CSC212 Data Structure

Lecture 21 Recursive Sorting, Heapsort & STL Quicksort

Instructor: George Wolberg Department of Computer Science City College of New York

Topics

Recursive Sorting Algorithms Divide and Conquer technique □ An O(NlogN) Sorting Alg. using a Heap □ making use of the heap properties □ STL Sorting Functions □ C++ sort function Original C version of qsort

The Divide-and-Conquer Technique

- □ Basic Idea:
 - □ If the problem is small, simply solve it.
 - □ Otherwise,
 - divide the problem into two smaller sub-problems, each of which is about half of the original problem
 - □ **Solve** each sub-problem, and then
 - **Combine** the solutions of the sub-problems

The Divide-and-Conquer Sorting Paradigm

- Divide the elements to be sorted into two groups of (almost) equal size
- 2. Sort each of these smaller groups of elements (by recursive calls)
- 3. Combine the two sorted groups into one large sorted list

Mergesort void mer

void mergesort(int data[], size_t n)

Divide the array in the middle

 Sort the two half-arrays by recursion
 Merge the two halves

@ George Wolberg, 2020

size_t n1; // Size of the first subarray
size_t n2; // Size of the second subarray

if (n > 1)
{
 // Compute sizes of the subarrays.
 n1 = n / 2;
 n2 = n - n1;

// Sort from data[0] through data[n1-1]
mergesort(data, n1);
// Sort from data[n1] to the end
mergesort((data + n1), n2);

// Merge the two sorted halves. merge(data, n1, n2);

16 12 7 6 3 2 18 10 [0] [1] [2] [3] [4] [5] [6] [7]

Mergesort – two issues

Specifying a subarray with pointer arithmetic \Box int data[10]; \Box (data+i)[0] is the same as data[i] \Box (data+i][1] is the same as data[i+1] Merging two sorted subarrays into a sorted list □ need a temporary array (by new and then delete) □ step through the two sub-arrays with two cursors, and copy the elements in the right order

Mergesort – Time Analysis

The worst-case running time, the averagecase running time and the best-case running time for mergesort are all O(n log n)

27

Mergesort – Time Analysis

- \Box At the top (0) level, 1 call to merge creates an array with n elements
- \Box At the 1st level, 2 calls to merge creates 2 arrays, each with n/2 elements
- \Box At the 2nd level, 4 calls to merge creates 4 arrays, each with n/4 elements
- □ At the 3rd level, 8 calls to merge creates 8 arrays, each with n/8 elements
- \Box At the *d*th level, 2^{*d*} calls to merge creates 2^{*d*} arrays, each with n/2^{*d*} elements
- \Box Each level does total work proportional to $n \Rightarrow c n$, where c is a constant
- Assume at the dth level, the size of the subarrays is $n/2^d = 1$, which means all the work is done at this level, therefore
 - $\Box \quad \text{the number of levels } d = \log_2 n$
- $\Box \quad \text{The total cost of the mergesort is } c nd = c n \log_2 n$
 - $\Box \quad \text{therefore the Big-O is } O(n \log_2 n)$

Heapsort

Heapsort – Why a Heap? (two properties)
Heapsort – How to? (two steps)
Heapsort – How good? (time analysis)

Heap Definition

A heap is a binary tree where the entries of the nodes can be compared with the *less than* operator of a strict weak ordering.
In addition, two rules are followed:

The entry contained by the node is NEVER *less than* the entries of the node's children
The tree is a COMPLETE tree.

Why a Heap for Sorting?

□ Two properties

- □ The largest element is always at the root
- Adding and removing an entry from a heap is O(log n)

Heapsort – Basic Idea

□ Step 1. Make a heap from elements □ add an entry to the heap one at a time \Box reheapification upward n times – O(n log n) □ Step 2. Make a sorted list from the heap Remove the root of the heap to a sorted list and Reheapification downward to re-organize into an updated heap \Box n times – O(n log n)

3 12 7 6 2 18 10 16 [2] [3] [4] [5] [6] [0] [1] [7]

add an entry to the heap one at a time

add an entry to the heap one at a time

add an entry to the heap one at a time

the out-of-place node upward

reheapification upward: push the out-of-place node upward until it is in the right place

reheapification upward: push the out-of-place node upward until it is in the right place

18 18 16 10 2 12 3 6 [0] [2] [4] [5] [6] [7] [3] [1] 12 16 10 3 2 add an entry to the heap 6

> reheapification upward: push the out-of-place node upward until it is in the right place

one at a time

A heap is created: it is saved in the original array- the tree on the right is only for illustration!

Q: where is the largest entry?

@ George Wolberg, 2020

Idea: remove the root of the heap and place it in the sorted list

=> recall: how to remove the root?

move the last entry in the root...

and for the sake of sorting, put the root entry in the "sorted side"

@ George Wolberg, 2020

move the last entry in the root...

then reposition the out-of place node to update the heap @ George Wolberg, 2020

then reposition the out-of place node to update the heap @ George Wolberg, 2020 reheapification downward

root...

then reposition the out-of place node to update the heap @ George Wolberg, 2020 reheapification downward

heap !				sorted side					
	2	3	6	7	10	12	16	18	
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	

2

 2
 3
 6
 7
 10
 12
 16
 18

 [0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]

do the same thing again for the heap in the unsorted side until all the entries have been moved to the sorted side **DONE!**

Heapsort – Time Analysis

Step 1. Make a heap from elements add an entry to the heap one at a time \Box reheapification upward n times – O(n log n) Step 2. Make a sorted list from the heap Remove the root of the heap to a sorted list and □ Reheapification downward to re-organize the unsorted side into an updated heap \Box do this n times – O(n log n)

 \Box The running time is O(n log n)

C++ STL Sorting Functions

 \Box The C++ sort function □ void sort(Iterator begin, Iterator end); □ The original C version of qsort void qsort(void *base, size_t number_of_elements, size_t element_size, int compare(const void*, const void*));

Summary & Homework

Recursive Sorting Algorithms Divide and Conquer technique □ An O(NlogN) Sorting Algorithm using a Heap □ making use of the heap properties STL Sorting Functions \Box C++ sort function Original C version of qsort □ Homework □ use your heap implementation to implement a heapsort!