
CSC212

Data Structure

Lecture 11

Recursive Thinking

Instructor: George Wolberg

Department of Computer Science

City College of New York

Outline of This Lecture

Start with an Example of Recursion

“racing car” – not in the textbook

using slides (provided by the authors)

Recursive Thinking: General Form

Tracing Recursive Calls

using blackboard to show the concepts

A Closer Look at Recursion

activation record and runtime stack

Chapter 9 introduces the technique

of recursive programming.

As you have seen, recursive

programming involves spotting

smaller occurrences of a problem

within the problem itself.

This presentation gives an

additional example, which is not in

the book.

Recursive Thinking

Data Structures

and Other Objects

Using C++

A Car Object

To start the example,

think about your favorite

family car

A Car Object

To start the example,

think about your favorite

family car

A Car Object

To start the example,

think about your favorite

family car

A Car Object

To start the example,

think about your favorite

family car

A Car Object

To start the example,

think about your favorite

family car

Imagine that the car is

controlled by a radio

signal from a computer

A Car Class

class Car

{

public:

. . .

};

To start the example,

think about your favorite

family car

Imagine that the car is

controlled by a radio

signal from a computer

The radio signals are

generated by activating

member functions of a

Car object

class Car

{

public:

Car(int car_number);

void move();

void turn_around();

bool is_blocked();

private:

{ We don't need to know the private fields! }

. . .

};

Member Functions for the Car Class

int main()

{

Car racer(7);

. . .

The Constructor

When we declare a Car

and activate the

constructor, the computer

makes a radio link with a

car that has a particular

number.

int main()

{

Car racer(7);

racer.turn_around();

. . .

The turn_around Function

When we activate

turn_around, the computer

signals the car to turn 180

degrees.

int main()

{

Car racer(7);

racer.turn_around();

. . .

The turn_around Function

When we activate

turn_around, the computer

signals the car to turn 180

degrees.

int main()

{

Car racer(7);

racer.turn_around();

racer.move();

. . .

The move Function

When we activate move,

the computer signals the

car to move forward one

foot.

int main()

{

Car racer(7);

racer.turn_around();

racer.move();

. . .

The move Function

When we activate move,

the computer signals the

car to move forward one

foot.

int main()

{

Car racer(7);

racer.turn_around();

racer.move();

if (racer.is_blocked())

cout << "Cannot move!";

. . .

The is_blocked() Function

The is_blocked member

function detects barriers.

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

...then the car is turned around...

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

...then the car is turned around...

...and returned to its original location, facing the

opposite way.

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

...then the car is turned around...

...and returned to its original location, facing the

opposite way.

Your Mission

Write a function which will move a Car forward until it

reaches a barrier...

...then the car is turned around...

...and returned to its original location, facing the

opposite way.

void ricochet(Car& moving_car);

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

void ricochet(Car& moving_car);

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

moving_car.move();

. . .

moving_car.move();

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);
This makes the problem a bit

smaller. For example, if the

car started 100 feet from the

barrier...

100 ft.

moving_car.move();

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);
This makes the problem a bit

smaller. For example, if the

car started 100 feet from the

barrier... then after activating

move once, the distance is

only 99 feet.

99 ft.

moving_car.move();

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

We now have a

smaller version of

the same problem

that we started with.

99 ft.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

Make a recursive

call to solve the

smaller problem.

99 ft.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

99 ft.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

The recursive call

will solve the

smaller problem.

99 ft.

moving_car.move();

ricochet(moving_car);

. . .

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

What is the last step

that's needed to return to

our original location ?

99 ft.

moving_car.move();

ricochet(moving_car);

moving_car.move();

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

What is the last step

that's needed to return to

our original location ?

100 ft.

moving_car.move();

ricochet(moving_car);

moving_car.move();

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

This recursive

function follows a

common pattern that

you should recognize.

moving_car.move();

ricochet(moving_car);

moving_car.move();

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

When the problem is

simple, solve it with

no recursive call.

This is the base case

or the stopping case.

moving_car.move();

ricochet(moving_car);

moving_car.move();

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

When the problem is

more complex, start by

doing work to create a

smaller version of the

same problem...

moving_car.move();

ricochet(moving_car);

moving_car.move();

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

...use a recursive call to

completely solve the

smaller problem...

moving_car.move();

ricochet(moving_car);

moving_car.move();

Pseudocode for ricochet

if moving_car.is_blocked(), then the car is already at

the barrier. In this case, just turn the car around.

Otherwise, the car has not yet reached the barrier, so

start with:

void ricochet(Car& moving_car);

...and finally do any

work that's needed to

complete the solution

of the original

problem..

Implementation of ricochet

void ricochet(Car& moving_car)

{

if (moving_car.is_blocked())

moving_car.turn_around(); // Base case

else

{ // Recursive pattern

moving_car.move();

ricochet(moving_car);

moving_car.move();

}

}

Look for this

pattern in the other

examples of

Chapter 9.

An Exercise

Can you write ricochet as a

new member function of the Car

class, instead of a separate

function?

You have 2 minutes to

write the implementation.

void Car::ricochet()

{

. . .

An Exercise

void Car::ricochet()

{

if (is_blocked())

turn_around(); // Base case

else

{ // Recursive pattern

move();

ricochet();

move();

}

}

One solution:

Recursive Thinking: General Form

Recursive Calls

Suppose a problem has one or more cases in which

some of the subtasks are simpler versions of the

original problem. These subtasks can be solved by

recursive calls

Stopping Cases /Base Cases

A function that makes recursive calls must have one or

more cases in which the entire computation is fulfilled

without recursion. These cases are called stopping cases

or base cases

Tracing Recursive Calls: Ricochet

void Car::ricochet()

{

if (is_blocked())

A. turn_around(); // Base case

else

{ // Recursive pattern

B. move();

C. ricochet();

D. move();

E }

}

Do it by hand if car is 4 feet away from the barrier

A Close Look at Ricochet Recursion

The recursive case and the stopping case

Activation record

The return location only in this example – other
information is kept in the object racer

The running stack

The collection of the activation records is stored in a
stack data structure

Example 2: Write Number Vertically

Task

Write a non-negative integer to the screen with

its decimal digits stacked vertically

for example:

Input

1234

Output:
1

2

3

4

A possible function

void write_vertical (unsigned int number)

// precondition: number >=0

// Postcondition: The digits of number have been written, stacked vertically.

{ assert(number>=0);

do

{

cout << number % 10 << endl; // Write a digit

number = number / 10;

} while (number !=0);

}

Write an integer number vertically

Input

1234

Output:
4

3

2

1

Approach 1: using a stack

void stack_write_vertical (unsigned int number)

// Postcondition: The digits of number have been written, stacked vertically.

{

stack<int> s;

do

{

s.push(number % 10); // push a digit in the stack

number = number / 10;

} while (number !=0);

while (!(s.empty()))

{

cout << s.top()<< endl; //print a digit from the stack

s.pop();

}

}

Write an integer number vertically

Approach 2: Using Recursion

void recursive_write_vertical(unsigned int number)

// Postcondition: The digits of number have been written, stacked vertically.

{

if (number < 10) // stopping case

cout << number << endl; // Write the one digit

else // including recursive calls

{

recursive_write_vertical(number/10); // Write all but the last digit

cout << number % 10 << endl; // Write the last digit

}

}

Write an integer number vertically

Tracing Recursive Calls

void recursive_write_vertical_2(unsigned int number)

// Postcondition: The digits of number have been written, stacked vertically.

{

if (number < 10) // stopping case

A cout << number << endl; // Write the one digit

else // including recursive calls

{

B recursive_write_vertical(number/10); // Write all but the last digit

C cout << number % 10 << endl; // Write the last digit

D }

}

Write an integer number vertically

A Closer Look at the Recursion

Recursive Function

Recursive calls

Stopping (Base) cases

Run-time Stack

the collection of activation records is stored in the stack

Activation Record - a special memory block including

return location of a function call

values of the formal parameters and local variables

Recursive Thinking: General Form

Recursive Calls

Suppose a problem has one or more cases in which

some of the subtasks are simpler versions of the

original problem. These subtasks can be solved by

recursive calls

Stopping Cases /Base Cases

A function that makes recursive calls must have one or

more cases in which the entire computation is fulfilled

without recursion. These cases are called stopping cases

or base cases

Self-Tests and More Complicated

Examples

An Extension of write_vertical (page 436)

handles all integers including negative ones

Hints: you can have more than one recursive calls or

stopping cases in your recursive function

Homework

Reading: Section 9.1

Self-Test: Exercises 1-8

Advanced Reading: Section 9.2

Assignment 5 online

super_write_vertical

void super_write_vertical(int number)

// Postcondition: The digits of the number have been written, stacked vertically.

// If number is negative, then a negative sign appears on top.

// Library facilities used: iostream.h, math.h

{

if (number < 0)

{

cout << '-' << endl; // print a negative sign

super_write_vertical(abs(number)); // abs computes absolute value

// This is Spot #1 referred to in the text.

}

else if (number < 10)

cout << number << endl; // Write the one digit

else

{

super_write_vertical(number/10); // Write all but the last digit

// This is Spot #2 referred to in the text.

cout << number % 10 << endl; // Write the last digit

}

}

Write any integer number vertically

