CSC212
Data Structure

7% COMPUTER SCIENCE

i*;.__' 1 Ciry CoLLece oF NEw YORK

Lecture 3
ADT and C++ Classes (II)

Instructor: George Wolberg
Department of Computer Science
City College of New York

@ George Wolberg, 2020 1

Outline

A Review of C++ Classes (Lecture 2)

0 OOP, ADTs and Classes

0 Class Definition, Implementation and Use
0 Constructors and Value Semantics

More on Classes (Lecture 3)

0

0 Classes and Parameters

0 Operator Overloading

@ George Wolberg, 2020 2

Standard Library & Namespace

0 ANSI/ISO C++ Standard (late 1990s)
0 aids in writing portable code with different compilers

0 C++ Standard Library (1999 C++ compilers provide full SL)

0 Provides a group of declared constants, data types and functions, such
as I/0 and math

0 Use new “include directive” such as without .h

0 Standard Namespace

o All the items in the new header files are part of a feature called
standard namespace

0 When you use one of the new header files, you should use

0 which allows you to use all items from the standard namespace.

@ George Wolberg, 2020

Namespace and Documentation

0 Goal:

0 to make our new point class easily available to any
programs any time without
o revealing all the details
o worrying about name conflicts

0 Three steps to fulfill the goal
0 Creating a namespace
0 Writing the header file
0 Writing the implementation file

@ George Wolberg, 2020

Namespace wolberg _ccny _csc212 lecture_ 3

{
/[any item that belongs to the namespace is written here
}
0 Question:
0 You may use two versions of point classes in the same
program

0 Solution Is to use the namespace technique

0 A namespace Is a name that a programmer selects to
Identify a portion of his/her work

0 The name should be descriptive, better include part of
your real name and other features for uniqueness

@ George Wolberg, 2020

Namespace groupings

[All work that is part of our namespace must be in a namespace
grouping

0 A single namespace such as wolberg _ccny csc212 lecture 3
may have several namespace groupings

0 They don’t need in the same files, typically in two separate files

0 Class definition in a header file
0 Member function definitions in a separate implementation file

@ George Wolberg, 2020

Header File for a Class

0 A separate header file for a new class
O

0 At the top place the (how to use)

0 Followed by class (but not the
Implementation)

0 Place class definition inside a
0 Place a > around the entire thing

0 Documentation should include a comment
Indicating that the IS safe to use

@ George Wolberg, 2020

point-ppt.html

Implementation File for a Class

0 A separate implementation file for a new class
O (or point.cxx, point.C)

0 At the top place a small comment indicating the
IS In the header file

0 Followed by #include “point.h”

0 reopen the and place the
of member functions inside the namespace

@ George Wolberg, 2020

point-ppt.html

Using Items in a Namespace

0 A separate program file for using classes

0 At the top place an include directive
#include “point.h”

0 Three ways to use the items in a
0 using namespace main_savitch_2A;
0 using main_savitch_2A::point;
0 main_savitch_2A::point p1;

@ George Wolberg, 2020

point-ppt.html

Outline

A Review of C++ Classes (Lecture 2)

0 OOP, ADTs and Classes

0 Class Definition, Implementation and Use
0 Constructors and Value Semantics

More on Classes (Lecture 3)

0 Namespace and Documentation

0

0 Operator Overloading

@ George Wolberg, 2020 10

Classes and Parameters

0 Default parameters

0 when no or only part of the parameters are
provided in calling function

0 Types of parameters
0 value parameters
0 reference parameters
0 constant reference parameters

0 Return value 1s a class

@ George Wolberg, 2020

11

Default arguments

0 A default argument is a value that will be
used for an argument when a programmer
does not provide an actual argument when
calling a function

0 Default arguments may be listed in the
prototype of a function

0 Syntax:

@ George Wolberg, 2020 12

Default arguments — rules

Example of a prototype:

0 Ina call, arguments with default may be omitted
from the right end.

@ George Wolberg, 2020 13

Default arguments — rules

check (int year, int month = 1, int date =1); // okay

0 Ina call, arguments with default may be omitted
from the right end.

@ George Wolberg, 2020 14

Default arguments — rules

Prototype:
int date_check (int year, int month = 1, int date =1);
Usa

date_check(2002); // uses default for both month and date
date_check(2002, 9); // uses default for date =1
date_check(2002, 9, 5); // does not use defaults

@ George Wolberg, 2020 15

How can we apply default
arguments to a constructor ?

@ George Wolberg, 2020

16

Default Constructor revisited

0 A default constructor can be provided by using
default arguments

class point

{
public:

point();
point(double x, double y);

0 Instead of define two constructors and have two
Implementations

@ George Wolberg, 2020 17

Default Constructor revisited

0 A default constructor can be provided by using
default arguments

class point

{
public:

point(double x=0.0, double y =0.0);

0 We can define just one constructor with default
arguments for all of its arguments

@ George Wolberg, 2020 18

Default Constructor revisited

0 In using the class, we can have three declarations

point a(-1, 0.8); // uses the usual constructor with
// two arguments
point b(-1); // uses -1 for the first,
// but use default for the second

point c; // uses default arguments for both;
/[default constructor:
// no argument, no parentheses!

0 The implementation of the constructor with
default argument is the same as the usual one...

@ George Wolberg, 2020 19

Constructors: Implementation

N R O R
<

And for the most part, the constructor is no different
than any other member functions.

point::point(double x, double y)

But recall that there are 3 special features about
constructors...and 4 for this with default arguments!

@ George Wolberg, 2020 20

Second topic about parameters...

Classes as parameters

@ George Wolberg, 2020

21

Class as type of parameter

0 A class can be used as the type of a function’s
parameter, just like any other data type

Value parameters
Reference parameters
Const reference parameters

In fact you can also have
even If this does not make much sense

0
0
0
[

@ George Wolberg, 2020

22

Int answer = 0:
while ((p.x() <0)
{
p.shift(1,1);
answer++;

}

return answer,

| (p.y(<0))
P

point a(-1.5,-2.5);
cout << a.x() <<a.y() <
cout << shifts_needed(d) << endl,

cout << a.x() << a.y() << endl;

Value parameters

0 A value parameter is declared by writing
0 type-name parameter-name

0 Any change made to the formal parameter within
the body of the function does ot change the actual
argument from the calling program. This is call-by-
value.

0 The formal parameter is implemented as a local
variable of the function, and the class’s copy
constructor is used to initialize the formal
parameter as a copy of the actual argument

@ George Wolberg, 2020 24

Reference parameters

Int shift to_1st quad(point& p)

{

Int shifts:

while ((p.x() <0) || (p.y()<0))

{
p.shift(1,1);
shifts++;

}

return shifts;

e

point a(-1.5,-2.5);
cout << a.x() << a.y() <<en},;
cout << shift_to_1st quad(a) << endl;

cout << a.x() << a.y() << endl;

Reference parameters

0 A reference parameter is declared by writing
O

0 Any use of the formal parameter within the body
of the function will the actual argument
from the calling program; change made to the
parameter in the body of the function will alter the
argument. This Is called call-by-reference.

0 The formal parameter is merely another name of
the argument used In the body of the function!

@ George Wolberg, 2020 26

const reference parameters

0 A const reference parameter is declared by writing
0

0 A solution that provides the efficiency of a
reference parameter along with the security of a
value parameter.

0 Example ()

0 double distance (const point& p1, const point& p2)
o point pl and p2 cannot be changed ()

@ George Wolberg, 2020 27

point-ppt.html

Third topic about parameters and
functions of a class...

Class as return value

@ George Wolberg, 2020

28

Class as return value

point middle(const point& pl, const point& p2)
{

double x_midpoint, y _midpoint;

// compute the x and y midpoints
x_midpoint = (p1.x() + p2.x()) / 2;
y_midpoint = (pl.y() + p2.y()) / 2;

/[construct a new point and return it
point midpoint(X_midpoint, y _midpoint);
return midpoint;

}

@ George Wolberg, 2020 29

Class as return value

0 The type of a function’s return value may be a class

0 Often the return value will be stored in a local
variable of the function (such as midpoint), but not
always (could be in a formal parameter)

0 C++ return statement uses the copy constructor to
copy the function’s return value to a temporary
location before returning the value to the calling
program

0 Example (Ch 2.4, Look into)

0 point middle(const point& pl, const point& p2)

@ George Wolberg, 2020 30

point-ppt.html

Outline

A Review of C++ Classes (Lecture 2)

0 OOP, ADTs and Classes

0 Class Definition, Implementation and Use
0 Constructors and Value Semantics

More on Classes (Lecture 3)

0 Namespace and Documentation

0 Classes and Parameters

0

@ George Wolberg, 2020 31

Operator Overloading

0 Binary functions and binary operators

0 Overloading arithmetic operations

0 Overloading binary comparison operations
0

0

Overloading input/output functions
Friend functions — when to use

@ George Wolberg, 2020 32

Operator Overloading

0 Question:

0 Can we perform arithmetic operations (+ - * /)
Or comparison operations (>, ==, <, etc.) or
assignment operation (=) with a new class?

point speedl1(5,7)
point speed2(1,2);
point difference;

if (speedl !=speed?2)
difference = speedl - speed?,;

@ George Wolberg, 2020 33

Operator Overloading

0 Question:

0 Can we perform arithmetic operations (+ - * /)
Or comparison operations (>, ==, <, etc.) or
assignment operation (=) with a newglass?

point speedl1(5,7)
point speed2(1,2);
point difference;

If (speedl = speed?2
difference “4peedl - speed?,;

@ George Wolberg, 2020 34

Operator Overloading

0 Answer IS NO

0 unless you define a
exactly what “!=" or “+” means

point speedl1(5,7)
point speed2(1,2);
point difference;

if (speedl !=speed?2)
difference speedl - speed?,;

@ George Wolberg, 2020

that tells

35

Operator Overloading

0 Binary Function 0 Binary Operator
0 A function with two 0 A operator with two
arguments operands

Operator Overloading is to define the meaning of an
existing operator for a new class

Instead of defining

point add(point p1, point p2)
We define
point operator+(point pl, point p2) 36

Overloading arithmetic operators

point operator+(point& pl, point& p2)

//[Postcondition: the sum of pl and p2 is returned.
{

double x_sum,y sum;

x_sum = (p1.x() + p2.x());

y_sum = (pl.y() + p2.y());

point sum(X_sum, y_sum);

return sum;,

Overloading arithmetic operators

0 Apart from the peculiar name , the
function is just like any other function

0 The overloaded operator + Is used In a program
just like any other use of +

0 ,
0 When you overload an operator +, the usual usage
of + is still available

0 Note the uses of
0 const reference parameters since. ..
0 member functions x and y instead of variables
0 the function Is a nonmember function

@ George Wolberg, 2020 38

Overloading arithmetic operators

0 Method 1: Nonmember function p = pl+p2
point operator+(point& pl, point& p2)
//[Postcondition: the sum of pl and p2 is returned.
{

double x_sum,y sum;

x_sum = (p1.x() + p2.x());

y_sum = (pl.y() + p2.y());

point sum(X_sum, y_sum);

return sum;

Overloading arithmetic operators

0 Method 2: Member function p = pl+p2

point point::operator+(point& p2)
//[Postcondition: the sum of activating object (p1) and
argument p2 is returned.

{

double x_sum,y sum;
Xx_sum = (m_x + p2.x());

y_sum = (m_y + p2.y());

point sum(x_sum, y_sum);

return sum;

40

Overloading arithmetic operators

0 Overloading using nonmember function
0 PROs: two arguments on equal footing
0 CONSs: cannot use the member variables
0 Alternative ways to overload a binary function

0 Member function
o PROSs: can use member variables
1 CONs: pl activate the operator with argument p2

0 Which way do you prefer?

@ George Wolberg, 2020

41

Overloading comparison operators

bool operator== point& pl, point& p2)

//[Postcondition: the return is true if p1 and p2 are identical,
otherwise return is false.

{

return((p1.x() == p2.x()) && (p1.y() == p2.y()));

@ George Wolberg, 2020 42

Overloading comparison operators

bool operator!=(point& pl, point& p2)

//[Postcondition: the return is true if p1 and p2 are NOT
identical; otherwise return is false.

{

return ((p1.x() = p2.x() [| (p1.y() = p2.y()));

@ George Wolberg, 2020 43

Overloading comparison operators

bool operator!=(point& pl, point& p2)

//[Postcondition: the return is true if p1l and p2 are NOT
identical; otherwise return is false.

{

return !(pl==p2);

0 Or use the overloaded operator for easy
Implementation

@ George Wolberg, 2020 44

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class:

ostreamé& operator<<(& outs, point& source)

/[Postcondition: The x and y coordinates of source have been
/[written to outs. The return value is the ostream outs.

/[Library facilities used: iostream

{

outs << source.x() << "" << source.y():
return outs;

0 Q1: how to use this overloaded operator?

@ George Wolberg, 2020 45

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class:

ostreamé& operator<<(& outs, point& source)

/[Postcondition: The x and y coordinates of source have been
/[written to outs. The return value is the ostream outs.

/[Library facilities used: iostream

{

outs << source.x() << "" << source.y():
return outs;

0 Q2: why Is outs a reference parameter but NOT

?
const: Need change actual argument cout
46

@ George Wolberg, 2020

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class:

ostreamé& operator<<(& outs, point& source)

/[Postcondition: The x and y coordinates of source have been
/[written to outs. The return value is the ostream outs.

/[Library facilities used: iostream

{

outs << source.x() << "" << source.y():
return outs;

0 Q3: why return ostreamé&?

For chaining: cout << “The point is” << p << end|;

@ George Wolberg, 2020 47

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class: <<

ostreamé& operator<<(& outs, point& source)

/[Postcondition: The x and y coordinates of source have been
/[written to outs. The return value is the ostream outs.

/[Library facilities used: iostream

{

outs << source.x() << "" << source.y():
return outs;

0 Q4: How to overload the input operator ~~ ?

@ George Wolberg, 2020 48

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class:

Istreamé& operator>>(istreamé& ins, point& target)

/[Postcondition: The x and y coordinates of target have been
I/l read from ins. The return value is the istream Ins.

/[Library facilities used: iostream

{

Ins >> target. X >> target.y;
return ins;

0 NO const for both istream and point
0

@ George Wolberg, 2020

49

Three possible solutions

0 Use a member function for overloading the
Input function

0 Write new member functions to set a
point’s coordinates so they can
be used within the input function

0 Grant special permission for the input
function to access the private variables

0 using a friend function

@ George Wolberg, 2020 50

Friend Function

0 A friend function is NOT a member
function, but it still has access to the private
members of its parameters

class point

[/ FRIEND FUNCTION
friend istream& operator>>(istreamé& ins, point& target);
private:

y

@ George Wolberg, 2020

51

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class:

Istream& operator>>(istreamé& ins, point& target)

/[Postcondition: The x and y coordinates of target have been
I/l read from ins. The return value is the istream Ins.

/[Library facilities used: iostream

{

return ins;

0 IS resolved by using friend function, no
change In implementation

@ George Wolberg, 2020 52

Overloading 1/O operators

0 Input (>>) & Output (<<) for a new class:

Istreamé& operator>>(istreamé& ins, point& target)

/[Postcondition: The x and y coordinates of target have been
I/l read from ins. The return value is the istream ins.

/[Library facilities used: iostream

/[Friend of point class

{

return ins;

@ George Wolberg, 2020

53

Summary of Classes

A Review of C++ Classes (Lecture 2)

0 OOP, ADTs and Classes

0 Class Definition, Implementation and Use
0 Constructors and Value Semantics

More on Classes (Lecture 3)

0 Namespace and Documentation

0 Classes and Parameters

0 Operator Overloading

@ George Wolberg, 2020

54

point class: Putting things together

0 Header file ()

0 Documentation including pre- & post-conditions

0 Class definitions for any new classes //inline

0 Prototype of nonmember functions (e,g. for overloading)
0 Place the Class and Prototype inside a namespace

0 Implementation file ()

0 An include directive to include the header file

0 Implementation of each function (except inline)

0 Implementation of each friend and other nonmember
0 Use the same namespace for implementation

0 Calling program file ()

0 Three ways to use the items in a namespace

@ George Wolberg, 2020 55

point-ppt.html
point-ppt.html
point-ppt.html

Exercises and Assignments

0 Writing Homework

0 Alternative implementation of operator >>
0 Self-Test Exercises (do not turn in)

o 1,4,5,13,15,17,21,23, 25,28,31
0 Reading before the next lecture

0 Chapter 3. Container Classes

0 Programming Assignment 1

O
o check schedule on our course web page

@ George Wolberg, 2020

56

@ George Wolberg, 2020

END

57

