New and Improved Stretch Factors of Yao Graphs

Luis Barba† * Prosenjit Bose‡ Mirela Damian† Rolf Fagerberg§ Wah Loon Keng¶ Joseph O’Rourke|| André van Renssen† Perouz Taslakian** Sander Verdonschot† Ge Xia§

Abstract

In this paper we study the stretch factors of Yao graphs. We prove that Y_5, the Yao graph with five cones, is a spanner with stretch factor $\rho = 2 + \sqrt{3} \approx 3.74$. Since Y_5 is the only Yao graph whose status of being a spanner or not was open, this completes the picture of the Yao graphs that are spanners: a Yao graph Y_k is a spanner if and only if $k \geq 4$.

We also improve the known stretch factor of all the Yao graphs for odd $k > 5$ and reduce the known stretch factor of Y_6 from 17.7 to 5.8.

We complement the above results with a lower bound of 2.87 on the stretch factor of Y_5. We also show that YY_5, the Yao-Yao graph with five cones, is not a spanner.

1 Introduction

Let S be a set of points in the plane. A geometric graph G on the point set S is called a ρ-spanner (or simply spanner if ρ is a constant) if for every two points $a, b \in S$, the shortest path distance between a and b in G is at most $\rho \cdot ||ab||$. The constant ρ is called the stretch factor or spanning ratio of G.

For a fixed integer $k > 0$, the Yao graph [7] Y_k is constructed by partitioning the space around each point $p \in S$ into k equiangular cones, and connecting p to a nearest neighbor in each cone. The Yao-Yao graph [6] YY_k is constructed by augmenting the above construct with a second stage where each point keeps only the shortest incoming edge in each cone.

The spanning properties of Yao graphs have been extensively studied. It is known that Y_2 and Y_3 are not spanners [5], Y_4 is a spanner with stretch factor $8\sqrt{2}(29 + 23\sqrt{2})$ [2], Y_6 is a spanner with stretch factor 17.7 [4], and that for $k \geq 7$, Y_k is a spanner with stretch factor $1 \left[1 - 2\sin\left(\frac{\pi}{k}\right)\right]$ [2]. The question of whether or not Y_5 is a spanner was previously open.

In this paper we prove that Y_5 is a ρ-spanner, where $\rho = 2 + \sqrt{3} \approx 3.74$. Combining this with the previous results, we now have a complete picture of the spanners that can be constructed with Yao graphs: any Yao graph Y_k is a spanner if and only if $k \geq 4$.

We also improve the known stretch factor of all the Yao graphs for odd $k \geq 7$ to $\frac{1}{1 - 2\sin\left(\frac{3\pi}{4k}\right)}$ and reduce the known stretch factor of Y_6 to 5.8.

We complement the above result by giving a lower bound of 2.87 on the stretch factor of Y_5. We also show that YY_5, the Yao-Yao graph with five cones, is not a spanner.

Table 1 shows the current results on the stretch factors of Yao and Yao-Yao graphs for various values of the parameter k.

Table 1: Stretch factors of Yao and Yao-Yao graphs

<table>
<thead>
<tr>
<th>k</th>
<th>Y_k</th>
<th>YY_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3</td>
<td>∞ [5]</td>
<td>∞ [5]</td>
</tr>
<tr>
<td>4</td>
<td>$8\sqrt{2}(29 + 23\sqrt{2})$ [2]</td>
<td>∞ [3]</td>
</tr>
<tr>
<td>5</td>
<td>3.74 [•]</td>
<td>∞ [•]</td>
</tr>
<tr>
<td>6</td>
<td>5.8 [•]</td>
<td>∞ [5]</td>
</tr>
<tr>
<td>≥ 7</td>
<td>$\frac{1}{1 - 2\sin\left(\frac{\pi}{k}\right)}$ even k [2]</td>
<td>11.67 for $k = 6k'$, where $k' \geq 6$ [1]; Open for other values of $k \geq 7$</td>
</tr>
</tbody>
</table>
2 Our Results

We first prove an upper bound on the stretch factor of Y_k for $k \geq 5$. For any two points $a, b \in S$, let $p(a, b)$ be the length of a shortest path in Y_k from a to b.

Lemma 1. Given three points a, b, and c, such that $|ac| \leq |ab|$ and $\angle bac \leq \alpha < 180^\circ$, then

$$bc \leq |ab| - (1 - 2 \sin(\alpha/2)) \cdot |ac|.$$

Proof. Let c' be the point on ab such that $|ac| = |ac'|$. Since acc' forms an isosceles triangle, $|cc'| = 2 \sin(\angle bac/2) \cdot |ac| \leq 2 \sin(\alpha/2) \cdot |ac|$. Now, by the triangle inequality, $|bc| \leq |cc'| + |c'b| \leq 2 \sin(\alpha/2) \cdot |ac| + |ab| - |ac'| = |ab| - (1 - 2 \sin(\alpha/2)) \cdot |ac|$. \qed

Theorem 1. For any odd integer $k \geq 5$, the Y_k-graph defined on a point set S has stretch factor at most $t = 1/(1 - 2 \sin(30^\circ/8))$, where $\theta = 360^\circ/k$.

Proof Sketch. Let $a, b \in S$ be an arbitrary pair of points. Let Q^b_a denote the cone with apex a that contains b, and let Q^a_b denote the cone with apex b that contains a. Let α be the angle formed by the segment ab with the bisector of Q^b_a, and let β be the angle formed by ab with the bisector of Q^a_b. Since k is odd, the bisector of Q^b_a is parallel to the right boundary of Q^a_b. Hence, we have that $\alpha = \theta/2 - \beta$. Assume without loss of generality that α is the smaller of these two angles. It follows that $\alpha \leq \theta/4$.

For the inductive step, if a chooses b as the nearest neighbor in Q^b_a, then $p(a, b) = |ab|$ and the proof is finished. So assume that a chooses another point $c \neq b$ as the nearest neighbor in Q^b_a. Because $|ac| \leq |ab|$ and because $\angle cab \leq \theta/2 + \alpha \leq 30^\circ/4$, we can use Lemma 1 to derive $|cb| \leq |ab| - (1 - 2 \sin(30^\circ/8)) \cdot |ac| = |ab| - |ac|/t$, which is strictly smaller than $|ab|$. Apply the inductive hypothesis to c, b, we have a path between a and b of length: $p(a, b) \leq |ac| + t \cdot |cb| \leq |ac| + t \cdot (|ab| - |ac|/t) = t \cdot |ab|$. This completes the proof. \qed

Applying this result to Y_5 yields a stretch factor of $1/(1 - 2 \sin(22.5^\circ)) \approx 10.868$. Applying a more careful analyze, we further improve the stretch factor of Y_5:

Theorem 2. The Y_5 graph has stretch factor at most $2 + \sqrt{3} \approx 3.74$.

We also improve the stretch factor of Y_6.

Theorem 3. The Y_6-graph has spanning ratio at most 5.8.

On the other hand, we give a point set whose Y_5 graph has stretch factor more than 2.87. We also give a YY_5 graph whose stretch factor is unbounded.

References

Figure 1: Since opposite cones are not symmetric, either α or β is small.

Proceed by induction on the distance $|ab|$. The base case holds because $ab \in Y_k$ when $|ab|$ is minimized.