New and Improved Stretch Factors of Yao Graphs

Luis Barba^{† *} Prosenjit Bose[†] Mirela Damian[‡] Rolf Fagerberg[§] Wah Loon Keng[¶] Joseph O'Rourke^{||} André van Renssen[†] Perouz Taslakian** Sander Verdonschot[†] Ge Xia[¶]

Abstract

In this paper we study the stretch factors of Yao graphs. We prove that Y_5 , the Yao graph with five cones, is a spanner with stretch factor $\rho = 2 + \sqrt{3} \approx 3.74$. Since Y_5 is the only Yao graph whose status of being a spanner or not was open, this completes the picture of the Yao graphs that are spanners: a Yao graph Y_k is a spanner if and only if $k \geq 4$.

We also improve the known stretch factor of all the Yao graphs for odd k > 5 and reduce the known stretch factor of Y_6 from 17.7 to 5.8.

We complement the above results with a lower bound of 2.87 on the stretch factor of Y_5 . We also show that YY_5 , the Yao-Yao graph with five cones, is not a spanner.

1 Introduction

Let S be a set of points in the plane. A geometric graph G on the point set S is called a ρ -spanner (or simply spanner if ρ is a constant) if for every two points $a,b \in S$, the shortest path distance between a and b in G is at most $\rho \cdot ||ab||$. The constant ρ is called the stretch factor or spanning ratio of G.

For a fixed integer k > 0, the Yao graph [7] Y_k is constructed by partitioning the space around each point $p \in S$ into k equiangular cones, and connecting p to a nearest neighbor in each cone. The Yao-Yao graph [6] YY_k is constructed by augmenting the above construct with a second stage where each

Table 1: Stretch factors of Yao and Yao-Yao graphs

k	Y_k	YY_k
2,3	∞ [5]	∞ [5]
4	$8\sqrt{2}(29+23\sqrt{2})$ [2]	∞ [3]
5	3.74 [·]	∞ [·]
6	5.8 [·]	∞ [5]
≥ 7	$\frac{1}{1-2\sin(\pi/k)} \text{ even } k \text{ [2]}$ $\frac{1}{1-2\sin(3\pi/4k)} \text{ odd } k \text{ [\cdot]}$	11.67 for $k = 6k'$, where $k' \ge 6$ [1]; Open for other values of $k \ge 7$

point keeps only the shortest incoming edge in each cone.

The spanning properties of Yao graphs have been extensively studied. It is known that Y_2 and Y_3 are not spanners [5], Y_4 is a spanner with stretch factor $8\sqrt{2}(29+23\sqrt{2})$ [2], Y_6 is a spanner with stretch factor 17.7 [4], and that for $k \geq 7$, Y_k is a spanner with stretch factor $\frac{1}{1-2\sin(\pi/k)}$ [2]. The question of whether or not Y_5 is a spanner was previously open.

In this paper we prove that Y_5 is a ρ -spanner, where $\rho = 2 + \sqrt{3} \approx 3.74$. Combining this with the previous results, we now have a complete picture of the spanners that can be constructed with Yao graphs: any Yao graph Y_k is a spanner if and only if k > 4.

We also improve the known stretch factor of all the Yao graphs for odd $k \geq 7$ to $\frac{1}{1-2\sin(3\pi/4k)}$ and reduce the known stretch factor of Y_6 to 5.8.

We complement the above result by giving a lower bound of 2.87 on the stretch factor of Y_5 . We also show that YY_5 , the Yao-Yao graph with five cones, is not a spanner.

Table 1 shows the current results on the stretch factors of Yao and Yao-Yao graphs for various values of the parameter k.

^{*}Université Libre de Bruxelles. lbarbafl@ulb.ac.be.

 $^{^\}dagger \mathrm{Carleton}$ University. jit@scs.carleton.ca, andre@cg.scs.carleton.ca, sander@cg.scs.carleton.ca.

[‡]Villanova University. mirela.damian@villanova.edu.

[§]University of Southern Denmark. rolf@imada.sdu.dk.

[¶]Lafayette College. {kengw,xiag}@lafayette.edu.

Smith College. orourke@cs.smith.edu.

^{**}American University of Armenia. perouz.taslakian@ulb.ac.be.

2 Our Results

We first prove an upper bound on the stretch factor of Y_k for $k \geq 5$. For any two points $a, b \in S$, let p(a,b) be the length of a shortest path in Y_k from a to b.

Lemma 1. Given three points a, b, and c, such that $|ac| \le |ab|$ and $\angle bac \le \alpha < 180^{\circ}$, then

$$|bc| \le |ab| - (1 - 2\sin(\alpha/2)) \cdot |ac|.$$

Proof. Let c' be the point on ab such that |ac| = |ac'|. Since acc' forms an isosceles triangle, $|cc'| = 2\sin(\angle bac/2) \cdot |ac| \le 2\sin(\alpha/2) \cdot |ac|$. Now, by the triangle inequality, $|bc| \le |cc'| + |c'b| \le 2\sin(\alpha/2) \cdot |ac| + |ab| - |ac'| = |ab| - (1 - 2\sin(\alpha/2)) \cdot |ac|$.

Theorem 1. For any odd integer $k \geq 5$, the Y_k -graph defined on a point set S has stretch factor at most $t = 1/(1 - 2\sin(3\theta/8))$, where $\theta = 360^{\circ}/k$.

Proof Sketch. Let $a, b \in S$ be an arbitrary pair of points. Let Q_a^b denote the cone with apex a that contains b, and let Q_b^a denote the cone with apex b that contains a. Let α be the angle formed by the segment ab with the bisector of Q_a^b , and let β be the angle formed by ab with the bisector of Q_b^a . Since k is odd, the bisector of Q_b^a is parallel to the right boundary of Q_b^a . Hence, we have that $\alpha = \theta/2 - \beta$. Assume without loss of generality that α is the smaller of these two angles. It follows that $\alpha \leq \theta/4$.

Figure 1: Since opposite cones are not symmetric, either α or β is small.

Proceed by induction on the distance |ab|. The base case holds because $ab \in Y_k$ when |ab| is minimized.

For the inductive step, if a chooses b as the nearest neighbor in Q_a^b , then p(a,b)=|ab| and the proof is finished. So assume that a chooses another point $c\neq b$ as the nearest neighbor in Q_a^b . Because $|ac|\leq |ab|$ and because $\angle cab\leq \theta/2+\alpha\leq 3\theta/4$, we can use Lemma 1 to derive $|cb|\leq |ab|-(1-2\sin\frac{3\theta}{8})\cdot|ac|=|ab|-|ac|/t$, which is strictly smaller than |ab|. Apply the inductive hypothesis to c,b, we have a path between a and b of length: $p(a,b)\leq |ac|+t\cdot |cb|\leq |ac|+t\cdot (|ab|-\frac{|ac|}{t})=t\cdot |ab|$. This completes the proof.

Applying this result to Y_5 yields a stretch factor of $1/(1-2\sin(27^\circ)) \approx 10.868$. Applying a more careful analyze, we further improve the stretch factor of Y_5 :

Theorem 2. The Y_5 graph has stretch factor at most $2 + \sqrt{3} \approx 3.74$.

We also improve the stretch factor of Y_6 .

Theorem 3. The Y_6 -graph has spanning ratio at most 5.8.

On the other hand, we give a point set whose Y_5 graph has stretch factor more than 2.87. We also give a YY_5 graph whose stretch factor is unbounded.

References

- M. Bauer and M. Damian. An infinite class of sparse-yao spanners. In SODA, pages 184–196, 2013.
- [2] P. Bose, M. Damian, K. Douïeb, J. O'Rourke, B. Seamone, M. Smid, and S. Wuhrer. $\pi/2$ -angle Yao graphs are spanners. CoRR, abs/1001.2913, 2010.
- [3] M. Damian, N. Molla, and V. Pinciu. Spanner properties of $\pi/2$ -angle Yao graphs. In EUCG, pages 21–24, 2009.
- [4] M. Damian and K. Raudonis. Yao graphs span theta graphs. In *COCOA*, pages 181–194, 2010.
- [5] N. Molla. Yao spanners for wireless ad hoc networks. M.S. Thesis, Villanova University, 2009.
- [6] Y. Wang and X.-Y. Li. Distributed spanner with bounded degree for wireless ad hoc networks. In *IPDPS*, pages 194–201, 2002.
- [7] A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.