
Lightweight Distributed Execution Engine for Large-

Scale Spatial Join Query Processing

Jianting Zhang

Dept. of Computer Science

The City College of New York

 New York, NY, USA

jzhang@cs.ccny.cuny.edu

Simin You

Dept. of Computer Science

CUNY Graduate Center

New York, NY, USA

syou@gc.cuny.edu

Le Gruenwald

Dept. of Computer Science

The University of Oklahoma

Norman, OK, USA

ggruenwald@ou.edu

Abstract— Existing Big Data systems are mostly designed for

relational data. They are either incapable or inefficient in

processing large-scale semi-structured data efficiently due to the

inherent limitations on data abstraction, indexing support and

exposure to native parallel programming tools. In this study, we

report our work in developing a lightweight distributed execution

engine for spatial join query processing on large-scale geospatial

data. By integrating data parallel designs for single computing

nodes, our execution engine is able to automatically dispatch data

partitions to distributed computing nodes for efficient local

execution on multi-core CPUs and GPUs. The execution engine

supports asynchronous data transfer over network, asynchronous

disk I/O and asynchronous computing. It also directly accesses

distributed file systems to support creating and using indices

conveniently and efficiently. In addition to be lightweight by

design, which has less than 1,000 Lines Of Code (LOC),

experiments using a real world application have demonstrated

significant efficiency improvement over our previous works on

extending a leading in-memory Big Data system (Impala) for

spatial join query processing.

Keywords—Lightweight, Distributed Computing, Execution

Engine, Spatial Join

I. INTRODUCTION

Advanced sensors, such as GPS devices and smartphones,

have generated huge amounts of location data. Very often

point location data need to be joined with urban infrastructure

data, such as road networks and administrative zones, to better

understand human mobility patterns and, subsequently,

improve urban planning, traffic control and infrastructure

maintenance. As an example, thousands of New York City

(NYC) buses send back GPS locations every 30 seconds 1

which amount to millions of points daily and billions yearly.

The Global Biodiversity Information Facility (GBIF 2) has

accumulated more than 500 million species occurrence records

each of which is often associated with a (latitude, longitude)

pair. It is essential to map the occurrence records to various

ecological regions to understand the biodiversity patterns and

make conservation plans. Such applications require spatial join

query processing, a well-defined problem in spatial databases

research [1] [2]. This functionality has been provided by major

commercial and open source spatial database systems as well

as Geographical Information Systems (GIS). However, the

amounts of spatial data in these applications (e.g., in the order

of tens of millions to billions of data items) well exceed the

processing capabilities of traditional disk-resident systems

running on single computing nodes and, thus, require new

systems to reduce processing times, from days or hours to

minutes or even seconds, in order to be practically useful for

researchers and decision makers [3].

Our previous efforts in extending the leading in-

memory Big Data system Impala [4] to support spatial data

processing with a focus on spatial joins on multi-core CPU

and Graphics Processing Units (GPU) equipped clusters have

achieved limited success [5] [6]. There are several major

issues in the “extension” oriented approach. First, the data

model supported by Impala is mostly designed for relational

data, which makes it inefficient to represent and manipulate

semi-structured data, such as spatial data. To support spatial

data in Impala, we were forced to represent geometry of

spatial data as strings. This not only increases data volume

significantly (and hence disk I/O overheads and memory

footprint) but also requires converting geometry between text

and binary back and forth, which is not efficient. Second, the

tightly integrated end-to-end system makes it difficult (if not

impossible) to plug-in new sophisticated indexing techniques

to support spatial joins. It becomes practically intractable

when one attempts to modify existing Big Data systems (such

as Impala) with hundreds of thousands of lines of code. Third,

our experiments have shown up to 50% infrastructure

overhead when running the extended system for spatial joins

on a single computing node.

We therefore consider it desirable to develop a

lightweight distributed computing system that is capable of

supporting indexing and query processing on spatial data in an

easy and natural way. In this paper, we report our work on

developing a Lightweight Distributed Execution (LDE) engine

for large-scale spatial data processing with an initial focus on

spatial joins. Our work is unique in the following aspects that

are not available in existing systems: 1) It is lightweight and

easy to extend, 2) It supports spatial data as well as other types

of non-relational data, and 3) it is C++ based and supports

Single Instruction Multiple Data (SIMD [7]) computing on

both multi-core CPUs and GPUs for high performance.

 For the rest of the paper, we first introduce the

background and related work in Section II. Section III presents

the system architecture of LDE and its implementation details.

Section IV provides experiment results on large-scale point-in-

polygon test based spatial join query processing. Finally

Section V is the conclusion and future work directions.

II. BACKGROUND, MOTIVATION AND RELATED WORK

Assuming that the two datasets in a spatial join have been

indexed, the first step in a parallel and/or distributed

implementation of the spatial join, called spatial filtering [2],

is to pair up partitions in the two datasets based on spatial

relationships (e.g., intersection). Subsequently, the geometry

of data items within the paired spatial partitions are tested

based on the desired spatial predicates, e.g., point-in-polygon

test and whether the distance between a point and a polyline is

within a certain threshold. It is natural to distribute the paired

partitions to worker nodes for distributed processing. It can be

seen that spatial indices can potentially reduce the complexity

of the spatial join from O(M*N) to O(M*log(N) or even

O(M), where M and N are the numbers of records in the two

datasets of a spatial join. Numerous spatial indexing and

spatial join query processing techniques [1] [2] have been

proposed in the past four decades and some of them have been

implemented in mainstream spatial database systems. Not

surprisingly, the majority of the techniques are designed for

serial computing on uniprocessors in disk-resident systems,

which significantly limits performance on processing large-

scale geospatial data.

The last few years have seen dramatic new

developments in Big Data systems after Hadoop/MapReduce

became the mainstream software framework for distributed

processing of Big Data. Several open source software, such as

Cloudera Impala [4], Apache Spark [8], AsterixDB [9] and

Stratosphere [10], in addition to commercial products, have

been developed to improve Hadoop with respect to

functionality, efficiency and usability. However, although

there are Big Data systems that are designed to support graph

data, most of the existing mainstream Big Data systems are

designed for relational data [11] [12] [13]. These Big Data

systems typically adopt a simplified data model that supports

only element-wise operations in a streaming mode, such as

scans and aggregations on tuples [12], vertex or edges [14],

where indexing is not actively exploited. Although

sophisticated indexing techniques have played an important

role in improving the efficiency of both traditional single-node

databases and distributed databases, existing Big Data systems

generally lack a systematic framework to support creating and

using indexes to efficiently support more complex operations

[15]. Unfortunately, many operations on semi-structured data,

such as spatial data, trajectory data and time series data,

require global indexing to pair up partitions in multiple

datasets before the pairs can be dispatched to distributed

computing nodes for local processing.

Given the complexity of developing full-fledged Big

Data systems, which typically consist hundreds of thousands

of Lines of Code (LOC), a natural way to support new

operations of semi-structured data is to extend existing Big

Data systems instead of developing a new system from

scratch. For spatial data, HadoopGIS [16] and SpatialHadoop

[17] are among the leading works on supporting spatial data

management within the Hadoop ecosystem. HadoopGIS

adopts the Hadoop Streaming3 framework and uses additional

MapReduce jobs to shuffle data items that are spatially close

to each other into partitions before a final MapReduce job is

launched to process re-organized data items in the partitions.

SpatialHadoop extends Hadoop at a lower level and has

random accesses to both raw and derived data stored in the

Hadoop Distributed File System (HDFS 4). By extending

FileInputFormat defined by the Hadoop runtime library,

SpatialHadoop is able to spatially index input datasets,

explicitly access the resulting index structures stored in HDFS

and query the indexes to pair up partitions based on the index

structures, before a Map-only job is launched to process the

pairs of partitions in distributed computing nodes. Compared

with the Hadoop Streaming framework adopted in HadoopGIS

which allows only strictly sequential data accesses, being able

to manipulate HDFS files through system level APIs and

access disk files randomly in SpatialHadoop has made it the

most efficient spatial data management system on top of

Hadoop (to the best of our knowledge). Several research

prototypes for spatial operations have been built on top of

SpatialHadoop (such as GISQF [18]). However, like all

Hadoop-based systems, excessive disk I/Os in executing

Hadoop jobs is a performance bottleneck when compared with

in-memory systems, such as Impala and Spark.

We have extended both Impala and Spark for spatial

joins and developed several prototype systems on them, i.e.,

SpatialSpark, ISP-MC, ISP-MC+ and ISP-GPU, respectively.

We refer to [5] [6] for more implementation details and their

performance evaluations on both a single computing node and

Amazon EC2 clusters. Spark provides an excellent

development platform by automatically distributing tasks to

computing nodes, as long as developers can express their

applications as data parallel operations on collection/vector

data structures, i.e., Resilient Distributed Datasets (RDDs) [8].

The automatic distribution is based on the key-value pairs of

RDDs which largely separate domain logic from

parallelization/distribution. While SpatialSpark has achieved

significantly higher performance than both HadoopGIS and

SpatialHadoop, the Scala language and Java Virtual Machine

(JVM5) based Spark platform currently does not allow using

SIMD computing power easily and effectively. Hadoop/Spark

supports Single Instruction Multiple Data (SIMD) computing

on neither multi-core CPUs nor Graphics Processing Units

(GPUs). As SIMD width is getting larger, which is 4-16 way

for Vector Processing Units on multi-core CPUs and 32 way

on Nvidia GPUs, it is much more desirable to exploit SIMD

computing power on modern hardware [7].

Impala, on the other hand, has a C++ backend which

makes it possible to exploit SIMD computing power on both

multi-core CPUs (using Vector Processing Units – VPUs [7])

and GPUs. While Impala is able to utilize Streaming SIMD

Extensions 4 (SSE4) on Intel CPUs to significantly speed up

string related operations, which may largely contribute to its

superior performance when compared with Hadoop and

Spark6, SIMD instruction sets have not been used for other

operations (including spatial) in Impala. Our previous works

on developing ISP-MC [5], ISP-MC+ [6] and ISP-GPU [6]

have demonstrated both feasibility and reasonable efficiency.

Note that although the three prototype systems share the In-

Memory Spatial Processing (ISP) framework we have

developed on top of Impala with spatial extensions, ISP-MC is

designed for multi-core CPUs using traditional geometry

library (i.e., GEOS 7), ISP-MC+ is designed for multi-core

CPUs using our own geometry library with columnar data

layout [3] and ISP-GPU is designed for GPUs also with

columnar data layout. ISP-GPU largely offloads spatial

indexing, spatial filtering and spatial refinement to GPUs.

Using our own geometry library with columnar data layout on

GPUs has achieved the highest efficiency. However,

tremendous technical challenges have been encountered

during the journey of extending Impala for spatial data, mostly

due to data model and architecture mismatches. Experiments

also have shown that the overheads of supporting spatial

operations in the Impala-based prototypes are high, especially

for ISP-GPUs where floating point computing has been

significantly sped up by GPUs.

There are several efforts in developing high-

performance execution engines for distributed computing and

some have been demonstrated favorably when compared with

Hadoop. In particular, Sphere [19] is a C/C++ based

programming framework that processes data managed by a

distributed file system called Sector. Sphere manages both

data and associated metadata using operating system level

socket programming APIs directly and processes data in place

whenever possible. Despite that Sphere has a much smaller

codebase than Hadoop, experiments have demonstrated

several times higher efficiency due to the simplified design

and efficient implementations. AJIRA [20] is designed to be a

lightweight distributed middleware for MapReduce and stream

processing. It is implemented on top of a message-passing

library called IRIS for distributed data communication.

Different from Hadoop, each computing node in AJIRA runs

multiple processes in a single multi-threaded application

which removes the need of slow inter-process communication

within the node. DataMPI [21] represents a unique hybrid

solution by bridging the MapReduce programming model and

Message Passing Interface (MPI 8) based distributed data

communication libraries. While experiments have

demonstrated good performance when compared with

Hadoop, a drawback is that MPI software stacks are typically

complex and heavyweight. Although the library overheads

may not be significant in high-end cluster computing facilities

equipped with fast CPUs and high-performance

interconnection networks (e.g., Infiniband9), its advantages are

less clear on commodity clusters (e.g., Amazon EC2) when

compared with distributed data communications directly on

socket APIs (such as Sphere and AJIRA). The additional

mandatory data movement overheads between Hadoop (Java-

based) and MPI libraries (C/C++ based) are also a

performance concern. SciDB 10 , an open-source analytical

database system designed for array data, uses the

asynchronous data communication module in the boost C++

libraries (i.e., Boost.Asio 11) for distributed data

communications in the units of array chunks. Although the

performance of distributed query processing on array data has

not been formally evaluated and published, data-aware (array

chunks) asynchronous communication among distributed

computing nodes in SciDB is conceptually similar to the

Akka 12 module used in Apache Spark and could be more

efficient than fine-grained synchronous communication. While

these distributed systems have achieved high performance

and/or scalability for both Cloud computing and High-

Performance computing facilities, to the best of our

knowledge, they are generally oblivious to data query

semantics and do not natively support indexing in an

extensible way. Nevertheless, many of these works have

demonstrated that lightweight implementation does not

necessarily result in low performance. On the contrary,

lightweight implementations provide opportunities to

significantly reduce system overheads and increase

performance, in addition to high usability.

Dandelion [23], a research prototype developed by

Microsoft Research Silicon Valley, aims at providing several

desirable features that are similar to our work at a higher level,

including language integrated query compilation, supporting

runtime GPU acceleration and automatic distribution of

computing tasks based on data-parallel semantics. The

underlying new distributed dataflow engine of Dandelion

called Moxie is similar to our work in many aspects.

Unfortunately, neither Dandelion nor Moxie is open source at

present. Lacking implementation details has prevented a direct

comparison. GeMTC [24] shares similar goals as Dandelion

with respect to automatically parallelizing and distributing

tasks to computing nodes equipped with GPUs based on the

scripts written in a parallel dataflow language (Swift).

However, GeMTC is geared more towards traditional high-

performance computing facilities for computing intensive

applications (e.g., Molecular Dynamics simulations). Similar to

distributed systems discussed previously, neither Dandelion nor

GeMTC supports multi-dimensional indexing, although GPUs

are supported in the two systems. None of these systems

supports spatial indexing and query processing on either multi-

core CPU clusters or GPU accelerated clusters, which makes

our work unique.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATIONS

We model query processing as a multi-step

distributed computing job, which may include indexing of one

or more input datasets and evaluating sub-clauses of a SQL

query statement. During the process of evaluating a sub-

clause, which may be recursive, one or more index structures

may be utilized to pair up data items. We are in the process of

developing a SQL parsing frontend to transform a spatial join

SQL statement into a Directed Acyclic Graph (DAG) with

each node representing a processing step. While we have

successfully extended the Impala frontend to support several

spatial predicates [5] [6], e.g., point-in-polygon test and

nearest neighbor search within a distance, the new frontend

aims at providing higher level optimizations by better

understanding the input datasets and generating efficient

indexing structures with low overheads. The developments of

the SQL frontend will be reported elsewhere and we assume a

spatial join query job is provided as multiple processing steps

in this study. We next present the system architecture of the

distributed execution engine before introducing the spatial join

query processing technique for the execution engine (referred

to as the LDE engine). We note that, although we currently

focus on spatial data, the same design and implementation can

be applied to other data types. Domain-specific indexing/query

processing modules can be plugged into LDE engine easily.

A. System Architecture and Components

At each processing step, as shown in Fig. 1, our

execution engine consists of a master node and a set of worker

nodes. The master node may first query an in-memory

repository (e.g., Zero-Hop Distributed Hashtable –ZHT [25])

or a distributed file system (e.g., HDFS) to retrieve the

metadata of the input (Step 1). Based on the metadata and pre-

defined rules/policies, the master node subsequently makes a

schedule, parallelizes the computing in the step into multiple

independent tasks and pushes the tasks into its queue (Step 2).

When the master node is initialized, it launches two threads,

one as a sender and one as a receiver. The sender thread

checks the task queue of the master node periodically and

sends tasks to available worker nodes for distributed

processing (Step 3). For each available worker node, the

sender launches a thread to connect the worker node and

transmit data asynchronously. The receiver thread, on the

other hand, listens to a socket (at a predefined port) and

launches a thread to receive the processing result of a worker

node and update the availability of the worker node (Step 10).

The sender and receiver at the master node are coordinated

through a conditional variable to ensure that tasks are only

dispatched to worker nodes that are available to take tasks.

A worker node also maintains a task queue with a

configurable capacity. The capacity of the task queue is

advertised to the master node when the worker node registers

with the master node. The worker task queue is initially filled

by the master node (Step 3) based on the advertised capacity.

Upon successfully completing a task, the worker node signals

the master node to send a new task (Step 10). The receiver at

the work node receives the task and pushes it back to the

worker task queue (Step 4). A separate data loader thread

periodically checks the status of the task queue and pops up a

task when the task queue is not empty (Step 5). Based on the

task specification, the data load thread loads relevant data

from a distributed file system (e.g., HDFS) and puts the data in

an in-memory data queue (Step 6). Another data processing

thread periodically checks the status of the data queue and

performs processing logic (to be detailed shortly) on the ready

data (Step 7). When the process completes (Step 8), a sender

thread at the worker node is launched to connect with the

master node and send the results across the network (Step 9).

Similar to the design in Step 2, two conditional variables are

used in Step 5 and Step 7, respectively. The first conditional

variable is used to coordinate the receiver thread and the data

loader thread. The second conditional variable is used to

coordinate the data loader thread and the data processer thread.

There are three queues (and their associated

conditional variables) in our system architecture to support

asynchronous data transfer over the network (master node),

asynchronous disk I/O (worker node) and asynchronous

computing (worker node), respectively. By overlapping

network data transfer, disk I/O and computing, the overall

system performance can be improved. By setting the tasks at

proper granularities, the thread coordination overheads in

accessing the concurrent queue structures can be amortized.

Our implementation uses concurrent data structures,

conditional variables and threads supported by Boost

libraries 13 , which significantly reduces the development

complexity. Furthermore, our implementation uses Apache

Thrift14 to define data types and service interfaces to be shared

by both the master node and worker nodes. Invoking service

interfaces, instead of programming sockets directly, is not only

simpler and less error-prone but also efficient. Our micro

benchmarks have shown that distributed data communications

by invoking service interfaces can achieve comparable

performance with low-level socket programming, provided

that data is transferred in sufficiently large chunks, which

holds for our data parallel applications in most cases.

Fig. 1 LDE System Architecture and Components

Master Node

Scheduler

HDFS

Worker 1

Receiver

1

4

3

Master Task

Queue Worker Task

Queue

3 3

Sender
Worker 2

6
Data

Loader

2

5
Worker Data

Queue

10 Worker 3
Data

Processor 7
Receiver

9 8

Sender

From a distributed computing perspective, our

approach is similar to Impala which also uses Apache Thrift

and Boost concurrent data structures, but is different from

Spark which uses Akka actors for distributed coordination

through asynchronous messages and Netty 15 for bulk data

transfer. However, compared with Impala and Spark, our

implementation is lightweight indeed as the distributed

computing framework (excluding spatial join logic) currently

has less than 1,000 LOC, which is easy to understand, use and

maintain. While Impala uses an ad-hoc hashing function and

Spark adopts a round-robin policy to assign data partitions to

worker nodes without considering their heterogeneity, our

design/implementation has associated a weight (representing

processing power) with each worker node; tasks can thus be

dispatched to worker nodes based on their processing power.

We note that, similar to Spark (but different from Impala),

different master nodes can be chosen for multiple steps in a

job to balance the workload among the distributed computing

nodes, as a computing node hosting a master node typically

has a heavier workload especially when the computing node

also serves as a worker node.

As the LDE engine allows random accesses to HDFS

files, we have chosen to adopt a column-oriented data layout

design. While this is a natural extension to the column-

oriented data layout in single-node platform [3] [26],

distributed file systems like HDFS can make it easy to access

desired data chunks in a transparent way. The design is

significantly different from the designs of our SpatialSpark

and ISP-based prototype systems [5] [6], where geometry is

stored in the Well-Known Text (WKT16) format due to the

restrictions imposed by the underlying platforms (Impala and

Spark, respectively) as they support only relational data types.

Given the partition boundaries of geometry data that are stored

as binary arrays, the corresponding data can be streamed from

HDFS to CPU memory and GPU memory without parsing text

and rebuilding in-memory data structures, which is efficient

from a practical perspective. As HDFS takes care of mapping

logical data chunks to physical storage and retrieving data

chunks from either local files or remote files (when

necessary), it significantly reduces the complexity of

application code. Since HDFS typically replicates data blocks

to multiple nodes, it is likely that disk data accesses will be

local which can significantly reduce network bandwidth

contention and improve overall performance. The design has a

different strategy than Impala (and hence our ISP variations)

which relies on the Hive17 metastore to provide the mapping

between replicated data blocks and nodes and uses only nodes

that have a local data block. Given that spatial joins are both

data intensive and computing intensive, retrieving a relatively

small amount of data from remote nodes (through HDFS)

makes it possible to overlap computing with network data

transfer. This may actually bring higher performance, as all

computing nodes can be fully utilized in our prototype system.

The C/C++ native implementation in our prototype

system also makes it possible to exploit parallel computing

power using native tools on both multi-core CPUs and GPUs

more easily. Different from JVM-based distributed platforms

that typically treat multiple CPU cores as separate processing

units, our design aims at exposing multi-core CPU and many-

core GPU parallel hardware to data processing applications so

that native parallel programming tools (including

programming languages and runtime systems) can be used to

develop efficient parallel code and achieve high performance.

For each task to be processed at a worker node (c.f. the top-

right part of Fig. 1), computing can be realized on multi-core

CPUs, GPUs or their combinations. In particular, our GPU

implementations are based on CUDA18 and the Thrust parallel

library19 that comes with the CUDA SDK on Nvidia GPUs.

Our multi-core CPU implementations are based on OpenMP20

directives for automatic parallelization and Intel Thread

Building Block (TBB21) for custom parallelization. For GPU

programs that are developed purely based on Thrust, the

library allows to compile them to multi-core CPU executables.

B. Parallel and Distributed Spatial Indexing and Query

Processing

While the distributed execution engine is designed to be

generic to support multiple semi-structured data types, we

focus on spatial data in this study. We next introduce spatial

indexing and query processing techniques for the LDE engine.

Consider the case of aligning species distribution

locations (points) with ecological regions (polygons) as an

intermediate step to count the number of species occurrences

whose occurrence locations fall within the ecological regions.

The ecological regions (referred to as polygon data), while

complex (each polygon may have multiple rings and each ring

may have multiple vertices), typically have a moderate data

volume. On the other hand, the points (referred to as point

data), although simple (the geometry of a point involves only

x and y coordinates), may be large in quantity. While it is

possible to partition both the point data and the polygon data

using traditional spatial partition based distributed spatial join

techniques, such as Partition-based Spatial Merge join (PBSM

[2], illustrated in Fig. 3B), we propose to use a new design by

partitioning the point data and broadcasting the polygon data

for spatial join query processing, which we refer to as

broadcast-based spatial join (illustrated in Fig. 2A). Without

losing generality, we assume the point data and the polygon

data are the left side and the right side of a spatial join,

respectively. One of the advantages of the “left-partition and

right-broadcast” spatial join technique is to avoid the overhead

of data reordering in spatial join techniques that spatially

partition both sides, which is very expensive due to large

volume of the point data. Instead of spatially partitioning the

point data, our technique partitions points based on their

natural storage order which does not need data reordering in

HDFS. As the right side is broadcast to all worker nodes, each

worker node can process a partition of points by querying

them against the broadcast polygons concurrently (Fig. 2B).

Based on this idea, our technique uses the partitions

of point data as tasks to initialize the master task queue in the

execution engine. Each worker node also reads the polygon

dataset from HDFS (c.f. top of Fig. 1), which essentially

achieves the purpose of polygon data broadcasting. A partition

of the point dataset and a broadcast copy of the polygon

dataset will be used as the two inputs of the spatial query

processing on a worker node in the distributed execution

engine (Step 7 in Fig. 1). As shown in Fig. 2C, we re-use our

data parallel batched R-Tree query processing technique [26] ,

which can be compiled to both multi-core CPU and GPU

code, to pair up points and the Minimum Bounding Boxes

(MBBs) of polygons (i.e., spatial filtering for spatial join

query processing [2]). In the spatial filtering phase of a point-

in-polygon test based spatial joins, since a MBB is used to

approximate a polygon and MBBs may overlap even the

polygons they represent do not overlap, a point may be paired

up with multiple polygons. The false positives need to be

pruned in the spatial refinement phase [2] of a spatial join

query processing. Given a list of (point, polygon) candidate

pairs derived from the spatial filtering phase, we use OpenMP

and Intel TBB for parallelization on multi-core CPUs and

Thrust for parallelization on GPUs. As briefly illustrated in

Fig. 3D, the list is first divided into segments where each

segment is processed by a CPU thread or a GPU thread block.

While a CPU thread iteratively loops through all the point-

polygon pairs to decide whether the point falls within the

polygon in the pair (i.e., explicit temporal loop), a GPU thread

block may process multiple point-in-polygon tests

simultaneously where the assignments among point-polygon

pairs and GPU cores are automatically managed by GPU

hardware. Different from CPUs that exploit multi-level large

caches to reduce latency and improve throughputs, GPUs rely

on launching a large number of concurrent threads to hide high

memory access latencies while achieving excellent

throughputs. The implementation of parallel spatial refinement

relies on the columnar data layout discussion previously and

shares a similar codebase with ISP-MC+ and ISP-GPU [6].

Clearly, when neighboring points are paired up with

the same polygon, which is the case for many real world

applications (e.g., the majority of taxi pick up locations are at

a limited number of hot spots in NYC and a large portion of

species are distributed in Amazon rainforest), the spatial

refinement performance is expected to be better on both multi-

core CPUs (due to cache locality) and GPUs (due to coalesced

memory accesses). As such, a simple optimization is to sort

the candidate pairs based on polygon identifiers at the

beginning of spatial refinement to ensure that points that are

paired with the same polygon are processed by the same CPU

thread or GPU thread block. The optimization has the same

effect when indexing point data using either a Grid-file or a

Quadtree as discussed in [3]. However, since sorting can be

expensive, the effectiveness of the optimization heuristic

needs to be carefully considered. While the efficiency of both

spatial filtering and spatial refinement will inevitably affect

end-to-end performance, as the focus of this study is on the

effectiveness of the lightweight distributed execution engine,

we leave the optimization for future work. In addition, while

we currently use HDFS for both distributing large data and

broadcasting small data to worker nodes, the execution engine

can be modified to allow data distribution and broadcast

through network interfaces. This might provide higher

performance, especially when the input datasets in a spatial

join are produced by previous steps and stored in memory,

which is also left for our future work.

Fig. 2 Illustration of Parallel and Distributed Spatial Join Techniques

Queue: A
1
A

2

B
1
 C

1
 D

2

F
1
 G

1
 I

2
 J

2

D B C

E F G H I J

A
transform

transform

Remove non-

intersected
partition

Generate next

level iteration

scan+scatter+

transform

Initialization

Check Spatial
intersection

Broadcast based Spatial Join Data Parallel Batched R-Tree Query for Spatial Filtering

Spatial Partition based Spatial Join Data Parallel Point-in-polygon based spatial Refinement

A

B

C

D

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

A. Setup

We use real world datasets to demonstrate the

feasibility and efficiency of the proposed distributed point-in-

polygon test based spatial join technique on top of the

lightweight distributed execution engine. For point data, we

use the geometry of a subset of species occurrence records of

the Global Biodiversity Information Facility (GBIF). As the

number of points is close to 50 million, we term it as g50m.

The total volume of point data is 953MB. The polygon dataset

is the World Wild Fund (WWF) global ecological region

data22 (termed as wwf). The number of polygons is 14,458 and

the average number of polygon vertices is 279. The total

polygon data volume is 149.8 MB. The same dataset has been

used in ISP-MC+ and ISP-GPU on Amazon EC2 clusters [6].

It is thus interesting to compare the performance of the LDE

engine on both multi-core CPUs (termed as LDE-MC) and

GPUs (termed as LDE-GPU) with ISP-MC+ and ISP-GPU,

respectively. We note that being able to store non-relational

data (including geometry) and their indices in binary format in

HDFS has reduced the data volume by several times in LDE

than in ISP (as restricted by Impala), which is an important

contributing factor to the efficiency of LDE.

Our experiments are performed on both a high-end

GPU-equipped workstation and a 10-node Amazon EC2

g2.2xlarge GPU cluster23. The workstation is equipped with

dual 8-core Intel Sandy Bridge 2.6 GHZ CPUs, 128 GB

memory, 8 TB HDD and an NVIDIA GTX TITAN GPU. The

GTX TITAN GPU has 6 GB GDDR5 memory and 2,668

CUDA cores. All Amazon g2.2xlarge instances (virtualized

computing nodes) are equipped with 8 vCPU (Intel Sandy

Bridge 2.6 GHZ), 15 GB memory, 60 GB SSD and an

NVIDIA GPU with 4 GB graphics memory and 1,536 CUDA

cores. All machines are running CentOS 6.5 and Hadoop 2.5.0

from Cloudera CDH 5.2.0 with default settings.

We design two groups of experiments to test the

efficiency and scalability of our LDE engine. First, we

experiment on the single-node performance and system

infrastructure overhead (incurred by the LDE engine) on the

workstation by comparing with a native implementation using

the same spatial join designs. Second, we experiment on the

scalability of LDE-GPU and LDE-MC by using 2-10 Amazon

EC2 instances.

B. Results of single-node Performance

The standalone performance and the single-node

performance for the two experiments are listed in Table 1.

Note that ISP and LDE has the same runtime when they run in

the standalone mode, which is 350 seconds on multi-core

CPUs and 174 seconds on GPUs on the workstation. The

runtimes in the single-node mode, however, are different

among the four versions, which are 380 seconds for ISP on

multi-core CPUs (ISP-MC+), 377 seconds for LDE on multi-

core CPUs (LDE-MC), 241 seconds for ISP on GPUs (ISP-

GPU) and 221 seconds for LDE on GPUs (LDE-GPU). It is

clear that the GPU implementation performs about 2X

(350/174) faster than the multi-core CPU implementation in

the standalone mode. However, the infrastructure overhead

has reduced the speedup to 1.58X (380/241) for ISP and 1.71X

(377/221) for LDE. Nevertheless, by comparing Column 3 and

Column 4 of Table 1 we can see that LDE has lower

infrastructure overheads than ISP on both multi-core CPUs

(27s vs. 30s) and GPUs (47s vs. 67s). The 20 seconds

difference between LDE and ISP on GPUs have brought the

infrastructure overhead from 27.80% (for ISP-GPU) to

21.27% (for LDE-GPU), which clearly demonstrates the

efficiency of LDE design and implementations. It is also

interesting to observe that the GPU implementations have

higher percentages of infrastructure overheads than the CPU

implementations. This is primarily because the floating point

computing portion of the experiment has been significantly

sped up by GPU while the speedup is not as significant as

those on multi-core CPUs.

Table 1 Performance Comparisons between ISP and LDE in
Standalone and Single-Node Modes

 Standalone

Time (s)

[A]

Singe-node

Time (s)

[B]

Infrastructure

Overhead (%)

(1-A/B)

CPU ISP-MC+ 350 380 7.89%

LDE-MC 377 7.16%

GPU ISP-GPU 174 241 27.80%

LDE-

GPU

221

21.27%

C. Results of Cloud Performance

The scalability results using 2-10 Amazon EC2 nodes are

plotted in Fig. 3. We have avoided reporting the performance

on a single node as it requires at least two nodes to count

network communication overheads.

Fig. 3 Scalability Comparisons between ISP and LDE on Multi-core

CPU and GPU Equipped Clusters

As shown in Fig. 3, when the number of nodes is

increased from 2 to 10 (5X), the runtime is sped up 4.17X on

multi-core CPUs (668/160) and 3.71X on GPUs (205/55). The

speedups are higher than those in the ISP implementations,

which are 3.19X (706/221) for multi-core CPUs and 2.56X for

GPUs (166/95). The LDE implementations also have achieved

significantly higher efficiency than the ISP implementations,

ranging from 1.06X to 1.65X for multi-core CPUs and 1.20X

706

538

370
284

221244
166 135

96 95

668

334

228
172 160

204

105 77 66 55
0

200

400

600

800

2 4 6 8 10

R
u

n
ti

m
e

(S
ec

o
n

d
s)

of Nodes
ISP-MC+ ISP-GPU
LDE-MC LDE-GPU

to 1.75X for GPUs. Using 10 nodes, LDE is 1.38X faster than

ISP for multicore CPUs (221/160) and 1.72X faster for GPUs

(160/55). While the runtime using 10 nodes virtually remains

the same as using 8 nodes for ISP on GPUs (1.25X increase of

nodes), LDE is able to further achieve 1.20X (66/50) speedup,

which is impressive.

V. CONCLUSION AND FUTURE WORK

Motivated by lack of support for processing large-scale spatial

and other types of non-relational data efficiently on

mainstream Big Data systems, we have developed a

lightweight distributed execution engine for spatial join query

processing. The engine, built on top of the open source

Apache Thrift and Boost libraries, is lightweight, friendly to

indexing and native parallelization tools, and has high

performance. Experiments using a real world application that

spatially joins approximately 50 million species occurrence

records and 15 thousand complex polygons with millions of

vertices have demonstrated both efficiency and scalability on

both a workstation and Amazon EC2 clusters with 2-10 nodes.

For future work, we would like to extend our

conceptual design and prototypical implementation to support

more spatial operations, including spatial joins based on

distances and nearest neighbor searching, and other types of

semi-structured data. Second, we would like to investigate the

tradeoffs between HDFS based and direct network

communication based distributed data accesses with respect to

system complexity and efficiency to guide our future

improvements of the LDE engine. Finally, while we

acknowledge the necessities of complexities of Big Data

systems for functionality and robustness, we are in the process

of investigating the possibility in adopting a compilation

driven approach to integrating our LDE engine with domain

specific data abstractions, indexing, and query processing for

spatial data in a way similar to Dandelion [23] for non-spatial

data. By generating application specific code that is capable of

distributed data communication and execution, the small,

hardware- and application-aware and semantically optimized

code can potentially be more efficient than existing

heavyweight Big Data systems.

ACKNOWLEDGEMENT

This work is supported through NSF Grants IIS-1302423 and

IIS-1302439.

REFERENCES

[1] H. Samet, Foundations of Multidimensional and Metric Data Structures,

Morgan Kaufmann Publishers Inc., 2005.

[2] E. H. Jacox and H. Samet, "Spatial Join Techniques," ACM Trans.

Database Syst., vol. 32, no. 1, p. Article #7, 2007.

[3] J. Zhang, S. You and L. Gruenwald, "Parallel Online Spatial and
Temporal Aggregations on Multi-core CPUs and Many-Core GPUs,"

Information Systems, vol. 44, p. 134–154, 2014.

[4] M. Kornacker, A. Behm, et al. "Impala: A Modern, Open-Source SQL
Engine For Hadoop," in Proc. CIDR'15.

[5] S. You, J. Zhang and L. Gruenwald, "Large-Scale Spatial Join Query

Processing in Cloud," To appear in Proc. IEEE CloudDM'15.
[6] S. You, J. Zhang and L. Gruenwald, "Scalable and Efficient Spatial Data

Management on Multi-Core CPU and GPU Clusters: A Preliminary

Implementation based on Impala," To appear in Proc. IEEE HardBD’15.

[7] L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, 5th edition, Morgan Kaufmann, 2011.
[8] M. Zaharia, M. Chowdhury et al, "Resilient Distributed Datasets: A Fault-

tolerant Abstraction for In-memory Cluster Computing," in Proc. NSDI'12.

[9] S. Alsubaiee, Y. Altowim, et al, "AsterixDB: A Scalable, Open Source
BDMS," Proc. VLDB Endow., 7(14), 1905-1916, 2014.

[10] A. Alexandrov, R. Bergmann, et al, "The Stratosphere Platform for Big

Data Analytics," The VLDB Journal, 23(6), 939--964, 2014.
[11] K.-H. Lee, Y.-J. Lee et al, "Parallel Data Processing with MapReduce: A

Survey," SIGMOD Rec., 40(4), 11--20, 2011.

[12] C. Doulkeridis and K. Norvag, "A survey of large-scale analytical query
processing in MapReduce," The VLDB Journal, 23(3), 355-280, 2014.

[13] S. Sakr, A. Liu and A. G. Fayoumi, "The Family of Mapreduce and

Large-scale Data Processing Systems," ACM Comput. Surv., 46,(1), pp. 11:1-
-11:44, 2013.

[14] Y. Lu, J. Cheng, D. Yan and H. Wu, "Large-scale Distributed Graph

Computing Systems: An Experimental Evaluation," Proc. VLDB Endow., vol.
8, no. 3, pp. 281--292, 2014.

[15] Y. Huai, A. Chauhan, et al, "Major Technical Advancements in Apache

Hive," in Proc. ACM SIGMOD '14
[16] A. Aji, F. Wang, et al, "HadoopGIS: A High Performance Spatial Data

Warehousing System over Mapreduce," Proc. VLDB Endow., vol. 6, no. 11,

pp. 1009--1020, 2013.
[17] A. Eldawy and M. F. Mokbel, "SpatialHadoop: A MapReduce

Framework for Spatial Data," in Proc. ICDE'15.

[18] K. Al-Naami, S. Seker and L. Khan, "GISQF: An Efficient Spatial Query
Processing System," in IEEE CLOUD'14.

[19] Y. Gu and R. Grossman, "Toward Efficient and Simplified Distributed
Data Intensive Computing," IEEE Transactions on Parallel and Distributed

Systems, vol. 22, no. 6, pp. 974-984, 2011.

[20] J. Urbani, A. Margara, ro, C. Jacobs, S. Voulgaris and H. Bal, "AJIRA: A
Lightweight Distributed Middleware for MapReduce and Stream Processing,"

in Proc. IEEE ICDCS'14.

[21] X. Lu, F. Liang, et al, "DataMPI: Extending MPI to Hadoop-Like Big
Data Computing," in Proc. IEEE IPDPS’14.

[22] K. Ousterhout, P. Wendell, et al, "Sparrow: Distributed, Low Latency

Scheduling," in Proc. ACM SOSP '13.
[23] C. J. Rossbach, Y. Yu, et al, "Dandelion: A Compiler and Runtime for

Heterogeneous Systems," in Proc. ACM SOSP'13.

[24] S. J. Krieder, J. M. Wozniak et al, "Design and evaluation of the gemtc

framework for GPU-enabled many-task computing," in Proc. HPDC'14.

[25] T. Li, X. Zhou et al, "ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table," in Proc. IEEE IPDPS'13.
[26] S. You, J. Zhang and L. Gruenwald, "Parallel spatial query processing on

GPUs using R-trees," in Proc. ACM BigSpatial'13

1 http://bustime.mta.info/wiki/Main/Technology
2 http://www.gbif.org/
3 http://hadoop.apache.org/docs/r1.2.1/streaming.html
4 http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
5 http://en.wikipedia.org/wiki/Java_virtual_machine
6 http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-
impala-1-4-widens-the-performance-gap/
7 http://trac.osgeo.org/geos
8 http://en.wikipedia.org/wiki/Message_Passing_Interface
9 http://en.wikipedia.org/wiki/InfiniBand
10 SciDB: http://www.paradigm4.com/
11 http://www.boost.org/doc/libs/1_57_0/doc/html/boost_asio.html
12 http://akka.io/
13 http://www.boost.org/
14 https://thrift.apache.org/
15 http://netty.io/
16 http://en.wikipedia.org/wiki/Well-known_text
17 https://hive.apache.org/
18 http://en.wikipedia.org/wiki/CUDA
19 https://thrust.github.io/
20 http://openmp.org/wp/
21 https://www.threadingbuildingblocks.org/
22 https://www.worldwildlife.org/biomes
23 http://aws.amazon.com/ec2/instance-types/

