CSC212 Data Structure

Lecture 21
 Recursive Sorting, Heapsort \& STL Quicksort

Instructor: George Wolberg
Department of Computer Science
City College of New York

Topics

\square Recursive Sorting Algorithms
\square Divide and Conquer technique
\square An O(NlogN) Sorting Alg. using a Heap
\square making use of the heap properties
\square STL Sorting Functions
\square C++ sort function
\square Original C version of qsort

The Divide-and-Conquer Technique

\square Basic Idea:

- If the problem is small, simply solve it.
\square Otherwise,
\square divide the problem into two smaller sub-problems, each of which is about half of the original problem
\square Solve each sub-problem, and then
\square Combine the solutions of the sub-problems

The Divide-and-Conquer Sorting Paradigm

1. Divide the elements to be sorted into two groups of (almost) equal size
2. Sort each of these smaller groups of elements (by recursive calls)
3. Combine the two sorted groups into one large sorted list

Mergesort

void mergesort(int data[], size_t n)
$\{$
size_t n1; // Size of the first subarray size_t n2; // Size of the second subarray
\square Divide the array in the middle

- Sort the two half-arrays by recursion
\square Merge the two halves
if $(n>1)$
\{
// Compute sizes of the subarrays.
$\mathrm{n} 1=\mathrm{n} / 2$;
$\mathrm{n} 2=\mathrm{n}-\mathrm{n} 1$;
// Sort from data[0] through data[n1-1] mergesort(data, n 1);
// Sort from data[$n 1$] to the end mergesort((data + n1), n2);
// Merge the two sorted halves. merge(data, n1, n2);
\}
\}

Mergesort - an Example

16	12	7	6	3	2	18	10
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$

Mergesort - an Example

16	12	7	6	3	2	18	10

2	3	6	7	10	12	16	18

Mergesort - an Example

Mergesort - two issues

\square Specifying a subarray with pointer arithmetic \square int data[10];
\square (data+i)[0] is the same as data[i]

- (data+i][1] is the same as data[i+1]
\square Merging two sorted subarrays into a sorted list
\square need a temporary array (by new and then delete)
\square step through the two sub-arrays with two cursors, and copy the elements in the right order

Mergesort - merge

data

6	7	12	16	2	3	10	18
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
\uparrow			\uparrow				
$c 1$			c	c			
c2							

temp

@ George Wolberg, 2020

Mergesort - merge

data

6	7	12	16	2	3	10	18
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
\uparrow				\uparrow			
$c 1$				c	c		

temp

@ George Wolberg, 2020

Mergesort - merge

data

6	7	12	16	2	3	10	18
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
\uparrow					\uparrow		
$c 1$					c		
c2							

temp

@ George Wolberg, 2020

Mergesort - merge

data

6	7	12	16	2	3	10	18
[0] [1]	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	
\dagger					\uparrow		
c1					c		

temp

@ George Wolberg, 2020

Mergesort - merge

data

temp

2	3	6	7	$?$	$?$	$?$	$?$
[0] [1]	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	

Mergesort - merge

data

temp

2	3	6			10	?	?		
[0] [1] [2] [3] [4] [5] [6] [7]									
						\dagger			

Mergesort - merge

Mergesort - merge

Mergesort - merge

data

temp

Mergesort - merge

Mergesort - merge

Mergesort - Time Analysis

\square The worst-case running time, the averagecase running time and the best-case running time for mergesort are all $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Mergesort - an Example

	16 12 7 6 3 2 18 10									
divide16 12 7 6 3 2 18 10										
divide	16 12		7	6		3 2		18 10		
divide	16 12		7		6	3	2		18	
merge	12 16 6 7					2 3		10		18
merge	6 7					2	3	10		18
2020	2	3	\|6	6	7	10	12	16	18	

Mergesort - Time Analysis

- At the top (0) level, 1 call to merge creates an array with n elements
\square At the $1^{\text {st }}$ level, 2 calls to merge creates 2 arrays, each with $n / 2$ elements
\square At the $2^{\text {nd }}$ level, 4 calls to merge creates 4 arrays, each with $n / 4$ elements
- At the $3^{\text {rd }}$ level, 8 calls to merge creates 8 arrays, each with $\mathrm{n} / 8$ elements
\square At the d th level, 2^{d} calls to merge creates 2^{d} arrays, each with $n / 2^{d}$ elements
\square Each level does total work proportional to $\mathrm{n}=>\mathrm{c} \mathrm{n}$, where c is a constant
\square Assume at the dth level, the size of the subarrays is $\mathrm{n} / 2^{d}=1$, which means all the work is done at this level, therefore
\square the number of levels $d=\log _{2} n$
$\square \quad$ The total cost of the mergesort is $\mathrm{c} n d=\mathrm{cn} \log _{2} \mathrm{n}$
\square therefore the Big-O is $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$

Heapsort

- Heapsort - Why a Heap? (two properties)
- Heapsort - How to? (two steps)
\square Heapsort - How good? (time analysis)

Heap Definition

\square A heap is a binary tree where the entries of the nodes can be compared with the less than operator of a strict weak ordering.
\square In addition, two rules are followed:
\square The entry contained by the node is NEVER less than the entries of the node's children
\square The tree is a COMPLETE tree.

Why a Heap for Sorting?

\square Two properties
\square The largest element is always at the root
\square Adding and removing an entry from a heap is $\mathrm{O}(\log \mathrm{n})$

Heapsort - Basic Idea

\square Step 1. Make a heap from elements
\square add an entry to the heap one at a time
\square reheapification upward n times $-\mathrm{O}(\mathrm{n} \log \mathrm{n})$
\square Step 2. Make a sorted list from the heap
\square Remove the root of the heap to a sorted list and
\square Reheapification downward to re-organize into an updated heap
$\square \mathrm{n}$ times - $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Heapsort - Step 1: Make a Heap

16	12	7	6	3	2	18	10
[0]	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$

add an entry

to the heap
one at a time

Heapsort - Step 1: Make a Heap

add an entry
to the heap
one at a time

Heapsort - Step 1: Make a Heap

add an entry
to the heap
one at a time

Heapsort - Step 1: Make a Heap

add an entry
 to the heap
 one at a time

Heapsort - Step 1: Make a Heap

Heapsort - Step 1: Make a Heap

Heapsort - Step 1: Make a Heap

Heapsort - Step 1: Make a Heap

one at a time
reheapification upward: push the out-of-place node upward

Heapsort - Step 1: Make a Heap

one at a time
reheapification upward: push the out-of-place node upward

Heapsort - Step 1: Make a Heap

reheapification upward: push the out-of-place node upward until it is in the right place

Heapsort - Step 1: Make a Heap

one at a time
reheapification upward: push the out-of-place node upward until it is in the right place

Heapsort - Step 1: Make a Heap

one at a time

Heapsort - Step 1: Make a Heap

Heapsort - Step 2: Sorting from Heap

Heapsort - Step 2: Sorting from Heap

Heapsort - Step 2: Sorting from Heap

almost a heap...

How to remove the root?
move the last entry in the root...
and for the sake of
sorting, put the root entry in the "sorted side"

Heapsort - Step 2: Sorting from Heap

almost a heap...
sorted side

6	12	16	10	3	2	7
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
		$[7]$				

How to remove the root?

move the last entry in the root...
then reposition the out-of place node to update the heap

Heapsort - Step 2: Sorting from Heap

move the last entry in the root...
then reposition the out-of place node to update the heap

Heapsort - Step 2: Sorting from Heap

move the last entry in the root...
then reposition the out-of place node to update the heap

Heapsort - Step 2: Sorting from Heap

a heap in the unsorted side sorted side
 for the heap in the unsorted side until all the entries have been moved to the sorted side

Heapsort - Step 2: Sorting from Heap

almost a heap...

6	12	7	10	3	2	16	18
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$

do the same thing again
sorted side
for the heap in the
unsorted side until all the entries have been moved to the sorted side

Heapsort - Step 2: Sorting from Heap

Heapsort - Step 2: Sorting from Heap

a heap ??			sorted side				
2	6	3	7	10	12	16	18
[0]	[1]		[3]		[5]	[6]	[7]

do the same thing again for the heap in the unsorted side until all the entries have been moved to the sorted side

Heapsort - Step 2: Sorting from Heap

a heap !!			sorted side					
6 2 3 7 10 12 16 18 $[0]$ $[1]$ $[2]$ $[3]$ $[4]$ $[5]$ $[6]$ $[7]$ 2								

do the same thing again
for the heap in the
unsorted side until all the entries have been moved to the sorted side

Heapsort - Step 2: Sorting from Heap

heap							sorted side						
3	2	6	7	10	12	16	18						
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$						

do the same thing again for the heap in the unsorted side until all the entries have been moved to the sorted side

Heapsort - Step 2: Sorting from Heap

heap

1	3	6	7	10	12	16
	18					
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$

do the same thing again
for the heap in the
unsorted side until all the entries have been moved to the sorted side

Heapsort - Step 2: Sorting from Heap

sorted side

2	3	6	7	10	12	16	18
[0]	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$

do the same thing again

for the heap in the
unsorted side until all the entries have been moved to the sorted side

Heapsort - Time Analysis

\square Step 1. Make a heap from elements
\square add an entry to the heap one at a time
\square reheapification upward n times $-\mathrm{O}(\mathrm{n} \log \mathrm{n})$
\square Step 2. Make a sorted list from the heap
\square Remove the root of the heap to a sorted list and
\square Reheapification downward to re-organize the unsorted side into an updated heap
\square do this n times $-\mathrm{O}(\mathrm{n} \log \mathrm{n})$
\square The running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

C++ STL Sorting Functions

\square The C++ sort function
\square void sort(Iterator begin, Iterator end);
\square The original C version of qsort
void qsort(
void *base,
size_t number_of_elements,
size_t element_size, int compare(const void*, const void*)
);

Summary \& Homework

\square Recursive Sorting Algorithms
\square Divide and Conquer technique

- An O(NlogN) Sorting Algorithm using a Heap
\square making use of the heap properties
\square STL Sorting Functions
\square C++ sort function
\square Original C version of qsort
\square Homework
\square use your heap implementation to implement a heapsort!

