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Zak Transform and a New Approach to Waveform
Design

The ambiguity function Af (¿ ,º) of a transmitted signal

f(t) measures the uncertainty with which the returning echo

distinguishes, simultaneously, both ranges and velocities of a

target system. Generally speaking, Af (¿ ,º) is desired to be of

“thumbtack” shape, i.e., a function whose absolute value has a

graph with a strong peak at the origin over a broad shallow base.

The ambiguity function can be computed directly from the Zak

transform Zf (x,y) of the signal f(t), so waveforms with desirable

ambiguity functions can be designed in the Zak domain. In the

Zak domain, computation of Af (¿ ,º) on the integer lattice is

exceptionally simple, particularly for pulse train signals. For a

pulse train, the Zak transform is gotten by multiplying the Zak

transform of a rectangular pulse of duration 1 by a multivariate

trigonometric polynomial whose coefficients are the coefficients

defining the pulse train. Reversing this observation, one can start

with such a trigonometric polynomial and construct a pulse train

signal. We propose a systematic method for constructing such

waveforms, which we illustrate in a particular case.

I. INTRODUCTION

Designing signals with thumbtack ambiguity
functions, i.e., functions whose absolute value has a
graph with a strong peak at the origin over a broad
shallow base, is a special case of the more general
issue of designing signals with a prescribed ambiguity
function. The many attacks on this difficult problem
[14, p. 125] since the publication of Woodward’s
book have yielded a great deal of insight into the
nature of the ambiguity function (see [4]), but no
computationally practicable solution to the general
synthesis problem has been provided. The elegant
paper of Wilcox [13] provides a mathematically
complete solution, but it should be borne in mind that
the speed of convergence of his solution depends on
the smoothness of the underlying functions. Since the
ideal ambiguity function is a delta function, and hence
a poor input to the Wilcox algorithm, the search for
practical solutions to the synthesis problem remains
a challenging problem. Algebraic properties of the
mapping that maps a function s(t) into its ambiguity
function were studied by Auslander and Tolimieri [3].
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Additional properties of the ambiguity function were
described by Rihaczec [12] and Grünbaum [8].
Among the most successful of the efforts along the

above lines are certain frequency-hopping waveforms
found by Costas (see [5]) which have thumbtack-like
ambiguity surfaces. The Costas waveform construction
was algebraic, relying on the construction of matrices
having special combinatorial properties.
If one’s goal is the development of a large class

of waveforms, such algebraic methods prove to be
restrictive. For example, while the number of N £N
Costas arrays is quite large (2160 when N = 10),
any two of the same size must necessarily share an
ambiguity sidelobe location when N > 3 [6]. Also
the number of cross-ambiguity coincidences between
arrays both of size N £N can be quite large and
depends strongly on the number-theoretic properties
of N [10]. Our goal is to look at this problem using
generalized pulse train signals that are generated by
analytic, rather than algebraic, methods.
We remark that Rendas and Moura [11] have

recently introduced a modified definition of the
ambiguity function tailored to passive radar problems,
wideband signals, and model mismatches. Under the
narrowband assumption operative in our work, their
definition becomes the classical Woodward definition.
As they remark in their paper, the same tools cannot
be used to study passive and active systems, and the
Woodward definition, which we use, appears to be the
appropriate assumption in our work.

II. ZAK TRANSFORM AND AMBIGUITY FUNCTION

As a tool for constructing such waveforms we use
the Zak transform [9, 2]

Zf(x,y) =
1X

k=¡1
f(x+ k)e¡2¼iky, k 2 Z (1)

which changes the formation of pulse trains

f(t) =
X
m,n

amnÂ[0,1](t¡m)e2¼int (2)

in the “signal space” to multiplication

Zf(x,y) = P(x,y) ¢ZÂ[0,1] (x,y) (3)

by a doubly-periodic function

P(x,y) =
X
m

X
n

amne
2¼i(nx+my) (4)

in “Zak space” (Â[0,1] is the indicator function of the
unit interval).
The significance of this for the problem of creating

a particular ambiguity surface is that we can compute
the ambiguity function

Af =
Z 1

¡1
f(t)f(t¡ ¿ )e2¼iºt dt (5)

of a signal f directly from Zf (cf. [2]), using the
formula

Af(¿ ,º) =
Z 1

0

Z 1

0
Zf(x,y)Zf(x+ ¿ ,y+ º)e

¡2¼ixº dxdy:
(6)

Note that in terms of the Zak transform, the
ambiguity function on the integer lattice is

Af(n,m) =
Z 1

0

Z 1

0
jZf(x,y)j2e2¼i(mx+ny)dxdy (7)

so the Af(n,m)s are the Fourier coefficients of the
real, nonnegative function jZf(x,y)j2.
Obviously, if jZf(x,y)j2 = 1 on [0,1]£ [0,1] then

the signal f(t) has an ambiguity function which is
thumbtack on the integer lattice. The trivial example
that produces such a Zf(x,y) is a rectangular pulse
of duration 1. Recall ([4]) that the volume property
of the ambiguity function requires that the volume
under the graph of jAf(¿ ,º)j2 must equal the square
of the maximum, which means that the ambiguities
cannot be pushed down too much, and in the case
of the rectangular pulse, this constraint gives rise to
undesirably high sidelobes.
From the above considerations, it is evident

that waveform design can be carried out in the
Zak domain, and in what follows, we describe one
approach, suggested by this general philosophy.

III. WAVEFORM DESIGN

Our example makes use of a particular relation
between Chebyshev polynomials [1]. In more detail,
recall that if Tk is the kth Chebyshev polynomial
(Tk(x) = cos(k arccosx)) then T

2
k =

1
2(T2k +1).

This suggests setting Zf(x,y) = Tk('(x,y)) on
[0,1]£ [0,1], for some real-valued function '(x,y),
since then jZf j2 = T2k = 1

2(T2k +1) (here we have used
the fact that jZÂ[0,1] j2 = 1). Thus, by (7),

Af(n,m) =
1
2

Z 1

0

Z 1

0
T2k('(x,y))e

2¼i(mx+ny) dxdy

+ 1
2±(0,0): (8)

Thus the question now is to find '(x,y) leading to
good thumbtack properties of the ambiguity function
Af(¿ ,º) for general parameters ¿ , º as well as for
integer parameters ¿ = n, º =m. In what follows, we
discuss in detail a particular class of examples, and the
corresponding ambiguity functions. We remark that
the discussion corresponding to values on the integer
lattice is in some sense simpler.
An intriguing possibility is to take '(x,y) to be a

radial function, i.e., a function of r =
p
x2 + y2, which

leads to a computationally one-dimensional problem.
An empirically good choice of this type is provided,
e.g., by '(x,y) = cos(2¼r), which corresponds to
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Fig. 1.

Zf(x,y) = Tk(cos(2¼
p
x2 + y2)) = cos(2¼k

p
x2 + y2),

and T2k = cos(4¼k
p
x2 + y2). The trigonometric

polynomial (4) needed to form the pulse train (2) is
obtained by standard numerical approximationsX

n

X
m

amne
2¼i(nx+my) ¼ cos(2¼k

p
x2 + y2): (9)

In this example, the preliminary composition
with a cosine reduces the functional equation for the
Chebyshev family to the double angle formula for
the cosine, and in general, Chebyshev functions can
be replaced by any family of functions possessing a
functional equation of the necessary type. However,
preliminary analysis suggests advantages to our choice
of the Chebyshev system. In the example, we have
deliberately precomposed with a cosine, among other
things because it brings out very clearly the near-term
cancellation and hence the tendency to zero of the
integral in (8), but the scope of our method, which
is determined by the wealth of available choices of
', extends well beyond the class of examples of this
type. Additionally, we expect that in many cases we
will be able to analytically derive precise descriptions
of favorable zones for the corresponding ambiguity
function.
Fig. 1 illustrates the ambiguity surface on the

integer lattice for this choice of Zf(x,y) with k = 8.
The guiding philosophy in this construction is to push
some of the volume under the graph of the ambiguity
function out to the complement of a good-sized disk
about the origin (see (8)), thus leaving as little of
the volume inside the disk as possible, subject to
the limits imposed by the volume property of the
ambiguity function.

The radius of the disk that can be achieved via
this construction depends on k. Fig. 2 represent
the ambiguity surface for continuous variables.
In computing this surface, we have approximated
the exact cosine on the right-hand side of (9) by a
partial sum of its Fourier series, and then inserted the
corresponding Fourier coefficients into the pulse train
formula (2), in order to compute (5).
One of the interesting features of this example is

the simplicity of the design. The trigonometric form
of the Zak transform (on the unit square)

Zf(x,y) =
X
m

X
n

amne
2¼i(nx+my) = P(x,y) (10)

has the same coefficients amns as a generalized pulse
train

f(t) =
X
m,n

amnÂ[0,1](t¡m)e2¼int: (11)

Numerical calculations show that in this case, the
matrix A= famng of coefficients in the pulse train
has one dominant non-zero element an in each row
and therefore the small components of the matrix A
can be neglected, which effectively makes it into a
matrix with only one non-zero element in each row.
This makes our waveform f a frequency hop pulse
train signal

f(t) =
2k+1X
n=1

anÂ[0,1](t¡n)e2¼iµnt (12)

where µ = fµ1,µ2, : : : ,µ2k+1g is a set of the integers
that range from ¡k through k and k is an arbitrary
integer (same as in (9)). Thus, given an integer k we
can construct the frequency hop pulse train (12) of
2k+1 subpulses with frequencies from ¡k to k.
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Fig. 2.

Fig. 3.

The real and imaginary parts of the frequency
hopping waveform f(t) are shown in Fig. 3. The
matrix A= famng of coefficients in the pulse train is
given in Fig. 4, where black corresponds to a non-zero
amn.
Fig. 5 represents the ambiguity surface of this

frequency hopping waveform.
Another interesting feature of such an example

is that a detailed analysis of favorable zones (low
sidelobes) of the ambiguity surface for continuous
values of ¿ and º is possible. If we write the
ambiguity function Af(¿ ,º) as the sum of A(1)(¿ ,º)

and A(2)(¿ ,º), where

A(1)(¿ ,º) =
X
m,n

jamnj2e¡2¼i(ºm¡¿n)AÂ[0,1] (¿ ,º) (13)

A(2)(¿ ,º) =
X
m,n,k,l
k 6=m, l 6=n

amnakle
¡2¼im(º¡n)e2¼il(¿¡m)

£AÂ[0,1] (¿ +(k¡m),º+(l¡ n)) (14)

we can easily see that the first term will produce
the mainlobe of the ambiguity function and the
second term will produce the sidelobes. In the ideal
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Fig. 4.

Fig. 5.

(continuous) case, the counterparts of the coefficients
amn turn out to be located on a circle, and hence
there are at most two hits between the matrix A and
its shifted version. The areas where these hits may
occur are illustrated in Fig. 6. The darker portions
of the ambiguity image, except for the origin (0,0),
correspond to undesirable sidelobes. The analytical
description of the boundaries of the sidelobe (darker)
regions is given by ¿2 + º2 < 4k2, (¿ ¡ k)2 + º2 >
k2, ¿2 + (º ¡ k)2 > k2, ¿ > 0, º > 0 for the positive
time-frequency quadrant, ¿2 + º2 < 4k2, (¿ + k)2 +
º2 > k2, ¿2 + (º+ k)2 > k2, ¿ < 0, º < 0 for the
negative time-frequency quadrant, ¿2 + (º¡ k)2 < k2,

(¿ + k)2 + º2 < k2, or ¿2 + (º + k)2 < k2, (¿ ¡ k)2 + º2
< k2 for the two parts of the central region.
It is interesting to note that the arcs which

comprise the boundary of the shape in Fig. 6
correspond to circles of radius k and 2k, respectively,
and hence the geometry of Fig. 6 is k-invariant.
We are currently in the process of investigating

various further possibilities for the selection of
suitable Á(x,y)s.
A more detailed description of some of the

algorithms, as well as further examples of our method
can be found in [7], which is available from the
author.
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Fig. 6.

IV. CONCLUSION

Our decision to design waveforms in the Zak
domain has led to the creation of design whose
analysis over both the continuous and integer lattice
variables suggests that they hold considerable promise.
As we have demonstrated, in the Zak domain,

computation of Af(¿ ,º) on the integer lattice is
exceptionally simple, particularly for pulse train
signals. We have seen that for a pulse train, the Zak
transform is gotten by multiplying the Zak transform
of a rectangular pulse of duration 1 by a multivariate
trigonometric polynomial whose coefficients are the
coefficients defining the pulse train. The reversal
of this observation leads to the construction of a
pulse train signal which comes from a trigonometric
polynomial. The search for appropriate trigonometric
polynomial for this purpose remains an ongoing
goal.
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Errata: “Relative Targeting Architectures for
Captive-Carry HIL Missile Simulator Experiments”1

Equation (4) should read

T(Ra) =

2641 0 0

0 cos(Ra) sin(Ra)

0 ¡sin(Ra) cos(Ra)

375 (4)

1P. E. Pace, M. D. Nash, D. P. Zulaica, A. A. Di Mattesa, and A.
Hosmer, IEEE Transactions on Aerospace and Electronic Systems,
37, 3 (July 2001), 810—823.
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