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ABSTRACT

For uniform frequency stepped pulse trains, there can be
undesirable peaks of the autocorrelation function, known as
”grating lobes”. In this paper we address this issue, using an
approach which allows us to suppress grating lobes below a de-
sired threshold level in the case of appropriately chosen stepped
frequency waveforms, i.e., sequences of narrowband pulses that
span the desired bandwidth. We discuss in detail how to choose
relevant parameters in order to produce such waveforms with
small grating lobes, and give examples of waveforms with small
overlap ratio. We also discuss the issue of high sidelobes in the
vicinity of the main lobe, which are inevitable in a train of LFM
waveforms, and show that it is possible to suppress these, as
well as the grating lobes, by means of phase modulation.

1. INTRODUCTION

Frequency stepping is one of the known techniques em-
ployed by modern radars to achieve high range resolution. The
main advantage of this approach is that the actual instantaneous
bandwidth of a radar is quite small compared with the total pro-
cessing bandwidth. This allows the transmission of waveforms
with extremely wide overall bandwidth (and, as a consequence,
the attainment of high range resolution) without the usage of the
expensive hardware needed to support the wide instantaneous
bandwidth.

A stepped-frequency waveform we consider in this paper
consists of N subpulses, each of duration tp, separated in time
by a repetition interval tr (for example, a stepped-frequency
train consisting of LFM pulses is schematically depicted in Fig.
1). Each pulse has the same bandwidth B. A large total band-
width is achieved by creating a constant step �f between the
center frequencies of consecutive pulses.

It is well-known that the autocorrelation function of a
stepped-frequency pulse train suffers from grating lobes that
appear due to the presence of the constant frequency step �f .
These high spikes essentially reduce the waveform’s resolution
capabilities and, hence, they are undesirable. Recently, publica-
tions [1, 2] have discussed different approaches leading to either
acceptable suppression or complete elimination of the grating
lobes. For instance, it was shown in [1] that a suitable choice
of parameters at hand (i.e., B,�f , and tp) allows one to nullify
several (or, sometimes, even all) grating lobes of an LFM pulse

train. One of the conclusions that can be drawn from the rela-
tionship between tpB and tp�f obtained in [1] is that the over-
lap ratio B/�f is large for large values of tpB. Therefore, in
order to increase the bandwidth significantly (under the restric-
tion that the first two grating lobes are nullified), the number of
pulses N has to be large, i.e. the obtained relationship can only
be applied to ”Slow Burst” waveforms.

In this paper we suggest a modified method for suppressing
grating lobes in stepped-frequency pulse trains. It can be con-
sidered as an extension of the technique introduced in [1] which
allows ”Quick Burst” waveforms to be considered. Our modifi-
cation of the grating lobes suppression problem leads to a sig-
nificantly different relationship between tpB and tp�f which
allows us to find waveforms with large tpB, small ratio B/�f ,
and small (rather then zero) grating lobes.

Another issue related to a stepped-frequency LFM pulse
train is the high sidelobes of its autocorrelation function ap-
pearing in the close vicinity of the main lobe. It is known
that within the chosen construction of the stepped-frequency
waveform with constant time duration tp, constant bandwidth
B, constant step �f , and small ratio B/�f , it is not possible
to suppress these few sidelobes. Nevertheless, as we show in
section 4, if a linear FM pulse is replaced by a non-linear FM
pulse, then it is possible to suppress the sidelobes near the main
lobe as well as the grating lobes.
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Figure 1: Stepped-frequency LFM pulse train.

2. STEPPED-FREQUENCY PULSE TRAINS

We start by considering a uniform pulse train

uN (t) =
1√
N

N−1∑
n=0

u1(t− ntr) (1)
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of N identical ”simple” pulses of duration tp and bandwidth B1

u1(t) =
1√
tp

rect

(
t

tp

)
exp(jπφ(t)) (2)

that are separated in time by tr ≥ 2tp. At this point, we do not
set any restrictions on the choice of the phase φ(t) of pulse (2).

One of the known effective ways to increase the bandwidth
of pulse train (1) is to add a frequency step �f between consec-
utive pulses. This can be done via multiplication of the entire
train (1) by exp(jπkst

2) (we assume a positive frequency slope
ks > 0), resulting in a stepped-frequency pulse train (see Fig.
1):

us(t) =
1√
N

exp(jπkst
2)

N−1∑
n=0

u1(t− ntr)

=
1√
N

N−1∑
n=0

u(t− ntr),

(3)

where u(t) = 1√
tp

rect(t/tp)exp(jπ(φ(t) + kst
2)) and �f =

kstr. We denote the ultimate bandwidth of each pulse in the
train (3) by B = B1 + kstp.

For |τ | ≤ tp, the magnitude of the autocorrelation function
of the train (3) can be written as the two-term product:

|Rus
(τ)| = |R1(τ)| · |R2(τ)|. (4)

The derivation of formula (4) for the case when u1(t) is an LFM
pulse can be found in [1]. The same steps (see [1] for details)
can be carried out for the general case with an arbitrary phase
φ(t) which lead to the factoring formula (4). The first term in
(4) is the magnitude of the autocorrelation function of any sin-
gle subpulse in (3)

|R1(τ)| =

∣∣∣∣∣
∞∫

−∞
u(t)u(t− τ)dt

∣∣∣∣∣ (5)

and the second term

|R2(τ)| =
∣∣∣∣
sin(Nπτ�f)
N sin(πτ�f)

∣∣∣∣ (6)

causes the appearance of the grating lobes at the points of the
maxima of |R2(τ)|, i.e. at

τn = n · 1
�f , where n = ±1,±2, . . . , �tp�f�. (7)

To achieve a desired level of grating lobe suppression we re-
quire the values of |R1(τ)| at these peaks to be less than some
small value chosen a priori. We denote this value, which con-
trols the level of suppression, by ε. As the result, we come to
the following set of inequalities

|R1(τn)| ≤ ε (8)

which are discussed in the next sections.

3. CASE 1: LFM PULSE TRAIN

At this point we assume that u1(t) is a linear frequency
modulated pulse

u1(t) =
1√
tp

rect

(
t

tp

)
exp(jπkt2) (9)

with k > 0. Note that the ultimate bandwidth of each pulse in
the train (3) is B = (k + ks)tp > 0.

Now the autocorrelation function for any single subpulse in
train (3) is available in closed form

|R1(τ)| =
∣∣∣∣
(

1 − |τ |
tp

)
sinc

(
Bτ

(
1 − |τ |

tp

))∣∣∣∣ , |τ | ≤ tp

(10)
which allows analysis of its shape. Consequently, some degree
of control via the choice of the introduced parameters �f,B
and tp is available.

It is easy to see that the set of inequalities (8) holds if
∣∣∣∣sin

(
πBτn

(
1 − τn

tp

))∣∣∣∣ ≤ επBτn, (11)

for n = 1, 2, . . . �tp�f� − 1. Thus, if one seeks to suppress
the grating lobes of the LFM train below the desired ε-level, the
values of �f,B and tp should be chosen such that the system
(11) is satisfied.

We should remark at this point that although we have
�tp�f� − 1 inequalities in (11), some of them will be satis-
fied automatically for sufficiently large index n. Indeed, since
the left-hand side of (11) does not exceed 1, the local maxima
of |R1(τn)| with n = n∗ + 1, n∗ + 2, . . . , �tp�f� − 1 and
n∗ = �1/(επ(B/�f))� are automatically less than the ε-level
and, hence, irrelevant for further discussion. Therefore, the
number n∗ of relevant grating lobes depends on the desired level
ε of suppression and the overlap ratio B/�f between pulses.
Fig. 2 illustrates the behavior of the number n∗ of relevant grat-
ing lobes with respect to the overlap ratio B/�f . Note that, if
it is necessary to design the waveform with a small ratio B/�f
and a small number of pulsesN , then all (or almost all) the grat-
ing lobes should be taken into account. On the other hand, if a
relatively large ratio is acceptable, one has to be concern only
about the values of first few grating lobes regardless of the total
number of pulses in the train.
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Figure 2: Dependence of the number n∗ of the potential grating
lobes on the ratio B/�f for ε = 0.01.

Based on the above observation, we have to satisfy the sys-
tem (11) only for n = 1, 2, . . . , n∗. A pictorial representa-
tion for the solution of the system is given in Fig. 3, where
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the shaded regions correspond to the set of parameter values
on which the inequalities (11) are satisfied. As one illustration
of what can be produced by appropriate choice of points in the
shaded regions of Fig. 3 we next present plots of the smallest
ratios B/�f as a function of tp�f and the corresponding val-
ues of tpB as a function of tp�f (see Fig. 4) for ε = 0.025, and
N = 11. This choice of ε produces grating lobe level ≤ −30dB.
It is evident from Fig. 4 that for large tp�f it is possible to push
the grating lobes below the desired level even if the ratioB/�f
is quite small (we remind the reader that in the case of ”Quick

Burst” the total number of pulses N is supposed to be small).
Thus, our approach to the grating lobes suppression problem al-
lows us, compared to the approach presented in [1], to widen
the range of the acceptable parameters significantly.

We note at this point that suitable selection of the points
(tp�f,B/�f) in the shaded region of Fig. 3 can produce small
values of |Rus

(τ)| in substantial neighborhood of the τn’s, as
opposed to just at the τn’s themselves. The choice of the param-
eter ε in (11) depends on an acceptable level of grating lobes,
the number of pulsesN in the train, and the frequency step �f .
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Figure 3: Shaded regions represent all possible values of
(tp�f,B/�f) ∈ [1, 100] × [1, 7] where (11) is satisfied.
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Figure 4: Relationship between tpB and tp�f corresponding to
the smallest possible ratio B/�f (top), smallest ratios B/�f
for tp�f = 1, 2, . . . , 100 (bottom).
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Figure 5: Partial autocorrelation function (in dB) for tp�f = 50, tpB = 154, N = 11 and B/�f ≈ 3.1
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The magnitude of the autocorrelation function for some
typical cases is shown in fig. 5-7. For each pair, the top draw-
ing illustrates the |Rus

(τ)| in the main lobe area and the bottom

drawing displays |Rus
(τ)| for 0 ≤ τ ≤ tp. As is evident from

the figures, all of the grating lobes are below the chosen level of
−30dB.
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Figure 6: Partial autocorrelation function (in dB) for tp�f = 85, tpB = 173, N = 11 and B/�f ≈ 2
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Figure 7: Partial autocorrelation function (in dB) for tp�f = 200, tpB = 202, N = 11 and B/�f ≈ 1
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4. CASE 2: NON-LINEAR FM PULSE TRAIN

Another issue that we would like to address in this paper is
the high sidelobes in the close vicinity of the main lobe. Within
the chosen construction of the stepped-frequency train with con-
stant time duration tp, constant bandwidthB, constant step �f ,
and small ratio B/�f , it is not possible to suppress these few
sidelobes. Nevertheless, if a linear FM pulse is replaced by a
non-linear FM pulse, then it is possible to suppress the side-
lobes near the main lobe as well as the grating lobes. In this
section we describe a numerical approach that allows a design
of the phase φ(t) of such a non-linear FM waveform.

We consider u1(t) = 1/
√
tp · rect(t/tp)exp(jπφ(t)) and

impose an additional requirement of monotonicity on φ(t),
since otherwise even small sufficiently numerous oscillations
in φ(t) contribute large superfluous amounts of energy.

Our algorithm can be described as follows:
We take normalized t: 0 ≤ t ≤ 1 and assume 0 ≤

φ(t) ≤ B. Then we subdivide [0, 1] into equal subintervals
0 = t0 < t1 < · · · < tN = 1, where tk − tk−1 = ∆t. The
corresponding phase increments are φ(tk)−φ(tk−1) = h2

k > 0.
The h2

k can be thought of as providing a discretized version of
the monotonic function φ(t). The use of the squared form of
the hk’s in the algorithm automatically assures that phase in-
crements are non-negative. We will think of the hk’s as param-
eters to be chosen in a way that provides an optimized shape
of the autocorrelation function R1(τ) associated to the phase
φ(t) + kst

2.
We next create a continuous version of a candidate phase

function φ(t) by splining together the values (tk,
∑k

j=1 h
2
j ).

Now that we have our φ(t), depending on the parameters {hk},
we compute the autocorrelation function R1(τ) of the FM

waveform u(t) defined by the phase φ(t) + kst
2 and the time

support tp, and then find

arg min
{hk}N

k=1

||R1(τ)||2S , subject to
N∑

k=1

h2
k = B,

where

S =
⋃
n∈I

[
n

�f − δ,
n

�f + δ

]⋃[
3

2�fN − δ,
3

2�fN + δ

]
,

and I = {±1,±2, . . . , �tp�f�}.
The choice of the set S depends on the parameter δ that

determines the width of the intervals where the values of the
autocorrelation function Ru(τ) are desired to be small, i.e. the
neighborhoods of the peaks of |R2| as well as the neighborhood
of the first local maximum of |R2| located at 3

2 · 1
�fN .

The steps of the described algorithm are carried out numer-
ically using well-known standard techniques of optimization,
and give good results, illustration of which are given in figures
below.
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Figure 8: Phase of the non-linear FM pulse (solid) and linear
FM pulse (dashed)
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Figure 9: Stepped frequency train with suppressed grating lobes. Top: |R2(τ)| (solid), |R1(τ)| corresponding to the linear
FM pulse (dotted), |R1(τ)| corresponding to the non-linear FM pulse (thick solid). Bottom: Partial autocorrelation function in
logarithmic scale of stepped-frequency train based on LFM (dotted) and NLFM (solid) pulses.
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Figure 10: Ambiguity function of stepped-frequency train of LFM pulses (bottom) and NLFM pulses (top) with suppressed grating
lobes.

Fig. 8 shows the phase φ(t) of the non-linear FM (solid
line) that was obtained via the described algorithm and the
phase of the linear FM pulse (dashed line) u1(τ) with k =
11.75. The phase φ(t) was designed so that the main lobe of
|Ru(τ)| has almost the same width as one arch of |R2(t)|, and
so that the grating lobes of |Rus

(τ)| are suppressed (see Fig. 9
(top)). The location of the set S and the corresponding values
of |R2(τ)| for τ ∈ S are indicated on figure 9 by dotted line.
The thick solid line on figure 9 corresponds to the autocorre-
lation |Ru| and the dashed line corresponds to the autocorrela-
tion |R1| of the chirp pulse u1(τ). Figure 9 (bottom) illustrates
part of the autocorrelation function (with delay axis limited to
|τp| ≤ tp) of the stepped frequency train in a logarithmic scale
based on the non-linear frequency modulated pulse (solid line)
and on the chirp pulse in the logarithmic scale. The hight of the
first sidelobe corresponding non-linear FM is lower that corre-
sponding to LFM by 7 dB.

5. CONCLUSION

Frequency stepping is one of the known techniques em-
ployed in modern radar to achieve high range resolution by
combining a sequence of narrowband pulses that span the de-
sired bandwidth. The downside of such a construction is the
possible presence of high grating lobes. In this paper we have
presented an approach which allows us to suppress all of the
grating lobes below a desired threshold level. We have dis-
cussed the relationship between the parameters determining the
stepped frequency waveform and demonstrated how they should
be chosen in order to obtain small grating lobes. We have also
discussed the problem of high sidelobes in the vicinity of the
main lobe, and have shown that it is possible to suppress these,
as well as the grating lobes, if a linear FM pulse is replaced by a

non-linear FM pulse. We have described a numerical approach
to the design of the phase of such a non-linear FM waveform.
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