CSC212 \ COMPUTER SCIENCE
Data Structure

) Crry CoLLEGE oF NEW YORK

Lecture 8

The Bag and Sequence Classes with
Linked Llists

Instructor: George Wolberg
Department of Computer Science
City College of New York

@ George Wolberg, 2020 1



Reviews: Node and Linked List

0 Node

0 a class with a pointer to an object of the node class
0 core structure for the linked list

0 two versions of the “link” functions
o why and how?

@ George Wolberg, 2020



class node

/| TYPEDEF
typedef double value_type;

/l CONSTRUCTOR

node(
const value_type& init_data =
node* init_link = NULL

)

{ data = init_data,; link = init_link; }

/I Member functions to set the data and link fields:
void set_data(const value_type& new_data) { data = new_data; }
void set_link(node* new_link) { link = new_link; }

/I Constant member function to retrieve the current data:
value_type data( ) const { return data; }

/Il Two slightly different member functions to retrieve
/Il the current link:

const node* link(') const { return link; }

node* link( ) { return link;}

value_type data;
node* link;

@ George Wolberg, 2020




Reviews: Node and Linked List

0 Linked Lists Traverse

0 How to access the next node by using link
pointer of the current node

0 the special for loop

size_t list_length(const node* head_ptr)

{

const node *cursor;
size_t count = 0O;

for (cursor = head_ptr; cursor !'= NULL; cursor = cursor->link())

count++;
return count;




Reviews: Node and Linked List

0 Insert

0 Insert at the head

o set the head_ptr and the link of the new node
correctly

0 Insert at any location
0 cursor pointing to the current node

0 need a pre-cursor to point to the node before the
current node (two approaches)

o the third approach: doubly linked list

@ George Wolberg, 2020



Reviews: Node and Linked List

0 Delete

0 Delete at the head
o set the head_ptr correctly
o release the memory of the deleted node

0 Delete at any location

0 cursor pointing to the current node

0 need a pre-cursor to point to the node before the
current node (two approaches)

o the third approach: doubly linked list

@ George Wolberg, 2020



Key points you need to know

0 Linked List Toolkit uses the node class which has
0 set and retrieve functions
0 The functions in the Toolkit are not member
functions of the node class

0 length, insert(2), remove(2), search, locate, copy,...

0 compare their Big-Os with similar functions for an
array

0 They can be used In various container classes,
such as bag, sequence, etc.

@ George Wolberg, 2020


node1-ppt.html

Container Classes using Linked Lists

0 Bag Class with a Linked List
0 Specification
0 Class definition
0 Implementation
0 Testing and Debugging
0 Sequence Class with a Linked List
0 Design suggestion — difference from bag
0 Arrays or Linked Lists: which approach is better?
0 Dynamic Arrays

0 Linked Lists
0 Doubly Linked Lists

@ George Wolberg, 2020



Our Third Bag - Specification

0 The documentation
0 nearly identical to our previous bag

0 The programmer uses the bag do not need to know
know about linked lists.

0 The difference

0 No worries about capacity therefore

0 no default capacity
0 no reserve function

0 because our new bag with linked list can grow or shrink
E W

@ George Wolberg, 2020



Our Third Bag — Class Definition

0 The invariant of the 3 bag class

0 the items In the bag are stored in a linked list
(which is dynamically allocated)

0 the head pointer of the list is stored in the
member variable head ptr of the class bag

0 The total number of items in the list 1s stored In
the member variable many_ nodes.

0 The Header File ( )

@ George Wolberg, 2020

10


bag3-ppt.html

Our Third Bag — Class Definition

0 How to match bag::value_type with node::value_type
class bag

{
public:

typedef node::value_type value type;

0 Following the rules for dynamic memory usage
0 Allocate and release dynamic memory
0 The law of the Big-Three

@ George Wolberg, 2020

11



Our Third Bag - Implementation

0 The Constructors
0 default constructor
0 COpYy constructor

0 Overloading the Assignment Operator
0 release and re-allocate dynamic memory
0 self-assignment check

0 The Destructor
0 return all the dynamic memory to the heap

0 Other functions and the

@ George Wolberg, 2020

12


bag3-ppt.html

Sequence Class with Linked List

0 Compare three implementations
0 using a fixed size array (assignment 2)
0 using a dynamic array (assignment 3)
0 using a linked list (assignment 4)

0 What are the differences?
0 member variables
0 value semantics
0 Performance (time and space)

@ George Wolberg, 2020

13



Sequence — Design Suggestions

0 Five private member variables
0 many_nodes: number of nodes in the list

0 head_ptr and tail_ptr : the head and tail pointers of
the linked list

o why tail_ptr - for attach when no current item
0 cursor : pointer to the current item (or NULL)

0 precursor: pointer to the item before the current item
o foran easy insert (WHY)

0 Don’t forget
0 the dynamic allocation/release
0 the value semantics and
0 the Law of the Big-Three

@ George Wolberg, 2020 14



Sequence — Value Semantics

0 Goal of assignment and copy constructor
0 make one sequence equals to a new copy of another

0 Can we just use list_copy in the Toolkit?
0 list_copy(source.head_ptr, head_ptr, tail_ptr);

0 Problems ( deep copy — new memory allocation)
0 many_nodes OKAY
0 head_ptr and tail_ptr OKAY
0 How to set cursor and precursor ?

@ George Wolberg, 2020

15



Dynamic Arrays vs Linked Lists

0 Arrays are better at random access
1 O (1) vs. O(n)

0 Linked lists are better at insertions/ deletions at a
cursor

0 O(1) vs O(n)
0 Doubly linked lists are better for a two-way cursor
0 for example for insert O(1) vs. O(n)

0 Resizing can be Inefficient for a Dynamic Array
0 re-allocation, copy, release

@ George Wolberg, 2020 16



Reading and Programming
Assignments

0 Reading after Class
0 Chapter 6

0 Programming Assignment 4
0

@ George Wolberg, 2020

17



