
@ George Wolberg, 2020 1

CSC212

Data Structure

Lecture 17

Trees, Logs and Time Analysis

Instructor: George Wolberg

Department of Computer Science

City College of New York

@ George Wolberg, 2020 2

Topics

Big-O Notation

Worse Case Times for Tree Operations

Time Analysis for BSTs

Time Analysis for Heaps

Logarithms and Logarithmic Algorithms

@ George Wolberg, 2020 3

Big-O Notation

The order of an algorithm generally is more

important than the speed of the processor
Input size: n O(log n) O (n) O (n2)

of stairs: n [log10n]+1 3n n2+2n

10 2 30 120

100 3 300 10,200

1000 4 3000 1,002,000

@ George Wolberg, 2020 4

Worst-Case Times for Tree Operations

The worst-case time complexity for the following

are all O(d), where d = the depth of the tree:

Adding an entry in a BST, a heap or a B-tree;

Deleting an entry from a BST, a heap or a B-tree;

Searching for a specified entry in a BST or a B-tree.

This seems to be the end of our Big-O story...but

@ George Wolberg, 2020 5

What’s d, then?

Time Analyses for these operations are

more useful if they are given in term of the

number of entries (n) instead of the tree’s

depth (d)

Question:

What is the maximum depth for a tree with n

entries?

@ George Wolberg, 2020 6

Time Analysis for BSTs

Maximum depth of a BST with n entries: n-1

An Example:

Insert 1, 2, 3,4,5 in

that order into a bag

using a BST

1

2

3

4

5

@ George Wolberg, 2020 7

Worst-Case Times for BSTs

Adding, deleting or searching for an entry in

a BST with n entries is O(d), where d is the

depth of the BST

Since d is no more than n-1, the operations

in the worst case is (n-1).

Conclusion: the worst case time for the add,

delete or search operation of a BST is O(n)

@ George Wolberg, 2020 8

Time Analysis for Heaps

A heap is a complete tree

The minimum number of nodes needed for

a heap to reach depth d is 2d :

= (1 + 2 + 4 + ... + 2d-1) + 1

The extra one at the end is required since there

must be at least one entry in level d

Question: how to add up the formula?

@ George Wolberg, 2020 9

Time Analysis for Heaps

A heap is a complete tree

The minimum number of nodes needed for

a heap to reach depth d is 2d :

The number of nodes n >= 2d

Use base 2 logarithms on both side

log2 n >= log2 2d = d

Conclusion: d <= log2 n

@ George Wolberg, 2020 10

Worst-Case Times for Heap Operations

Adding or deleting an entry in a heap with n

entries is O(d), where d is the depth of the

tree

Because d is no more than log2n, we

conclude that the operations are O(log n)

Why we can omit the subscript 2 ?

@ George Wolberg, 2020 11

Logarithms (log)

Base 10: the number of digits in n is [log10n]+1

100 = 1, so that log10 1 = 0

101 = 10, so that log10 10 = 1

101.5 = 32+, so that log10 32 = 1.5

103 = 1000, so that log10 1000 = 3

Base 2:

20 = 1, so that log2 1 = 0

21 = 2, so that log2 2 = 1

23 = 8, so that log2 8 = 3

25 = 32, so that log2 32 = 5

210 =1024, so that log2 1024 = 10

@ George Wolberg, 2020 12

Logarithms (log)

Base 10: the number of digits in n is [log10n]+1

101.5 = 32+, so that log10 32 = 1.5

103 = 1000, so that log10 1000 = 3

Base 2:

23 = 8, so that log2 8 = 3

25 = 32, so that log2 32 = 5

Relation: For any two bases, a and b, and a
positive number n, we have

logb n = (logb a) loga n = logb a(loga n)

log2 n = (log2 10) log10 n = (5/1.5) log10 n = 3.3 log10 n

@ George Wolberg, 2020 13

Logarithmic Algorithms

Logarithmic algorithms are those with worst-case
time O(log n), such as adding to and deleting from
a heap

For a logarithm algorithm, doubling the input size
(n) will make the time increase by a fixed number
of new operations

Comparison of linear and logarithmic algorithms

n= m = 1 hour -> log2m  6 minutes

n=2m = 2 hour -> log2m + 1  7 minutes

n=8m = 1 work day -> log2m + 3  9 minutes

n=24m = 1 day&night -> log2m + 4.5  10.5 minutes

@ George Wolberg, 2020 14

Summary

Big-O Notation :

Order of an algorithm versus input size (n)

Worse Case Times for Tree Operations

O(d), d = depth of the tree

Time Analysis for BSTs

worst case: O(n)

Time Analysis for Heaps

worst case O(log n)

Logarithms and Logarithmic Algorithms

doubling the input only makes time increase a fixed number

