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Design of Frequency Modulated Waveforms via the
Zak Transform

This paper introduces a new technique for designing frequency

modulated waveforms that have ambiguity functions with

desirable properties, such as strong peaking at the origin and

low sidelobes. The methods employed involve signal design in Zak

transform space, as well as the use of stationary phase arguments

in the analysis of ambiguity functions.

I. INTRODUCTION. DEFINITIONS AND SOME
PROPERTIES OF AMBIGUITY FUNCTION AND ZAK
TRANSFORM

DEFINITION 1 The ambiguity function of a finite
energy pulse s(t) is a function of s(t) given by the
complex function of two variables [2]:

As(¿ ,º) =
Z +1

¡1
s(t)s(t¡ ¿ )e¡2¼iºtdt (1)

where s(t) denotes the complex conjugate of s(t).
The magnitude of the ambiguity function jA(¿ ,º)j2
is called the ambiguity surface.

The following are the main properties of the
ambiguity function:
1) As(0,0) = ksk2.
2) jAs(¿ ,º)j< As(0,0), (¿ ,º) 6= (0,0), (maximum

property).
3) Let g(t) = s(t¡ x)e¡2¼iyt, then

Ag(¿ ,º) = As(¿ ,º)e
¡2¼i(xº+y¿):

4) As(¿ ,º) = As(¡¿ ,¡º), (symmetry property).
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5)
R +1
¡1

R +1
¡1 jAs(¿ ,º)j2d¿ dº = jAs(0,0)j2 (volume

property).

DEFINITION 2 For a given parameter ®¸ 0, the Zak
transform Z®f of f is the function on R

2d defined by

Z®f(x,y) =
X
k2Zd

f(x¡®k)e¡2¼i®ky: (2)

A recent book by Gröchenig [8] gives a very good
overview of contemporary Time-Frequency analysis.
In the ‘Zak Transform’ chapter he says:

The Zak transform was first introduced and used by Gelfand
[5] for a problem in differential equations. Weil [10] defined
this transform on arbitrary locally compact abelian groups
with respect to arbitrary closed subgroups: : : . Subsequently,
the Zak transform was rediscovered several times, notably by
Zak [11], [12] for a problem in solid state physics and Brezin
[3] for differential equations. In representation theory and in
abstract harmonic analysis Z® is often called the Weil-Brezin
map, but in applied mathematics and signal analysis it has
become customary to refer to Z® as the Zak transform: : : . The
popularity of the Zak transform in engineering seems largely
due to Janssen’s influential survey article [9].

In our work we use the Zak transform with ®= 1,
d = 1, which for notational simplicity we denote by
Zf(x,y). We state only those properties of the Zak
transform we need. They are easily derived directly
from the definition.

1) (Quasiperiodicity) Zf(x+p,y) = e
¡2¼ipyZf(x,y),

and Zf(x,y+ q) = Zf(x,y), where p, q are arbitrary
integers. Thus Zf is completely determined by its
values on the unit square − = [0,1]£ [0,1].
2) The cross ambiguity function Af,g(¿ ,º) of

signals f(t) and g(t) can be computed directly from
the Zak transforms Zf(x,y) and Zg(x,y) [1]:

Af,g(¿ ,º) =
Z 1

0

Z 1

0
Zf(x,y)Zg(x+ ¿ ,y+ º)e

¡2¼ixºdxdy:

(3)

3) The (auto) ambiguity function on the integer
lattice is

Af(n,m) =
Z 1

0

Z 1

0
jZf(x,y)j2e2¼i(¡mx+ny)dxdy (4)

so the Af(n,m)s are basically the Fourier coefficients
of the real, nonnegative function jZf(x,y)j2.

II. WAVEFORM CONSTRUCTION

Consider the function

Bl(z) = e
2l¼ikzkp (5)

where l is a positive real parameter, z = (x,y) 2
− = [0,1]£ [0,1], and kzkp = (xp+ yp)1=p. We can
represent Bl(z) as a Fourier series

Bl(z) =
+1X

n,m=¡1
blnme

2¼i(mx+ny) (6)

blnm =
Z 1

0

Z 1

0
e2¼iSdxdy (7)

where S = lkzkp¡mx¡ny.
The major contribution to the value of the integral

[4] arises from the immediate vicinity of the boundary
and from the vicinity of those points at which S
is stationary, and to the first approximation the
contribution of stationary points, if there are any,
is more important then the contribution of the end
points. Stationary points are solutions of the system
of equations:

0 =
@S

@x
=
@

@x
(lkzkp¡mx¡ ny) =

Ã
x

kzkp

!p¡1
¢ l¡m

(8)

0 =
@S

@y
=
@

@y
(lkzkp¡mx¡ ny) =

Ã
y

kzkp

!p¡1
¢ l¡ n:

(9)

The system of equations (8) and (9) can be
rewritten as8>><>>:

mp
0
=

xp

kzkpp ¢ l
p0

np
0
=

yp

kzkpp ¢ l
p0
, where p0 =

p

p¡ 1 :

Now, since (mp
0
+ np

0
)1=p

0
= l ¢ ((xp=kzkpp) +

(yp=kzkpp))1=p
0
= l, the stationary points in − are

located at

n¸ 0, m¸ 0, kkkp0 = l (10)

where k = (m,n), 1=p0+1=p= 1.
Equation (10) is a quarter of a circle in the

lp
0
norm. The coefficients blnms can be easily

approximated as shown in the Appendix. The above
analysis suggests that the largest Fourier coefficients
lie on the circle of radius l in the lp

0
norm. In order

to test the accuracy of this, we have calculated the
Fourier coefficients, using Matlab’s 2-dimensional
fast Fourier transform (FFT). The results confirm
our earlier findings. Fig. 1 illustrates the results of the
Matlab computations for p= 2, l = f10,50g. In these
figures gray scale corresponds to the absolute value
of the Fourier coefficients, with darker corresponding
to larger. It is interesting to note that since the Fourier
coefficients lie on the circle of radius l in the lp

0
norm,

the geometry of their locations in (n,m) space is
l-invariant. We use this fact in the design of frequency
modulated waveforms.
As is well known (and can be easily derived

from the definition and basic properties of the Zak
transform), if a Zak transform on the unit square
happens to be given by a 2-variable trigonometric
polynomial

Zf(x,y) =
X
m

X
n

blnme
2¼i(mx+ny) (11)
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Fig. 1.

which is then extended to the plane by
quasiperiodicity, then the corresponding signal is a
generalized pulse train

f(t) =
X
m,n

blnmÂ[0,1](t¡ n)e2¼imt (12)

whose coefficients correspond in the indicated way
to those of the trigonometric polynomial, and where
Â[0,1] is the indicator function of the unit interval.
In our previous work [6, 7], we used this

correspondence of the coefficients to design families
of frequency hopping waveforms with good ambiguity
properties. Now we extend our result onto families
of frequency modulated waveforms. As described in
[7], if we choose the Zak transform Zf(x,y) of the

signal f(t) to be cos(2¼l
p
x2 + y2) then the location of

the sidelobes of the ambiguity surface is l-invariant,
basically because the Fourier coefficients lie on a
circle of radius l in the lp

0
norm in (n,m) space, where

in this case p= 2. As noted in [7] cos(2¼l
p
x2 + y2)

is one of a whole family of functions possessing this
l-invariance property. l-invariance is a consequence
of property 3 of the Zak transform and the ability to
represent the square of the candidate Zak transform
as a linear function of a rescaling of itself. The
asymptotics of the previous section indicate that
l-invariance holds for any linear combination of
functions e2¼ilk(x,y)kp . A simple and straightforward
conclusion follows from the above analysis, namely
that l-invariance and the volume property 5 of an
ambiguity function together imply that increasing
l lowers sidelobes. Another way to say this: the
waveform corresponding to finer discretization (see
Fig. 1) has ambiguity surface with lower sidelobes.
All of the above suggest the consideration of the

continuous case, i.e., when n and m are not restricted
to be integers. In that case (6) is not the Fourier series
but a Fourier transform, and the pulse train (12)
becomes an amplitude/frequency modulated waveform
f(t) = bl(t)e2¼iµ

l(t). The change in the amplitude is an

Fig. 2.

undesired factor. For that reason we were tempted to
consider the simpler case, when b(t) = const = B, i.e. a
frequency modulated waveform

f(t) = Be2¼iµ
l(t) (13)

where µl(t) = l¡ (lp0 ¡ tp0)1=p0 and t 2 [¡l, l].
The phase µl(t+ l), as well as the phase (t+ l)2=l

of the chirp signal are shown in Fig. 2. In this
particular example l = 7 and p= 2. In general l is
any positive real number which corresponds to the
duration of the signal, and p is a positive real number
that indicates the particular family of the frequency
modulated waveforms. Fig. 3 represents the graph
of an instantaneous frequency. In both figures the
solid line corresponds to the described Non-linear
FM waveform and the dashed line corresponds to the
linear FM (LFM) waveform.
The real parts of the above waveforms are shown

in Fig. 4. The time cross-sections of the ambiguity
surface of our waveform (solid line), as well as the
LFM signal (dashed line), are shown in logarithmic
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Fig. 3.

Fig. 4.

scale in Fig. 5. The number of sampling points used
in the computations is 210.
The frequency cross sections of the ambiguity

surface of our waveform (as well as any frequency
modulated waveform eiµ(t)) is the same as the LFM
signal. The ambiguity surface of our waveform is
shown in Fig. 7. Because of the symmetry of the
ambiguity surface with respect to the origin (property
4 of the ambiguity function), it is sufficient to display
only the part of the surface where ¿ ¸ 0. It was
chosen to plot jAs(¿ ,º)j rather than jAs(¿ ,º)2j, in
order to emphasize the ridge along the instantaneous
frequency without resorting to log scale. The
ambiguity surface of the LFM signal e(t+l)

2=l is shown
for comparison in Fig. 6.

III. CONCLUSION

We have introduced a new technique for designing
frequency modulated waveforms. It is our intention,
by introducing this method of waveform design via
the Zak transform, to advance the design theory of
signals having desired properties of the ambiguity
function.

Fig. 5.

Fig. 6.

APPENDIX

The coefficients blnms can be easily approximated
as shown below.
Note that the variables x and y can be interchanged

in (6), therefore blnm = b
l
mn, and thus we have to

consider only one eighth of the circle, i.e., 0· n·m,
kkkp0 = l. To compute the integral (7) we will first
integrate with respect to the variable y, and then with
respect to x, i.e.,

blnm =
Z 1

0
V(x)dx, V(x) =

Z 1

0
e2¼iSdy: (14)

The contributions V0 and V1 of the end points y = 0
and y = 1 to the last integral are well known [4] to be

V0 =
i+O(l¡1)
2¼Sy(x,0)

e2¼iS(x,0) (15)

V1 =
i+O(l¡1)
2¼Sy(x,1)

e2¼iS(x,1) (16)
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and [4] the contribution of the stationary point ystat =
(n=m)1=(p¡1) is

Vystat = jSyy(x,ystat)j¡1=2e2¼iS(x,ystat)+i¼=4+O(l
¡1) (17)

where Sy = @S=@y.
In our case S(x,ystat) = 0, and

Syy(x,ystat) =mn
p¡1
lx

¢
µ
m2

ln

¶1=(p¡1)
: (18)

Finally, after we integrate the contributions (15), (16),
and (17) with respect to x, we will obtainZ 1

0
Vystatdx= jSyy(4=9,ystat)j¡

1
2 ei¼=4 =O(l¡1=2)

(19)Z 1

0
V0dx=

1¡ e2¼i(l¡m)
4¼2(l¡m) =O(l

¡1) (20)Z 1

0
V1dx=O(l

¡3=2): (21)

We have not explicitly exhibited the m, n
dependance in the above estimates, since l is the
decisive parameter in our waveform design, because it
controls the level of approximation to the continuous
case. The value of blnm is equal to the expression in
(19) up to O(l¡1) :

blnm ¼
3
2

¯̄̄̄
¯mnp¡1l ¢

µ
m2

ln

¶1=(p¡1) ¯̄̄̄
¯
¡1=2

ei¼=4: (22)
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