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Abstract— Existing Big Data systems are mostly designed for 

relational data. They are either incapable or inefficient in 

processing large-scale semi-structured data efficiently due to the 

inherent limitations on data abstraction, indexing support and 

exposure to native parallel programming tools. In this study, we 

report our work in developing a lightweight distributed execution 

engine for spatial join query processing on large-scale geospatial 

data. By integrating data parallel designs for single computing 

nodes, our execution engine is able to automatically dispatch data 

partitions to distributed computing nodes for efficient local 

execution on multi-core CPUs and GPUs. The execution engine 

supports asynchronous data transfer over network, asynchronous 

disk I/O and asynchronous computing. It also directly accesses 

distributed file systems to support creating and using indices 

conveniently and efficiently. In addition to be lightweight by 

design, which has less than 1,000 Lines Of Code (LOC), 

experiments using a real world application have demonstrated 

significant efficiency improvement over our previous works on 

extending a leading in-memory Big Data system (Impala) for 

spatial join query processing.  

Keywords—Lightweight, Distributed Computing, Execution 

Engine, Spatial Join  

I. INTRODUCTION  

Advanced sensors, such as GPS devices and smartphones, 

have generated huge amounts of location data. Very often 

point location data need to be joined with urban infrastructure 

data, such as road networks and administrative zones, to better 

understand human mobility patterns and, subsequently, 

improve urban planning, traffic control and infrastructure 

maintenance. As an example, thousands of New York City 

(NYC) buses send back GPS locations every 30 seconds 1 

which amount to millions of points daily and billions yearly. 

The Global Biodiversity Information Facility (GBIF 2 ) has 

accumulated more than 500 million species occurrence records 

each of which is often associated with a (latitude, longitude) 

pair. It is essential to map the occurrence records to various 

ecological regions to understand the biodiversity patterns and 

make conservation plans. Such applications require spatial join 

query processing, a well-defined problem in spatial databases 

research [1] [2]. This functionality has been provided by major 

commercial and open source spatial database systems as well 

as Geographical Information Systems (GIS). However, the 

amounts of spatial data in these applications (e.g., in the order 

of tens of millions to billions of data items) well exceed the 

processing capabilities of traditional disk-resident systems 

running on single computing nodes and, thus, require new 

systems to reduce processing times, from days or hours to 

minutes or even seconds, in order to be practically useful for 

researchers and decision makers [3].  

Our previous efforts in extending the leading in-

memory Big Data system Impala [4] to support spatial data 

processing with a focus on spatial joins on multi-core CPU 

and Graphics Processing Units (GPU) equipped clusters have 

achieved limited success [5] [6]. There are several major 

issues in the “extension” oriented approach. First, the data 

model supported by Impala is mostly designed for relational 

data, which makes it inefficient to represent and manipulate 

semi-structured data, such as spatial data. To support spatial 

data in Impala, we were forced to represent geometry of 

spatial data as strings. This not only increases data volume 

significantly (and hence disk I/O overheads and memory 

footprint) but also requires converting geometry between text 

and binary back and forth, which is not efficient. Second, the 

tightly integrated end-to-end system makes it difficult (if not 

impossible) to plug-in new sophisticated indexing techniques 

to support spatial joins. It becomes practically intractable 

when one attempts to modify existing Big Data systems (such 

as Impala) with hundreds of thousands of lines of code. Third, 

our experiments have shown up to 50% infrastructure 

overhead when running the extended system for spatial joins 

on a single computing node.  

We therefore consider it desirable to develop a 

lightweight distributed computing system that is capable of 

supporting indexing and query processing on spatial data in an 

easy and natural way. In this paper, we report our work on 

developing a Lightweight Distributed Execution (LDE) engine 

for large-scale spatial data processing with an initial focus on 

spatial joins. Our work is unique in the following aspects that 

are not available in existing systems: 1) It is lightweight and 

easy to extend, 2) It supports spatial data as well as other types 

of non-relational data, and 3) it is C++ based and supports 

Single Instruction Multiple Data (SIMD [7]) computing on 

both multi-core CPUs and GPUs for high performance.  

 For the rest of the paper, we first introduce the 

background and related work in Section II. Section III presents 

the system architecture of LDE and its implementation details. 

Section IV provides experiment results on large-scale point-in-

polygon test based spatial join query processing. Finally 

Section V is the conclusion and future work directions.   



II. BACKGROUND, MOTIVATION AND RELATED WORK 

Assuming that the two datasets in a spatial join have been 

indexed, the first step in a parallel and/or distributed 

implementation of the spatial join, called spatial filtering [2], 

is to pair up partitions in the two datasets based on spatial 

relationships (e.g., intersection). Subsequently, the geometry 

of data items within the paired spatial partitions are tested 

based on the desired spatial predicates, e.g., point-in-polygon 

test and whether the distance between a point and a polyline is 

within a certain threshold. It is natural to distribute the paired 

partitions to worker nodes for distributed processing. It can be 

seen that spatial indices can potentially reduce the complexity 

of the spatial join from O(M*N) to O(M*log(N) or even 

O(M), where M and N are the numbers of records in the two 

datasets of a spatial join. Numerous spatial indexing and 

spatial join query processing techniques [1] [2] have been 

proposed in the past four decades and some of them have been 

implemented in mainstream spatial database systems. Not 

surprisingly, the majority of the techniques are designed for 

serial computing on uniprocessors in disk-resident systems, 

which significantly limits performance on processing large-

scale geospatial data.  

The last few years have seen dramatic new 

developments in Big Data systems after Hadoop/MapReduce 

became the mainstream software framework for distributed 

processing of Big Data. Several open source software, such as 

Cloudera Impala [4], Apache Spark [8], AsterixDB [9] and 

Stratosphere [10], in addition to commercial products, have 

been developed to improve Hadoop with respect to 

functionality, efficiency and usability. However, although 

there are Big Data systems that are designed to support graph 

data, most of the existing mainstream Big Data systems are 

designed for relational data [11] [12] [13]. These Big Data 

systems typically adopt a simplified data model that supports 

only element-wise operations in a streaming mode, such as 

scans and aggregations on tuples [12], vertex or edges [14], 

where indexing is not actively exploited. Although 

sophisticated indexing techniques have played an important 

role in improving the efficiency of both traditional single-node 

databases and distributed databases, existing Big Data systems 

generally lack a systematic framework to support creating and 

using indexes to efficiently support more complex operations 

[15]. Unfortunately, many operations on semi-structured data, 

such as spatial data, trajectory data and time series data, 

require global indexing to pair up partitions in multiple 

datasets before the pairs can be dispatched to distributed 

computing nodes for local processing.  

Given the complexity of developing full-fledged Big 

Data systems, which typically consist hundreds of thousands 

of Lines of Code (LOC), a natural way to support new 

operations of semi-structured data is to extend existing Big 

Data systems instead of developing a new system from 

scratch. For spatial data, HadoopGIS [16] and SpatialHadoop 

[17] are among the leading works on supporting spatial data 

management within the Hadoop ecosystem. HadoopGIS 

adopts the Hadoop Streaming3 framework and uses additional 

MapReduce jobs to shuffle data items that are spatially close 

to each other into partitions before a final MapReduce job is 

launched to process re-organized data items in the partitions. 

SpatialHadoop extends Hadoop at a lower level and has 

random accesses to both raw and derived data stored in the 

Hadoop Distributed File System (HDFS 4 ). By extending 

FileInputFormat defined by the Hadoop runtime library, 

SpatialHadoop is able to spatially index input datasets, 

explicitly access the resulting index structures stored in HDFS 

and query the indexes to pair up partitions based on the index 

structures, before a Map-only job is launched to process the 

pairs of partitions in distributed computing nodes. Compared 

with the Hadoop Streaming framework adopted in HadoopGIS 

which allows only strictly sequential data accesses, being able 

to manipulate HDFS files through system level APIs and 

access disk files randomly in SpatialHadoop has made it the 

most efficient spatial data management system on top of 

Hadoop (to the best of our knowledge). Several research 

prototypes for spatial operations have been built on top of 

SpatialHadoop (such as GISQF [18]). However, like all 

Hadoop-based systems, excessive disk I/Os in executing 

Hadoop jobs is a performance bottleneck when compared with 

in-memory systems, such as Impala and Spark.   

We have extended both Impala and Spark for spatial 

joins and developed several prototype systems on them, i.e., 

SpatialSpark, ISP-MC, ISP-MC+ and ISP-GPU, respectively. 

We refer to [5] [6] for more implementation details and their 

performance evaluations on both a single computing node and 

Amazon EC2 clusters. Spark provides an excellent 

development platform by automatically distributing tasks to 

computing nodes, as long as developers can express their 

applications as data parallel operations on collection/vector 

data structures, i.e., Resilient Distributed Datasets (RDDs) [8]. 

The automatic distribution is based on the key-value pairs of 

RDDs which largely separate domain logic from 

parallelization/distribution. While SpatialSpark has achieved 

significantly higher performance than both HadoopGIS and 

SpatialHadoop, the Scala language and Java Virtual Machine 

(JVM5) based Spark platform currently does not allow using 

SIMD computing power easily and effectively. Hadoop/Spark 

supports Single Instruction Multiple Data (SIMD) computing 

on neither multi-core CPUs nor Graphics Processing Units 

(GPUs). As SIMD width is getting larger, which is 4-16 way 

for Vector Processing Units on multi-core CPUs and 32 way 

on Nvidia GPUs, it is much more desirable to exploit SIMD 

computing power on modern hardware [7].  

Impala, on the other hand, has a C++ backend which 

makes it possible to exploit SIMD computing power on both 

multi-core CPUs (using Vector Processing Units – VPUs [7]) 

and GPUs. While Impala is able to utilize Streaming SIMD 

Extensions 4 (SSE4) on Intel CPUs to significantly speed up 

string related operations, which may largely contribute to its 

superior performance when compared with Hadoop and 

Spark6, SIMD instruction sets have not been used for other 

operations (including spatial) in Impala. Our previous works 

on developing ISP-MC [5], ISP-MC+ [6] and ISP-GPU [6] 

have demonstrated both feasibility and reasonable efficiency. 

Note that although the three prototype systems share the In-



Memory Spatial Processing (ISP) framework we have 

developed on top of Impala with spatial extensions, ISP-MC is 

designed for multi-core CPUs using traditional geometry 

library (i.e., GEOS 7  ), ISP-MC+ is designed for multi-core 

CPUs using our own geometry library with columnar data 

layout [3] and ISP-GPU is designed for GPUs also with 

columnar data layout. ISP-GPU largely offloads spatial 

indexing, spatial filtering and spatial refinement to GPUs. 

Using our own geometry library with columnar data layout on 

GPUs has achieved the highest efficiency. However, 

tremendous technical challenges have been encountered 

during the journey of extending Impala for spatial data, mostly 

due to data model and architecture mismatches. Experiments 

also have shown that the overheads of supporting spatial 

operations in the Impala-based prototypes are high, especially 

for ISP-GPUs where floating point computing has been 

significantly sped up by GPUs.  

There are several efforts in developing high-

performance execution engines for distributed computing and 

some have been demonstrated favorably when compared with 

Hadoop. In particular, Sphere [19] is a C/C++ based 

programming framework that processes data managed by a 

distributed file system called Sector. Sphere manages both 

data and associated metadata using operating system level 

socket programming APIs directly and processes data in place 

whenever possible. Despite that Sphere has a much smaller 

codebase than Hadoop, experiments have demonstrated 

several times higher efficiency due to the simplified design 

and efficient implementations. AJIRA [20] is designed to be a 

lightweight distributed middleware for MapReduce and stream 

processing. It is implemented on top of a message-passing 

library called IRIS for distributed data communication.  

Different from Hadoop, each computing node in AJIRA runs 

multiple processes in a single multi-threaded application 

which removes the need of slow inter-process communication 

within the node. DataMPI [21] represents a unique hybrid 

solution by bridging the MapReduce programming model and 

Message Passing Interface (MPI 8 ) based distributed data 

communication libraries. While experiments have 

demonstrated good performance when compared with 

Hadoop, a drawback is that MPI software stacks are typically 

complex and heavyweight. Although the library overheads 

may not be significant in high-end cluster computing facilities 

equipped with fast CPUs and high-performance 

interconnection networks (e.g., Infiniband9), its advantages are 

less clear on commodity clusters (e.g., Amazon EC2) when 

compared with distributed data communications directly on 

socket APIs (such as Sphere and  AJIRA). The additional 

mandatory data movement overheads between Hadoop (Java-

based) and MPI libraries (C/C++ based) are also a 

performance concern. SciDB 10  , an open-source analytical 

database system designed for array data, uses the 

asynchronous data communication module in the boost C++ 

libraries (i.e., Boost.Asio 11 ) for distributed data 

communications in the units of array chunks. Although the 

performance of distributed query processing on array data has 

not been formally evaluated and published, data-aware (array 

chunks) asynchronous communication among distributed 

computing nodes in SciDB is conceptually similar to the 

Akka 12  module used in Apache Spark and could be more 

efficient than fine-grained synchronous communication. While 

these distributed systems have achieved high performance 

and/or scalability for both Cloud computing and High-

Performance computing facilities, to the best of our 

knowledge, they are generally oblivious to data query 

semantics and do not natively support indexing in an 

extensible way. Nevertheless, many of these works have 

demonstrated that lightweight implementation does not 

necessarily result in low performance. On the contrary, 

lightweight implementations provide opportunities to 

significantly reduce system overheads and increase 

performance, in addition to high usability.  

Dandelion [23], a research prototype developed by 

Microsoft Research Silicon Valley, aims at providing several 

desirable features that are similar to our work at a higher level, 

including language integrated query compilation, supporting 

runtime GPU acceleration and automatic distribution of 

computing tasks based on data-parallel semantics. The 

underlying new distributed dataflow engine of Dandelion 

called Moxie is similar to our work in many aspects. 

Unfortunately, neither Dandelion nor Moxie is open source at 

present. Lacking implementation details has prevented a direct 

comparison. GeMTC [24] shares similar goals as Dandelion 

with respect to automatically parallelizing and distributing 

tasks to computing nodes equipped with GPUs based on the 

scripts written in a parallel dataflow language (Swift). 

However, GeMTC is geared more towards traditional high-

performance computing facilities for computing intensive 

applications (e.g., Molecular Dynamics simulations). Similar to 

distributed systems discussed previously, neither Dandelion nor 

GeMTC supports multi-dimensional indexing, although GPUs 

are supported in the two systems. None of these systems 

supports spatial indexing and query processing on either multi-

core CPU clusters or GPU accelerated clusters, which makes 

our work unique. 

III.  SYSTEM ARCHITECTURE AND IMPLEMENTATIONS 

We model query processing as a multi-step 

distributed computing job, which may include indexing of one 

or more input datasets and evaluating sub-clauses of a SQL 

query statement. During the process of evaluating a sub-

clause, which may be recursive, one or more index structures 

may be utilized to pair up data items. We are in the process of 

developing a SQL parsing frontend to transform a spatial join 

SQL statement into a Directed Acyclic Graph (DAG) with 

each node representing a processing step. While we have 

successfully extended the Impala frontend to support several 

spatial predicates [5] [6], e.g., point-in-polygon test and 

nearest neighbor search within a distance, the new frontend 

aims at providing higher level optimizations by better 

understanding the input datasets and generating efficient 

indexing structures with low overheads. The developments of 

the SQL frontend will be reported elsewhere and we assume a 

spatial join query job is provided as multiple processing steps 



in this study. We next present the system architecture of the 

distributed execution engine before introducing the spatial join 

query processing technique for the execution engine (referred 

to as the LDE engine). We note that, although we currently 

focus on spatial data, the same design and implementation can 

be applied to other data types. Domain-specific indexing/query 

processing modules can be plugged into LDE engine easily.  

A. System Architecture and Components 

At each processing step, as shown in Fig. 1, our 

execution engine consists of a master node and a set of worker 

nodes. The master node may first query an in-memory 

repository (e.g., Zero-Hop Distributed Hashtable –ZHT [25]) 

or a distributed file system (e.g., HDFS) to retrieve the 

metadata of the input (Step 1). Based on the metadata and pre-

defined rules/policies, the master node subsequently makes a 

schedule, parallelizes the computing in the step into multiple 

independent tasks and pushes the tasks into its queue (Step 2). 

When the master node is initialized, it launches two threads, 

one as a sender and one as a receiver. The sender thread 

checks the task queue of the master node periodically and 

sends tasks to available worker nodes for distributed 

processing (Step 3). For each available worker node, the 

sender launches a thread to connect the worker node and 

transmit data asynchronously. The receiver thread, on the 

other hand, listens to a socket (at a predefined port) and 

launches a thread to receive the processing result of a worker 

node and update the availability of the worker node (Step 10). 

The sender and receiver at the master node are coordinated 

through a conditional variable to ensure that tasks are only 

dispatched to worker nodes that are available to take tasks.   

A worker node also maintains a task queue with a 

configurable capacity. The capacity of the task queue is 

advertised to the master node when the worker node registers 

with the master node. The worker task queue is initially filled 

by the master node (Step 3) based on the advertised capacity. 

Upon successfully completing a task, the worker node signals 

the master node to send a new task (Step 10). The receiver at 

the work node receives the task and pushes it back to the 

worker task queue (Step 4). A separate data loader thread 

periodically checks the status of the task queue and pops up a 

task when the task queue is not empty (Step 5). Based on the 

task specification, the data load thread loads relevant data 

from a distributed file system (e.g., HDFS) and puts the data in 

an in-memory data queue (Step 6). Another data processing 

thread periodically checks the status of the data queue and 

performs processing logic (to be detailed shortly) on the ready 

data (Step 7). When the process completes (Step 8), a sender 

thread at the worker node is launched to connect with the 

master node and send the results across the network (Step 9). 

Similar to the design in Step 2, two conditional variables are 

used in Step 5 and Step 7, respectively. The first conditional 

variable is used to coordinate the receiver thread and the data 

loader thread. The second conditional variable is used to 

coordinate the data loader thread and the data processer thread.  

There are three queues (and their associated 

conditional variables) in our system architecture to support 

asynchronous data transfer over the network (master node), 

asynchronous disk I/O (worker node) and asynchronous 

computing (worker node), respectively. By overlapping 

network data transfer, disk I/O and computing, the overall 

system performance can be improved. By setting the tasks at 

proper granularities, the thread coordination overheads in 

accessing the concurrent queue structures can be amortized. 

Our implementation uses concurrent data structures, 

conditional variables and threads supported by Boost 

libraries 13 , which significantly reduces the development 

complexity. Furthermore, our implementation uses Apache 

Thrift14 to define data types and service interfaces to be shared 

by both the master node and worker nodes. Invoking service 

interfaces, instead of programming sockets directly, is not only 

simpler and less error-prone but also efficient. Our micro 

benchmarks have shown that distributed data communications 

by invoking service interfaces can achieve comparable 

performance with low-level socket programming, provided 

that data is transferred in sufficiently large chunks, which 

holds for our data parallel applications in most cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 LDE System Architecture and Components 
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From a distributed computing perspective, our 

approach is similar to Impala which also uses Apache Thrift 

and Boost concurrent data structures, but is different from 

Spark which uses Akka actors for distributed coordination 

through asynchronous messages and Netty 15  for bulk data 

transfer. However, compared with Impala and Spark, our 

implementation is lightweight indeed as the distributed 

computing framework (excluding spatial join logic) currently 

has less than 1,000 LOC, which is easy to understand, use and 

maintain. While Impala uses an ad-hoc hashing function and 

Spark adopts a round-robin policy to assign data partitions to 

worker nodes without considering their heterogeneity, our 

design/implementation has associated a weight (representing 

processing power) with each worker node; tasks can thus be 

dispatched to worker nodes based on their processing power. 

We note that, similar to Spark (but different from Impala), 

different master nodes can be chosen for multiple steps in a 

job to balance the workload among the distributed computing 

nodes, as a computing node hosting a master node typically 

has a heavier workload especially when the computing node 

also serves as a worker node. 

As the LDE engine allows random accesses to HDFS 

files, we have chosen to adopt a column-oriented data layout 

design. While this is a natural extension to the column-

oriented data layout in single-node platform [3] [26], 

distributed file systems like HDFS can make it easy to access 

desired data chunks in a transparent way. The design is 

significantly different from the designs of our SpatialSpark 

and ISP-based prototype systems [5] [6], where geometry is 

stored in the Well-Known Text (WKT16) format due to the 

restrictions imposed by the underlying platforms (Impala and 

Spark, respectively) as they support only relational data types. 

Given the partition boundaries of geometry data that are stored 

as binary arrays, the corresponding data can be streamed from 

HDFS to CPU memory and GPU memory without parsing text 

and rebuilding in-memory data structures, which is efficient 

from a practical perspective. As HDFS takes care of mapping 

logical data chunks to physical storage and retrieving data 

chunks from either local files or remote files (when 

necessary), it significantly reduces the complexity of 

application code. Since HDFS typically replicates data blocks 

to multiple nodes, it is likely that disk data accesses will be 

local which can significantly reduce network bandwidth 

contention and improve overall performance. The design has a 

different strategy than Impala (and hence our ISP variations) 

which relies on the Hive17 metastore to provide the mapping 

between replicated data blocks and nodes and uses only nodes 

that have a local data block. Given that spatial joins are both 

data intensive and computing intensive, retrieving a relatively 

small amount of data from remote nodes (through HDFS) 

makes it possible to overlap computing with network data 

transfer. This may actually bring higher performance, as all 

computing nodes can be fully utilized in our prototype system.  

The C/C++ native implementation in our prototype 

system also makes it possible to exploit parallel computing 

power using native tools on both multi-core CPUs and GPUs 

more easily. Different from JVM-based distributed platforms 

that typically treat multiple CPU cores as separate processing 

units, our design aims at exposing multi-core CPU and many-

core GPU parallel hardware to data processing applications so 

that native parallel programming tools (including 

programming languages and runtime systems) can be used to 

develop efficient parallel code and achieve high performance. 

For each task to be processed at a worker node (c.f. the top-

right part of Fig. 1), computing can be realized on multi-core 

CPUs, GPUs or their combinations. In particular, our GPU 

implementations are based on CUDA18 and the Thrust parallel 

library19 that comes with the CUDA SDK on Nvidia GPUs. 

Our multi-core CPU implementations are based on OpenMP20 

directives for automatic parallelization and Intel Thread 

Building Block (TBB21) for custom parallelization. For GPU 

programs that are developed purely based on Thrust, the 

library allows to compile them to multi-core CPU executables.  

B. Parallel and Distributed Spatial Indexing and Query 

Processing 

While the distributed execution engine is designed to be 

generic to support multiple semi-structured data types, we 

focus on spatial data in this study. We next introduce spatial 

indexing and query processing techniques for the LDE engine.  

Consider the case of aligning species distribution 

locations (points) with ecological regions (polygons) as an 

intermediate step to count the number of species occurrences 

whose occurrence locations fall within the ecological regions. 

The ecological regions (referred to as polygon data), while 

complex (each polygon may have multiple rings and each ring 

may have multiple vertices), typically have a moderate data 

volume. On the other hand, the points (referred to as point 

data), although simple (the geometry of a point involves only 

x and y coordinates), may be large in quantity. While it is 

possible to partition both the point data and the polygon data 

using traditional spatial partition based distributed spatial join 

techniques, such as Partition-based Spatial Merge join (PBSM 

[2], illustrated in Fig. 3B), we propose to use a new design by 

partitioning the point data and broadcasting the polygon data 

for spatial join query processing, which we refer to as 

broadcast-based spatial join (illustrated in Fig. 2A). Without 

losing generality, we assume the point data and the polygon 

data are the left side and the right side of a spatial join, 

respectively. One of the advantages of the “left-partition and 

right-broadcast” spatial join technique is to avoid the overhead 

of data reordering in spatial join techniques that spatially 

partition both sides, which is very expensive due to large 

volume of the point data. Instead of spatially partitioning the 

point data, our technique partitions points based on their 

natural storage order which does not need data reordering in 

HDFS. As the right side is broadcast to all worker nodes, each 

worker node can process a partition of points by querying 

them against the broadcast polygons concurrently (Fig. 2B).  

Based on this idea, our technique uses the partitions 

of point data as tasks to initialize the master task queue in the 

execution engine. Each worker node also reads the polygon 

dataset from HDFS (c.f. top of Fig. 1), which essentially 



achieves the purpose of polygon data broadcasting. A partition 

of the point dataset and a broadcast copy of the polygon 

dataset will be used as the two inputs of the spatial query 

processing on a worker node in the distributed execution 

engine (Step 7 in Fig. 1). As shown in Fig. 2C, we re-use our 

data parallel batched R-Tree query processing technique [26] , 

which can be compiled to both multi-core CPU and GPU 

code, to pair up points and the Minimum Bounding Boxes 

(MBBs) of polygons (i.e., spatial filtering for spatial join 

query processing [2]). In the spatial filtering phase of a point-

in-polygon test based spatial joins, since  a MBB is used to 

approximate a polygon and MBBs may overlap even the 

polygons they represent do not overlap, a point may be paired 

up with multiple polygons. The false positives need to be 

pruned in the spatial refinement phase [2] of a spatial join 

query processing. Given a list of (point, polygon) candidate 

pairs derived from the spatial filtering phase, we use OpenMP 

and Intel TBB for parallelization on multi-core CPUs and 

Thrust for parallelization on GPUs. As briefly illustrated in 

Fig. 3D, the list is first divided into segments where each 

segment is processed by a CPU thread or a GPU thread block. 

While a CPU thread iteratively loops through all the point-

polygon pairs to decide whether the point falls within the 

polygon in the pair (i.e., explicit temporal loop), a GPU thread 

block may process multiple point-in-polygon tests 

simultaneously where the assignments among point-polygon 

pairs and GPU cores are automatically managed by GPU 

hardware. Different from CPUs that exploit multi-level large 

caches to reduce latency and improve throughputs, GPUs rely 

on launching a large number of concurrent threads to hide high 

memory access latencies while achieving excellent 

throughputs. The implementation of parallel spatial refinement 

relies on the columnar data layout discussion previously and 

shares a similar codebase with ISP-MC+ and ISP-GPU [6]. 

Clearly, when neighboring points are paired up with 

the same polygon, which is the case for many real world 

applications (e.g., the majority of taxi pick up locations are at 

a limited number of hot spots in NYC and a large portion of 

species are distributed in Amazon rainforest), the spatial 

refinement performance is expected to be better on both multi-

core CPUs (due to cache locality) and GPUs (due to coalesced 

memory accesses). As such, a simple optimization is to sort 

the candidate pairs based on polygon identifiers at the 

beginning of spatial refinement to ensure that points that are 

paired with the same polygon are processed by the same CPU 

thread or GPU thread block. The optimization has the same 

effect when indexing point data using either a Grid-file or a 

Quadtree as discussed in [3]. However, since sorting can be 

expensive, the effectiveness of the optimization heuristic 

needs to be carefully considered. While the efficiency of both 

spatial filtering and spatial refinement will inevitably affect 

end-to-end performance, as the focus of this study is on the 

effectiveness of the lightweight distributed execution engine, 

we leave the optimization for future work. In addition, while 

we currently use HDFS for both distributing large data and 

broadcasting small data to worker nodes, the execution engine 

can be modified to allow data distribution and broadcast 

through network interfaces. This might provide higher 

performance, especially when the input datasets in a spatial 

join are produced by previous steps and stored in memory, 

which is also left for our future work. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Illustration of Parallel and Distributed Spatial Join Techniques 
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IV. EXPERIMENTS AND PERFORMANCE EVALUATION 

A. Setup 

We use real world datasets to demonstrate the 

feasibility and efficiency of the proposed distributed point-in-

polygon test based spatial join technique on top of the 

lightweight distributed execution engine. For point data, we 

use the geometry of a subset of species occurrence records of 

the Global Biodiversity Information Facility (GBIF). As the 

number of points is close to 50 million, we term it as g50m. 

The total volume of point data is 953MB. The polygon dataset 

is the World Wild Fund (WWF) global ecological region 

data22 (termed as wwf). The number of polygons is 14,458 and 

the average number of polygon vertices is 279. The total 

polygon data volume is 149.8 MB. The same dataset has been 

used in ISP-MC+ and ISP-GPU on Amazon EC2 clusters [6]. 

It is thus interesting to compare the performance of the LDE 

engine on both multi-core CPUs (termed as LDE-MC) and 

GPUs (termed as LDE-GPU) with ISP-MC+ and ISP-GPU, 

respectively. We note that being able to store non-relational 

data (including geometry) and their indices in binary format in 

HDFS has reduced the data volume by several times in LDE 

than in ISP (as restricted by Impala), which is an important 

contributing factor to the efficiency of LDE.  

Our experiments are performed on both a high-end 

GPU-equipped workstation and a 10-node Amazon EC2 

g2.2xlarge GPU cluster23. The workstation is equipped with 

dual 8-core Intel Sandy Bridge 2.6 GHZ CPUs, 128 GB 

memory, 8 TB HDD and an NVIDIA GTX TITAN GPU. The 

GTX TITAN GPU has 6 GB GDDR5 memory and 2,668 

CUDA cores. All Amazon g2.2xlarge instances (virtualized 

computing nodes) are equipped with 8 vCPU (Intel Sandy 

Bridge 2.6 GHZ), 15 GB memory, 60 GB SSD and an 

NVIDIA GPU with 4 GB graphics memory and 1,536 CUDA 

cores. All machines are running CentOS 6.5 and Hadoop 2.5.0 

from Cloudera CDH 5.2.0 with default settings.  

We design two groups of experiments to test the 

efficiency and scalability of our LDE engine. First, we 

experiment on the single-node performance and system 

infrastructure overhead (incurred by the LDE engine) on the 

workstation by comparing with a native implementation using 

the same spatial join designs. Second, we experiment on the 

scalability of LDE-GPU and LDE-MC by using 2-10 Amazon 

EC2 instances.   

B. Results of single-node Performance  

The standalone performance and the single-node 

performance for the two experiments are listed in Table 1. 

Note that ISP and LDE has the same runtime when they run in 

the standalone mode, which is 350 seconds on multi-core 

CPUs and 174 seconds on GPUs on the workstation. The 

runtimes in the single-node mode, however, are different 

among the four versions, which are 380 seconds for ISP on 

multi-core CPUs (ISP-MC+), 377 seconds for LDE on multi-

core CPUs (LDE-MC), 241 seconds for ISP on GPUs (ISP-

GPU) and 221 seconds for LDE on GPUs (LDE-GPU). It is 

clear that the GPU implementation performs about 2X 

(350/174) faster than the multi-core CPU implementation in 

the standalone mode. However, the infrastructure overhead 

has reduced the speedup to 1.58X (380/241) for ISP and 1.71X 

(377/221) for LDE. Nevertheless, by comparing Column 3 and 

Column 4 of Table 1 we can see that LDE has lower 

infrastructure overheads than ISP on both multi-core CPUs 

(27s vs. 30s) and GPUs (47s vs. 67s). The 20 seconds 

difference between LDE and ISP on GPUs have brought the 

infrastructure overhead from 27.80% (for ISP-GPU) to 

21.27% (for LDE-GPU), which clearly demonstrates the 

efficiency of LDE design and implementations. It is also 

interesting to observe that the GPU implementations have 

higher percentages of infrastructure overheads than the CPU 

implementations. This is primarily because the floating point 

computing portion of the experiment has been significantly 

sped up by GPU while the speedup is not as significant as 

those on multi-core CPUs. 

Table 1 Performance Comparisons between ISP and LDE in 
Standalone and Single-Node Modes 

  Standalone 

Time (s) 

[A] 

Singe-node 

Time (s) 

[B] 

Infrastructure 

Overhead (%) 

(1-A/B) 

CPU ISP-MC+ 350 380 7.89% 

LDE-MC 377 7.16% 

GPU ISP-GPU 174 241 27.80% 

LDE-

GPU 

221 

21.27% 

C. Results of Cloud Performance  

The scalability results using 2-10 Amazon EC2 nodes are 

plotted in Fig. 3. We have avoided reporting the performance 

on a single node as it requires at least two nodes to count 

network communication overheads. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Scalability Comparisons between ISP and LDE on Multi-core 

CPU and GPU Equipped Clusters  

As shown in Fig. 3, when the number of nodes is 

increased from 2 to 10 (5X), the runtime is sped up 4.17X on 

multi-core CPUs (668/160) and 3.71X on GPUs (205/55). The 

speedups are higher than those in the ISP implementations, 

which are 3.19X (706/221) for multi-core CPUs and 2.56X for 

GPUs (166/95). The LDE implementations also have achieved 

significantly higher efficiency than the ISP implementations, 

ranging from 1.06X to 1.65X for multi-core CPUs and 1.20X 
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to 1.75X for GPUs. Using 10 nodes, LDE is 1.38X faster than 

ISP for multicore CPUs (221/160) and 1.72X faster for GPUs 

(160/55). While the runtime using 10 nodes virtually remains 

the same as using 8 nodes for ISP on GPUs (1.25X increase of 

nodes), LDE is able to further achieve 1.20X (66/50) speedup, 

which is impressive. 

V. CONCLUSION AND FUTURE WORK 

Motivated by lack of support for processing large-scale spatial 

and other types of non-relational data efficiently on 

mainstream Big Data systems, we have developed a 

lightweight distributed execution engine for spatial join query 

processing. The engine, built on top of the open source 

Apache Thrift and Boost libraries, is lightweight, friendly to 

indexing and native parallelization tools, and has high 

performance. Experiments using a real world application that 

spatially joins approximately 50 million species occurrence 

records and 15 thousand complex polygons with millions of 

vertices have demonstrated both efficiency and scalability on 

both a workstation and Amazon EC2 clusters with 2-10 nodes.  

For future work, we would like to extend our 

conceptual design and prototypical implementation to support 

more spatial operations, including spatial joins based on 

distances and nearest neighbor searching, and other types of 

semi-structured data. Second, we would like to investigate the 

tradeoffs between HDFS based and direct network 

communication based distributed data accesses with respect to 

system complexity and efficiency to guide our future 

improvements of the LDE engine. Finally, while we 

acknowledge the necessities of complexities of Big Data 

systems for functionality and robustness, we are in the process 

of investigating the possibility in adopting a compilation 

driven approach to integrating our LDE engine with domain 

specific data abstractions, indexing, and query processing for 

spatial data in a way similar to Dandelion [23] for non-spatial 

data. By generating application specific code that is capable of 

distributed data communication and execution, the small, 

hardware- and application-aware and semantically optimized 

code can potentially be more efficient than existing 

heavyweight Big Data systems. 
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