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Abstract. We address the problem of constructing frequency hop 
pulse trains for use in multiuser radar and sonar systems. We suggest 
a new construction of a family of frequency hop waveforms with nearly 
ideal autoambiguity function and low crossambiguity properties across 
the entire family of waveforms. 

The ambiguity function Aj(7,  v) ([7], [2]) of a transmit- 
ted signal f ( t )  measures the uncertainty with which the re- 
turning echo distinguishes, simultaneously, both ranges and 
velocities of a target system. Generally speaking, A f ( 7 ,  v) 
is desired to be of ‘thumbtack’ shape ([61), i.e. a function 
whose absolute value has a graph with a strong peak at the 
origin over a broad shallow base. 

On the other hand, as pointed out by Titlebaum, Maric 
and Bellegarda ( [5]>,  if several active systems view the same 
target complex, signals from one system may be interpreted 
as echoes or outputs from the other system(s). A similar sit- 
uation arises in asynchronous spread spectrum communica- 
tions if crosstalk occurs between two or more of the signals 
(code words) considered. These interference problems are 
typical of such multiuser environments. To achieve jamming 
resistance or low probability of intercept, it is necessary to 
use a sequence of signals with small crossambiguity func- 
tions between any two elements of the sequence. 

We use a well established tool, the Zak transform 
(v i  I [ 1 I) 

m 

Zj(z, y) = f(z + k)e2x”y 
k = - m  

to compute the crossambiguity function 

+w - 
Af ,g (7 ,  v) = 1 f ( t ) g ( t  - 7)e-’*atYdt 

--oo 

Since the ambiguity function can be computed from the 
Zak transform and because the ambiguity function has a sim- 
ple form on the integer lattice in terms of the Zak transform, 

we will carry out the design of a family of signals { f k }  with 
desirable auto and cross ambiguity properties in the Zak do- 
main. 

To illustrate the method, we describe one of several 
families of such designs, given by setting Zjr(z,y) = 

(zP + yP)l/P, and extending outside the unit square by the 
required quasiperiodic properties of the Zak transform. Me 
defer for a moment a discussion of the determination of fk’s 
that will produce the above family of Zak transforms, and 
take up the autoambiguity function. 

The autoambiguity function on the integer lattice is given 

c o s ( 2 ~ w z > Y ) l l p )  on [O, 11 x [O, 11, where I l ( w ) l l p  = 

by 
Afb (n, m) = Afb J b  (% m) = 

1’ 1’ IZfb (2 , y )12e2* i ( - -m=+ny)~d  Y, 

so the Afb (n, m)’s are basically the Fourier coefficients of 
the real non-negative function lZj, (z, y)I2, and by cosine 
identities, they correspond in the above way to the Fourier 
coefficients of 4 cos(4nlcll(z, g)llp)+i. A computationthen 
shows that the autoambiguity function Afb is ‘thumbtack’ on 
the integer lattice, and it is also straightforward to see that the 
crossambiguity function Ajb ,ti is small on the integer lattice. 

We will illustrate an example of how one can design in 
the Zak domain a frequency hop pulse train 

N 
2nie,t f ( t )  = an~[o, l l ( t  - n)e 1 

n=-N 

where xpl](t) is a pulse of duration 1 and en E { -N, N). 
Note that the corresponding Zak transform is given by 
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b-m,-n = bmn, and hence Ib-m,-nl = lbmnl. Numerical 
evidence leads to the presence, for each n, of a unique m for 
which the corresponding lbmnl is a maximum. We will de- 
note this maximum by a,. We will denote the m-subscript 
corresponding to the maximum by 8,. This generates the 
above pulse train, whose real and imaginary parts we illus- 
trate in Fig. 1 for the case k = 8 andp = 2.4. Note that by 
the above, a- ,  = 7i;; and On = e-,. 

01,  

OB. 

04. 

hits between the matrix A and the shifted version of the ma- 
trix B for any two numbers k1 and k2. This implies that 
after the sum defining A ( 2 ) ( ~ ,  Y )  is evaluated, the net result 
reduces to at most two easily identified terms of the origi- 
nal sum. Auto and cross ambiguity surfaces are illustrated in 
Fig. 2 and Fig. 3 respectively. 
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Fig. 2. Ambiguity surface lAfs I. 

Fig. 1. Real and imaginary parts of the pulse train fs(t), p=2.4. 

If we set 

k i  
2iri6,t 

f k l  ( t )  = anXIO,l](t - n)e 
n=-kl 

and 
k2 

2ni0,t 
f k a ( t )  = bmXIO,l](t - m>e 7 

and write the crossambiguity Afk l  ,fk2 (7, v) as the sum of 
A ( ~ ) ( T ,  Y )  and A ( 2 ) ( ~ ,  v), where 

m= - kz 

0 

P 
15 

time frequency 

n#m 

we can easily see that the first term will produce the main 
lobe of the ambiguity function and the second term will pro- 
duce the sidelobes. The location of the coefficients {a,} and 
{ b m }  in the matrices A and B will give rise to at most two 

Fig. 3. Cross-Ambiguity surface (Afs,fs I. 

The symmetries among the coefficients suggest consider- 
ing the real part U k ( t )  of our pulse train fk ( t ) .  After an easy 
computation, we find that the Zak transform corresponding 
to U k  ( t )  is one half of 

ane27ri(6',z+ng) + qe2i4- -8 , z+nu)  

n n 
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By the properties of the an’s and the On’s, this equals 

anezai(ens+ng) + ane2ai(0ns+n(-g)). 

n n 

The first part of the last sum is an approximation to 
cos(2?rkll(z, g ) l l D )  on [O, 11 x [O, 11, and therefore the second . . . . . . , . . . 
part of the sum is an approximation to dos(2?rkll(zly)ll,) 
on [0,1] x [-ll 01. If we calculate the corresponding auto 
and cross ambiguity surfaces, we find that the sidelobes have 
been considerably spread out, and by the volume property of 
the ambiguity function, this results in overall lower sidelobe 
height. This is illustrated in Fig. 4 and Fig. 5. 

To summarize, our method leads to 

0 4  

0 2  

0 

frequency time 

0 Superior thumbtack properties of the ambiguity func- 
tion, giving excellent performance in the presence of 
undesired time and frequency components. 

Fig. 5. Cross-Ambiguity surface I A R ~ ( ~ ~ ) , R ~ ( ~ ~ ) ~ .  

0 The construction of families of frequency hop pulse 
trains with the thumbtack property and good pairwise 
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