideheap !

@ George Wolberg, 2020 65

Heapsort – Step 2: Sorting from Heap

2
2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted sideheap !

@ George Wolberg, 2020 66

Heapsort – Step 2: Sorting from Heap

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

do the same thing again

for the heap in the

unsorted side until all the

entries have been moved

to the sorted side

sorted side

DONE!

@ George Wolberg, 2020 67

Heapsort – Time Analysis

Step 1. Make a heap from elements

add an entry to the heap one at a time

reheapification upward n times – O(n log n)

Step 2. Make a sorted list from the heap

Remove the root of the heap to a sorted list and

Reheapification downward to re-organize the unsorted

side into an updated heap

do this n times – O(n log n)

The running time is O(n log n)

@ George Wolberg, 2020 68

C++ STL Sorting Functions

The C++ sort function

void sort(Iterator begin, Iterator end);

The original C version of qsort

void qsort(

void *base,

size_t number_of_elements,

size_t element_size,

int compare(const void*, const void*)

);

@ George Wolberg, 2020 69

Summary & Homework

Recursive Sorting Algorithms

Divide and Conquer technique

An O(NlogN) Sorting Algorithm using a Heap

making use of the heap properties

STL Sorting Functions

C++ sort function

Original C version of qsort

Homework

use your heap implementation to implement a heapsort!

