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1. Introduction

There have been attempts in a variety of applications to add 3D in-
formation into an image-based mosaic representation. Creating stereo
mosaics from two rotating cameras was proposed by Huang & Hung,
1998, and from a single off-center rotating camera by Ishiguro, et al,
1990, Peleg & Ben-Ezra, 1999, and by Shum & Szeliski, 1999. In these
kinds of stereo mosaics, however, viewpoints - therefore the parallax -
are limited to images taken from a very small area. Recently our work
at UMass (Zhu, et al, 1999; Zhu, et al, 2001a; Zhu, et al, 2001b) has
been focused on parallel-perspective stereo mosaics from a dominantly
translating camera, which is the typical prevalent sensor motion during
aerial surveys. A rotating camera can be easily controlled to achieve
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the desired motion. On the contrary, the translation of a camera over a
large distance is much harder to achieve in real vision applications such
as robot navigation (Zheng & Tsuji, 1992) and environmental monitor-
ing (Kumar, et al, 1995; Schultz, et al, 2000; Zhu, et al, 2001a). In an
applications to environmental monitoring, we have previously shown (
Zhu, et al, 1999; Zhu, et al, 2001a; Zhu, et al, 2001b) that image mosaic-
ing from a translating camera raises a set of different problems from that
of circular projections of a rotating camera. These include the choice of
suitable mosaic representations, the generation of seamless image mo-
saics under a rather general motion with motion parallax, and epipolar
geometry associated with multiple viewpoint geometry.

It has been shown independently by others (Chai & Shum, 2000) and
by us (Zhu, et al, 1999; Zhu, et al, 2001a) that parallel-perspective is
superior to both the conventional perspective stereo and to the recently
developed multi-perspective stereo for 3D reconstruction (e.g., in Shum
& Szeliski, 1999), in that the adaptive baseline inherent in the parallel-
perspective geometry permits depth accuracy independent of absolute
depth. However, this conclusion was obtained and verified in an ideal
"simulated” case - i.e. enough samples of parallel projection rays from
a ”virtual camera” with ideal 1D or 2D translational motion were gen-
erated from a simulated scene model in order to compare the depth ac-
curacy of parallel versus perspective projections (Chai & Shum, 2000).
In the practice of stereo mosaicing from a real video sequence, however,
we need to consider the errors in the final mosaics with respect to types
of the camera motion, frame rates, focal lengths, and scene depths. The
analysis of the error characteristics of 3D reconstruction from parallel-
perspective stereo mosaics generated from real video sequences will be
the focus of this chapter.

First we will show why an efficient 73D mosaicing” technique is im-
portant for accurate 3D reconstruction from stereo mosaics. Obviously
simple use of standard 2D mosaicing techniques based on 2D image
transformations such as a manifold projection (Peleg & Herman, 1997)
cannot generate a seamless mosaic in the presence of large motion paral-
lax, particularly in the case of surfaces that are highly irregular or with
significantly different heights. Moreover, perspective distortion causing
the geometric seams in the mosaics will introduce errors in 3D recon-
struction using the parallel-perspective geometry of stereo mosaics. In
generating image mosaics with parallax, several techniques have been
proposed to explicitly estimate the camera motion and residual paral-
lax (Kumar, et al, 1995; Sawhney, 1994; Szeliski & Kang, 1995). These
approaches, however, are computationally intense, and since a final mo-
saic is represented in a reference perspective view, there could be serious
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occlusion problems due to large viewpoint differences between a single
reference view and the rest of the views in the image sequence.

We have proposed a novel ”3D mosaicing” technique called parallel
ray interpolation for stereo mosaicing(PRISM)(Zhu, et al, 2001b) to ef-
ficiently convert the sequence of perspective images with 6 DOF motion
into parallel-perspective stereo mosaics. In the PRISM approach, global
image rectification eliminates rotation effects, followed by a fine local
transformation that accounts for the interframe motion parallax due to
3D structure of the scene, resulting in a stereo pair of mosaics that em-
body 3D information of the scene with optimal baseline. We have noticed
that the view interpolation approach was also suggested for generating
seamless 2D mosaics under motion parallax (Rousso, et al, 1998). The
authors noted that in order to overcome the parallax problems, inter-
mediate images could be synthetically generated between two original
frames, and thus narrower strips used. Our work is different from theirs
in two aspects. First, our approach is direct and much more efficient. We
do not need to generate many new images between each pair of original
frames. Instead we directly generate interpolated rays for the parallel-
perspective mosaics from only two narrow slices of a pair of successive
frames. Second, we proposed to stitch two images in the middle of the
two fixed lines corresponding to the two parallel ray directions, so that
views of points in the original images are as close as possible to the rays
of the final mosaics, thus minimizing the occluding problems due to view
changes (Zhu, et al, 2001b).

Here we further examine (1) whether the PRISM process (of image
rectification followed by ray interpolation) introduces extra errors in the
succeeding steps ( e.g. depth recovery); and (2) whether the final ”dis-
parity equation” of the stereo mosaics, which exhibits a linear relation
between depth and stereo mosaic displacements and which does not de-
pend upon focal length really means that the depth recovery accuracy
is independent of the focal length and absolute depths. Finally, to show
the advantages of stereo mosaics, depth recovery accuracy is analyzed
and compared to the typical perspective stereo formulation. Results for
mosaic construction from aerial video data of real scenes are shown and
3D reconstruction from these mosaics are given. Several important con-
clusions for generating and using stereo mosaics will be made based on
our theoretical and experimental analysis.

2. Para-Perspective Stereo Geometry

To illustrate the fundamental geometry of the parallel-perspective
(para-perspective) stereo mosaics, let us first assume the motion of a
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camera is an ideal 1D translation, the optical axis is perpendicular to
the motion, and the frames are dense enough. Figure 1.1 illustrates the
basic idea of the para-perspective stereo mosaics. We can generate two
spatio-temporal images by extracting two scanlines of pixels (perpendic-
ular to the motion direction) at the front and rear edges of each frame.
The mosaic images thus generated are similar to parallel-perspective im-
ages captured by a linear pushbroom camera (Gupta & Hartley, 1997),
which has perspective projection in the direction perpendicular to the
motion and parallel projection in the motion direction. In contrast to
the common pushbroom aerial images, these mosaics are obtained from
two different oblique viewing angles of a single camera’s field of view, one
set of rays looking forward and the other set of rays looking backward,
so that a stereo pair of left and right mosaics can be generated as the
sensor moves forward, capturing the inherent 3D information.

2.1 Parallel-perspective stereo model

Without loss of generality, we assume that two slit windows of two
scanline locations have d, /2 offsets to the left and right of the center of
the image respectively (Figure 1.1a). The "left eye” view (left mosaic) is
generated from the front slit window, while the ”right eye” view (right
mosaic) is generated from the rear slit window. The parallel-perspective
projection model of the stereo mosaics thus generated can be represented
by the following equations (Figure 1.1b; Zhu, et al, 1999; Zhu, et al,
2001a)

X
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where F' is the focal length of the camera and H is the height of a
plane, for example, the average height of the terrain. Figure 1.1 gives
the relation between a pair of 2D points, (z;,y;) and (z,,y,), one from
each mosaic, and their corresponding 3D point P(X,Y, 7). It serves
a function similar to the classical pin-hole perspective camera model.
A generalized model under 3D translation (Zhu, et al, 2001b) extends
the parallel- perspective stereo geometry to image sequences with 3D
translation, and further with six degrees of freedom (DOF) motion (i.e.,
rotation + translation). Here we will use the 1D translational motion
case to introduce and characterize the basic parallel-perspective stereo
geometry. From Equation 1.1 the depth of the point P can be computed
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Figure 1.1. Parallel-perspective stereo geometry. (a) Two slit-window imaging ge-
ometry - perspective projection in the z direction and parallel projection in the y
direction. We assume that two slit-windows have d, /2 offsets to the front and rear
of the image from the center respectively. From the viewpoint Oy, a curve C; in the
3D scene can be seen through the front slit-window, and p; is the image of a point
P(X,Y,Z) on the curve. When the camera moves a certain (baseline) distance B, in
the Y direction to viewpoint O,, the point P can be seen from the rear-slit window as
image pr, and on a 3D curve C,. (b). Stereo geometry of parallel projection in the y
direction. Both mosaics are built on the fixation plane Z = H, but their units are in
pixels - each pixel represents H/F world distances - the left mosaic pixel y; represents
a point y;H/F in the fixation plane, and the right mosaic pixel y, represents a point
yrH/F in the fixation plane.

as
A
Z=n% a4+ LY (1.2)
d, d,
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where B
by=dy+Ay=F— 1.3
y =ty + AY H (1.3)
is the “scaled” version (in pixels) of the baseline By, and
Ay =y, —y (1.4)

is the mosaic displacement in the stereo mosaics. We use “displacement”
instead of “disparity” since it is related to the baseline in a two-view
perspective stereo system.

2.2 Parallel-perspective stereo properties

From a mathematical point of view (Equation 1.2), parallel-perspective
stereo geometry has the following interesting properties.

(1) Adaptive baseline configuration - Since a fixed angle between the
two viewing rays is selected for generating the stereo mosaics, the “dis-
parities” (dy) of all points are fixed; instead a geometry of optimal/adaptive
baselines (b,) for all the points with varying depths is created. In other
words, for any point in the left mosaic, searching for the match point
in the right mosaic means (in effect) finding an original frame in which
the match pair has a pre-defined disparity (the distance of the two slit
windows) and hence has an adaptive baseline depending on the depth of
the point (Figure 1.1).

(2) Fization plane geometry - The stereo displacement Ay is a func-
tion of the depth variation of the scene around a fization plane with
the depth H. The stereo displacements are zeros for all the points in
the fixation plane, and negative (positive) for points above (below) the
fixation plane.

(3) focal lengh independency - In parallel-perspective stereo (Equa-
tion 1.2), stereo displacements Ay are independent of the focal length
of the camera used to generate the stereo mosaics. Ideally, the image
resolutions in the y direction are the same no matter how far away the
scene points are. The reason is that due to the parallel projection in the
y direction, parallel imaging rays intersect with the 3D scene points in-
stead of converging rays (Figure 1.2). Does this property mean that the
depth accuracy is also independent of the focal lengths of the camera?
We will answer this question in Section 5

(4) constant depth resolution - In a pair of parallel-perspective stereo
mosaics, Equation 1.2 tells us that the depth Z is proportional to the im-
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Figure 1.2. Depth resolution of stereo mosaics vs. two-view stereo.

age displacement Ay. Since the displacement Ay is measured in discrete
mosaicing images, we assume that the image localization resolution is dy
pixels (usually dy < 1) in the stereo mosaics, so that Ay = 0, £y, £20y
and so on. In theory, depth resolution in the parallel-perspective stereo
mosaic is a constant value since the derivative of Z with respect to Ay
gives us (Figure 1.2a)

07 = £5y = constant (1.5)

dy
In contrast, in a two-view perspective stereo (Figure 1.2b), the depth
error of a point is proportional to the square of the depth. As a com-
parison to parallel-perspective stereo, we show the depth errors of a
two-view perspective stereo with a long baseline B, = (H/F)d,, i.e.
the disparity for the depth H is d,. With this stereo configuration, the
depth equation of the two view perspective stereo is

dy

Z=H Ay (1.6)
where Ay is the stereo disparity in the stereo pair. The depth estimation
error of the perspective stereo can be derived as

Z2

07 =
Hd,

(1.7)

The observation of constant depth resolution of parallel-perspective
stereo has been obtained by us in aerial video mosaicing (Zhu, et al,
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1999) and others in image-based modelling (Chai & Shum, 2000). How-
ever further investigation shows that it is not the entire story for parallel-
perspective stereo mosaics constructed from an image sequence captured
by a pin-hole camera. In the following section, we will first briefly sum-
marize what we need to do in order to generate seamless para-perspective
stereo mosaics from real videos. Then we will analyze their depth errors
in Sections 4.2 and 5.

3. Stereo Mosaicing from Real Video

In real world applications, it is difficult to constrain the motion of
cameras on either air or ground vehicles to 1D translation. In addi-
tion, extracting one scanline from each frame of a video sequence is
not sufficient to generate a uniformly dense mosaic, due to large and
possibly varying displacement between each pair of successive frames.
Generally speaking, we are facing the difficult problem of structure from
motion - that is estimating 3D structure of the scene as well as poses
of the moving camera, which requires extensive computation in regis-
tration(matching) and reconstruction (3D estimation). In our approach
for large-scale 3D scene modeling from real video, the computation of
“matching” is efficiently distributed in three stages: camera pose esti-
mation, image mosaicing and 3D reconstruction. In estimating camera
poses (for image rectification), only sparse tie points widely distributed
in the two images are needed. In generating stereo mosaics, matches are
only performed for parallel-perspective rays between small overlapping
regions of successive frames. In using stereo mosaics for 3D recovery,
matches are only carried out between the two final mosaics. This sec-
tion gives a brief summary of the techniques in the three steps, as the
base for the error analysis in the following sections. Algorithms and
discussions in detail can be found in our previous publications (Zhu, et
al, 2001a; Zhu, et al, 2001b).

3.1 Pose estimation for image rectification

The stereo mosaicing mechanism can be generalized to the case of 3D
translation if the 3D curved motion track of the camera has a dominant
translational motion for generating a parallel projection in that direction
(Zhu, et al, 2001b). Under 3D translation, seamless stereo mosaics can
be generated in the same way as in the case of 1D translation. The only
difference is that viewpoints of the mosaics form a 3D curve instead of a
1D straight line. With this generalization, the motion of the camera can
further be extended to a 6 DOF motion with some reasonable constraints
on the values and rates of changes of motion parameters of a camera
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Figure 1.3. Image rectification. (a) Original and (b) rectified image sequence.

(Figure 1.3a; Zhu, et al, 2001la; Zhu, et al, 2001b), which are often
satisfied by the motion of a sensor mounted in a light aircraft with
normal turbulence. There are two steps necessary to generate a rectified
image sequence that exhibits only 3D translation, from which we can
generate seamless mosaics:

Camera orientation estimation. Assuming an internally pre-
calibrated camera, the extrinsic camera parameters (camera orienta-
tions) can be determined from our aerial instrumentation system (GPS,
INS and a laser profiler) (Schultz, et al, 2000) and a bundle adjustment
technique (Slama, 1980). The detail is out the scope of our discussion
here, but the main point we want to make is that we do not need to carry
out dense matching between two successive frames. Instead only sparse
tie points widely distributed in the two images are needed to estimate
the camera orientations.

Image rectification. A 2D projective transformation is applied to
each frame in order to eliminate the rotational components(Figure 1.3b).
In fact we only need to do this kind of transformation on two narrow
slices in each frame that will contribute incrementally to each of the
stereo mosaic pair. The 3D motion track formed by the viewpoints of
the moving camera will have a dominant motion direction (Y) that is
perpendicular to the optical axis of the ”rectified” images.
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3.2 Ray interpolation for stereo mosaicing

How can we generate seamless mosaics from video of a translating
camera in a computational effective way? The key to our approach
lies in the parallel-perspective representation and an interframe ray in-
terpolation approach - Parallel Ray Interpolation for Stereo Mosaicing
(PRISM). For each of the left and right mosaics, we only need to take a
front (or rear) slice of a certain width (determined by interframe motion)
from each frame, and perform local registration between the overlapping
slices of successive frames (Figure 1.4), then generate parallel interpo-
lated rays between two known discrete perspective views for the left (or
right) mosaic.

Since we will use the mathematical model of the ray interpolation in
the following error analysis, let us examine this idea more rigorously in
the case of 2D translation after image rectification when the translational
components in the Z direction is small and can be neglected (Zhu, et
al, 2001a). We take the left mosaic as an example and illustrate the
geometry in Figure 1.4. First we define the central column of the front
(or rear) mosaicing slice in each frame as a fized line, which has been
determined by the camera’s location of each frame and the pre-selection
of the front (or rear) slice window. This fixed line of pixels can be
directly copied to the corresponding mosaics. An interpretation plane
(IP) of the fixed line is a plane passing through the nodal point and
the fixed line. By the definition of parallel-perspective stereo mosaics,
the IPs of fixed lines for the left (or right) mosaic are parallel to each
other. Suppose that (S;,Sy) is the translational vector of the camera
between the previous (1st) frame of viewpoint (7%, T),) and the current
(2nd) frame of viewpoint (T, + S;, Ty + S,) (Figure 1.4). We need
to interpolate parallel rays between the two fized lines of the 1st and
the 2nd frames. For each point (x;,y1)(to the right of the 1lst fixed
line yo = dy/2) in the first frame, which will contribute to the left
mosaic, we can find a corresponding point (z2,y2) (to the left of the 2nd
fixed line) in the second frame. We assume that (z,y;) and (z2,y2) are
represented in their own frame coordinate systems, and intersect at a
3D point (X,Y, Z). Then the parallel reprojected viewpoint (77, T);) of
the corresponding pair can be computed as

y1 —dy/2
T, =T, +—>—8, 1.8
yi y v —ys Y (1.8)
S
Ty =T + S—(Tyi )
y

where Tj; is calculated in a synthetic IP that passes through the point
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Figure 1.4. Ray interpolation by ray re-projection.

(X,Y,Z) and is parallel to the IPs of the fixed lines of the first and
second frames, and T}; is calculated in such a way that all the viewpoints
between (73, Ty) and (T} + Sy, Ty + Sy) lie in a straight line (of course
we can find a better fit for the motion curve rather than this linear
fitting). Note that Equation 1.8 also holds for the two fixed lines:
when y; = d, /2 (the first fixed line), we have (Ty;, Ty;) = (T3, Ty); when
Y2 = dy /2 (the second fixed line), we have (Ty;, Tyi) = (T + S, Ty +Sy)-
We assume that normally the interframe motion is large enough to have
y1 —1 > dy/2 > yy + 1, which will be the assumption of our error
analysis in the next section. Otherwise a super dense image sequence
could generate a pair of stereo mosaics with super-resolution, but this
will not be discussed in this paper.

The reprojected ray of the point (X, Y, Z) from the interpolated view-
point (7%, Ty;) is given by

S dy. d
(@i, yi) = [z1 — S_j(yl - 7‘1/), Ey] (1.9)

and the mosaicing coordinates of the point is
dy
2

x

d
(xmaym) = [ta:i +z1— _(yl - )7tyi + _y] (1'10)
Sy 2

where

twi = FTyi/H, t,; = FT,;/H (1.11)
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are the “scaled” translational components of the interpolated view. Note
that the interpolated rays are also parallel- perspective, with perspective
projection in the z direction and parallel projection in the y direction.

3.3 3D reconstruction from stereo mosaics

In the general case, the viewpoints of both left and right mosaics will
be on the same smooth 3D motion track. Therefore the corresponding
point in the right mosaic of any point in the left mosaic will be on
an epipolar curve determined by the coordinates of the left point and
the 3D motion track. We have derived the epipolar geometry of the
stereo mosaics generated from rectified image sequences exhibiting 1D,
2D and 3D translation respectively, with a dominant y component(Zhu,
et al, 2001b). To be consistent with the ray interpolation stage in this
paper, we give the equations assuming 2D translation. With 2D camera
translation (7y,T)), the corresponding point (z,,y,) in the right-view
mosaic of any point (x;,y;) in the left-view mosaic will be constrained
to an epipolar curve

Ay
Az =b Ay)—— 1.12
z = ba (Y1, y)Ay+dy (1.12)
where
Ax =z, —x;, Ay =1y, —y; (1.13)
are the stereo mosaic displacements in both the z and y directions, and
be (Y1, Ay) = toa(yr + dy + Ay) — tu(y) (1.14)

is the baseline function of variables y; and Ay. In Equation 1.14, ¢,(y;)
is the “scaled” x translational component (as in Equation 1.3 or Equa-
tion 1.11) of the original frames corresponding to column g; in the left
mosaic. Clearly Equation 1.12 shows that the displacement Az in the
x direction is a nonlinear function of position y; as well as displacement
Ay (Figure 1.5), which is quite different from the epipolar geometry
of a two-view perspective stereo. The reason is that image columns of
different y; in parallel-perspective mosaics are projected from different
viewpoints. However, in the ideal case where the viewpoints of stereo
mosaics form a 1D straight line, the epipolar curves will turn out to be
horizontal lines. In real applications, if the motion track of the cam-
era does not deviate from the dominant motion direction too far, the
epipolar curves are pretty close to horizontal epipolar lines (Zhu, et
al, 2001a). In our current experiments, the depth maps of stereo mo-
saics were obtained by using the Terrest system designed for perspective
stereo match (Schultz, 1995) without modification. The Terrest system
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Figure 1.5. Illustration of epipolar curves in stereo mosaics.

was designed to account the illumination differences and perspective
distortion of stereo images with largely separated views by using nor-
malized correlation and multi-resolution un-warping. Further work is
needed to incorporate the epipolar curve constraints into the search for
corresponding points in the Terrest to speedup the match process. Cur-
rently we perform matches with 2D search regions estimated from the
motion track and the maximum depth variations of a scene.

In parallel-perspective stereo mosaics, since a fixed angle between
the two sets of viewing rays is selected, the disparities of all points
are pre-selected (by mosaicing) and fixed; instead the geometry of opti-
mal/adaptive baselines for all the points is created. From the parallel-
perspective stereo geometry, the depth accuracy is independent to the
depth of a point and the image resolution. However, there are two
classes of issues that need to be carefully studied in stereo mosaics from
real video sequences. First, 3D recovery from stereo mosaics needs a
three-stage matching process, i.e., interframe global matching to esti-
mate camera poses, interframe local matching for ray interpolation, and
the correspondences of the stereo mosaics to generate a depth map.
While pose estimation and correspondences are the same for any stereo
methods using calibrated images, our question is: does the ray interpo-
lation step introduce extra errors? Second, the final disparity equation
of the stereo mosaics does not include any information about the focal
length. Does it mean that the depth recovery accuracy from stereo mo-
saics is really independent of the focal length of the camera that captures
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the original video? We will discuss these two issues in the following two
sections.

4. Error Analysis of Ray Interpolation
4.1 Why ray interpolation?

First, we give the rationale why ”3D mosaicing” via the PRISM ap-
proach is so important for 3D reconstruction from stereo mosaics by a
real example. Figure 1.6 shows the local match and ray interpolation
of a successive frame pair of a UMass campus scene, where the inter-
frame motion is (s, s,) = (27,48) pixels, and points on the top of a tall
building (the UMass Campus Center Building) have about 4 pixels of ad-
ditional motion parallax. As we will see next, these geometric misalign-
ments, especially of linear structures, will be clearly visible to human
eyes. Moreover, perspective distortion causing the geometric seams will
introduce errors in 3D reconstruction using the parallel- perspective ge-
ometry of stereo mosaics. In the example of stereo mosaics of the UMass
campus scene (see high resolution mosaics at our web site: Zhu, 2002),
the distance between the front and the rear slice windows was selected
as dy = 192 pixels, and the average height of the aerial camera from
the ground is H = 300 meters (m). The relative y displacement of the
building roof (to the ground) in the stereo mosaics is about Ay = —29
pixels. Using Equation 1.2 we can compute that the ”absolute” depth
of the roof from the camera is Z = 254.68 m, and the "relative” height
of the roof to the ground is AZ = 45.31 m. A 4-pixel misalignment in
the stereo mosaics will introduce a depth (height) error of 6Z = 6.25 m,
even though the stereo mosaics have rather large “disparity” (d, = 192).
While the relative error of the “absolute” depth of the roof (§Z/7) is
only about 2.45%, the relative error of its “relative” height (0Z/AZ) is
as high as 13.8%. This clearly shows that geometric-seamless mosaicing
is very important for accurate 3D estimation as well as good visual ap-
pearance. It is especially true when sub-pixel accuracy in depth recovery
is applied as we did in our related work (Schultz, 1995).

4.1.1 A fast PRISM algorithm and its generalization. In
principle, we need to match all the points between the two fixed lines of
the successive frames to generate a complete parallel-perspective mosaic
(Figure 1.4). In an effort to reduce the computational complexity in our
current implementation, we have designed a fast 3D mosaicing algorithm
(Zhu, et al, 2001b) based on the proposed PRISM approach. It only
requires matches between a set of point pairs in two successive images
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Figure 1.6. Examples of local match and triangulation for the left mosaic. Close-up
windows (tiles) of (a) the previous and (b) the current frames. The green (gray in the
B-W version) crosses show the initially selected points (which are evenly distributed
along the ideal stitching line) in the previous frame and its initial matches in the
current frame by using the global transformation. The blue and red (both dark in the
B-W version) crosses show the correct match pairs by feature selection and correlation
(red matches red, blue matches blue). The fixed lines, stitching lines/curves and the
triangulation results are shown in yellow( light gray in the B-W version).

around their stitching line, which is defined as a virtual line in the middle
of the two fixed lines (see Figure 1.6). The pair of matching curves in the
two frames is then mapped into the mosaic as a stitching curve by using
the ray interpolation equation (Equation:1.10). The rest of the points
are generated by warping a set of triangulated regions defined by the
control points on the matching curve (that correspond to the stitching
curve) and the fixed line in each of the two frames. Here we assume that
each triangle is small enough to be treated as a planar region.

Using sparse control points and image warping, the proposed 3D mo-
saicing algorithm only approximates the parallel-perspective geometry
in stereo mosaics (e.g., Figure 1.7), but it is good enough when the inter-
frame motion is small (e.g., Figure 1.12 to Figure 1.15). Moreover, the
proposed 3D mosaicing algorithm can be easily extended to use more
feature points (thus smaller triangles) in the overlapping slices so that
each triangle really covers a planar patch or a patch that is visually
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indistinguishable from a planar patch, or to perform pixel-wise dense
matches to achieve true parallel-perspective geometry.

4.1.2 Experimental results. While we are still working on
3D camera orientation estimation using our instrumentation and the
bundle adjustments (Schultz, et al, 2000), Figure 1.7 shows mosaic re-
sults where camera orientations were estimated by registering the planar
ground surface of the scene via dominant motion analysis. However the
effect of seamless mosaicing is clearly shown in this example. Please
compare the results of 3D mosaicing (parallel-perspective mosaicing) vs.
2D mosaicing (multi-perspective mosaicing) by looking along building
boundaries associated with depth changes in the entire 4160 x 1536 mo-
saics at our web site (Zhu, 2002). Since it is hard to see subtle errors
in 2D mosaics the size of Figure 1.7a, Figures 1.7b and 1.7c show two
close-up windows of the 2D and 3D mosaics side by side for portion
of the scene with the tall Campus Center building. In Figure 1.7b the
multi-perspective mosaic via 2D mosaicing has obvious seams along the
stitching boundaries between two frames. It can be observed by looking
at the region indicated by circles where some fine structures (parts of
a white blob and two rectangles) are missing due to misalignments. As
expected, the parallel-perspective mosaic via 3D mosaicing (Figure 1.7¢)
does not exhibit these problems.
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Figure 1.8. Resolution changes from perspective projection (solid dark rays from O )
to parallel projection (dashed orthogonal rays). In a simple ray interpolation where
each pixel in the mosaics is only from a single frame, resolution remains the same for
the plane at the distance H, reduces to half for plane H/2, and could be two times
(the original black dots plus the interpolated white dots) for plane 2H. With image
interpolation from more than one frames, image resolution can be better enhanced by
sub-pixel interpolation (see text).This figure shows the case where parallel rays are
perpendicular to the motion. However, same principle applies to the left and right
oblique views of the stereo mosaics.

4.2 Errors from ray interpolation

In theory, the adaptive baseline inherent in the parallel- perspective
geometry permits depth accuracy independent of absolute depth. How-
ever, in practice, two questions need to be answered with respect to the
stage of local match and ray interpolation. First, is there any resolution
gain or loss due to the change of projections from the full perspective
of original frames to the parallel-perspective of the stereo mosaics, for
different depths? Second, since we use the motion parallax information
between two successive frames, will the small baseline between frames in-
troduce large errors in ray interpolation, as it does for depth estimation?

4.2.1 Question 1: image resolution issues. The answer to
the first question is relatively simple: A simple transformation of per-
spective frames to parallel-perspective mosaics does introduce resolution
changes in images (Figure 1.8). Recall that we build the mosaics on a
fixation plane of the depth H. It means that the image resolution in
the stereo mosaics are the same as the original frames only for points
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on plane H. However, for regions whose depths are smaller than H,
a simple parallel ray re-sampling process will result in resolution loss.
On the other hand, regions whose depths are larger than H could have
their resolution enhanced by sub-pixel interpolation. This tells us that
if we select the fixation plane higher above all the scene points, we can
make full use of the image resolution of the original video frames. How-
ever, if we still want to keep the fixation plane with an average depth
of all the scene points, we can still preserve the image resolution for
the nearer points by a super-sampling process (e.g., double or triple the
image resolutions).

For the points below the fixation plane, resolution could be better
enhanced by using sub-pixel interpolation between a pair of frames as
illustrated in Figure 1.8, assuming that we are performing a sub-pixel
match for the ray interpolation. For example, for a sub-pixel point P
that lies between two point P; and P, that are on the grids of the image
O1, we find its match between point }; and ()2 that are on the grids
of the image Oy. Then the value (intensity or color) of the point P can
be better interpolated by using the existing points J1 and P» since they
are closer to the point P in space.

4.2.2 Question 2: ray interpolation errors. In order to
answer the second question, we formulate the problem as follows (under
1D translation): Given an accurate point y3 = —d,/2 in the view O3
that contributes to the right mosaic, we try to find its match point
y; = +dy/2 in a view that contributes to the left mosaic with parallel-
perspective projection (Figure 1.9). Note that we express these points in
their corresponding frame coordinate systems instead of the mosaicing
coordinate system for ease of notation; the mappings from these points
to the mosaicing coordinates are straightforward. Usually the point y;
is reprojected from a virtual interpolated view O; defined by a pair of
correspondence points y; and ys in two existing consecutive views O
and Os. The localization error of the point y; depends on the errors
in matching and localizing points y; and ys. The numerical analysis
(Equation 1.A.12; see Appendix for detail) shows that the depth error
of the stereo mosaics is proportional to the absolute depth:

Z
04 = —dy (1.15)

dy
Comparing Equation 1.15 with Equation 1.5 , it can be seen that the
depth error of the "real” stereo mosaics generated by ray interpolation
is related to the actual depth (Z) of the point instead of just the average
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Figure 1.9. Error analysis of ray interpolation. While depth estimation for two
consecutive frames is subject to large error (0 Zinter frame), the localization error of
the interpolated ray for stereo mosaics turn out to be very small and so does the
depth error of stereo mosaics (0 Zmosaic)-

depth H. Therefore, in practice the depth accuracy is not independent
of absolute depth. However, this is not necessarily bad news. First we
define the relative depth error as |0Z/dy|). While the relative depth
error, Z/d,, is larger than the constant number H/d, when Z < H, it
is in fact smaller than this constant number H/d, when Z > H (Figure
1.10). We have not yet incorporated the image resolution changes in
stereo mosaics till now, but let us first make the following conclusion:

Conclusion 1: In theory, the depth accuracy of parallel-perspective
stereo vision is independent of absolute depths; however, in prac-
tice, the depth estimation errors of parallel-perspective stereo mo-
saics are proportional to the absolute depths of scene points.

How good is this linear error characterization in stereo mosaics? Anal-
ysis in the Appendix also shows that even if the depth estimation from
two successive views O; and Oo cannot give us good 3D information
(Equation 1.A.10), as shown by the large (pink) diamond error region
in Figure 1.9, the localization error of the interpolated point (i.e. the
left-viewing ray from O;) is quite small (Equation 1.A.9). Then it turns
out that the depth error of stereo mosaics introduced by the ray interpo-
lation is bounded by the errors of two pairs of stereo views O;&0O3 and
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02& 03, both with almost the same “optimal” baseline configurations as
the stereo mosaics (Equation 1.A.13). This observation is summarized
in Conclusion 2:

Conclusion 2: Ray interpolation does not introduce extra errors
to depth estimation from parallel-perspective stereo mosaics. The
accuracy of depth estimation using stereo mosaics via ray interpo-
lation is comparable to the case of two-view perspective stereo with
the same ”adaptive” baseline configurations (if possible).

Obviously, stereo mosaics provide a nice way to achieve such “optimal”
configurations. From the derivation of the localization error for ray
interpolation, we have the following interesting conclusion with regard
to the inputs of stereo mosaics (see Equation 1.A.9):

Conclusion 3: The ray interpolating accuracy is independent of the
magnitude of the interframe motion.

This implies that stereo mosaics with the same degree of accuracy can
be generated from sparse image sequences, as well as dense ones, given
that the interframe matches are correct.

4.2.3 Summary: depth accuracy versus depth. As a
summary, parallel-perspective stereo mosaics provide a stereo geometry
with a pre-selected and fixed disparity and adaptive baselines for all the
points of different depths, even if the depth resolution is not a constant
number. In fact, by incorporating the resolution changes in the mosaics
as we have discussed for the first question at the beginning of this section,
the depth estimation error of stereo mosaics can be improved as

57 €(Z.4) fZ<H
‘@ e (dﬁ, di) otherwise (1.16)
Y Yy
where pixel localization error dy is measured in the mosaics rather than
in the original frames, as in the derivation of the error characterization
in Equation 1.A.10 (and also Equation 1.15). Equation 1.16 states the
fact that the relative depth error |§Z/dy| of the para-perspective stereo
mosaics is between a constant number H/d, and a linear function of the
depth, Z/d,. This implies a possible depth error increase (from Z/d, to
H/d, ) due to a resolution loss (if without super-sampling) when Z < H,
but a depth error decrease (from H/d, to Z/d,) thanks to a resolution
enhancement (via sub-pixel interpolation) when Z > H. This leads to

our fourth important conclusion for stereo mosaics:
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Figure 1.10. Depth errors versus depths. In the ideal case of the parallel perspective
stereo, the depth error is a constant number H/d,, independent of the absolute depths.
In para-perspective stereo mosaics, however, the depth errors are a linear function
of the absolute depths, Z/d,. By incorporating super-sampling and the subpixel
interpolation in stereo mosaicing, the real depth errors lie in between these two lines
(shaded regions). As a comparison, the depth errors of a two view perspective stereo
with the baseline B, = (H/F)d, (i.e. the disparity for depth H is dy) are also shown,
indicating rapidly increasing errors when H > Z.

Conclusion 4: Parallel-perspective stereo mosaics provide a stereo

geometry with adaptive baselines for all the points of different depths,
and the depth error is between a constant function of the average

depth of the scene and a linear function of absolute depth of the

point. In contrast, the two-view perspective stereo has o fixed base-

line, and the depth error is a second order function of absolute

depth.

This conclusion is visualized in Figure 1.10. As a comparison, the
depth errors of a two view perspective stereo with a long baseline By =
(H/F)d, (Equation 1.7) are also shown, indicating rapidly increasing
errors when H > Z.

5. Error Analysis versus Focal Lengths

It is commonly known that in stereo vision, a large baseline will give
us better 3D accuracy in 3D recovery. The geometric property of the
parallel-perspective stereo mosaics also indicates that a larger angle be-
tween the two sets of rays of the stereo mosaics will give us larger base-
lines (i.e. By in Figure 1.1), hence better 3D accuracy. It seems to tell
us that a wide-angle lens (with shorter focal length) could give us larger
baselines and hence better stereo mosaic geometry than a tele-photo lens
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(with longer focal length). However, we must consider several factors
that affect the generation of the stereo mosaics and the correspondences
of the stereo mosaics, to see whether this argument is true or not.

5.1 Analyzing focal length and image resolution

First we assume that cameras using for video mosaicing have the same
numbers of pixels no matter what the focal lengths (and the fields of
view) are. A simple fact is that wider field of view (FOV), i.e., shorter
focal length always means lower image resolution (which is defined as
the number of pizels per meter length of the footprint on terrain). Our
question is: given the same distance of the two slit windows, d, (in
pixels), what kind of focal length gives us better depth resolution, the
wide angle lens or the telephoto lens?

In stereo mosaics, the error in the depth estimate mainly comes from
the localization error of the stereo displacement Ay, which consists of
two parts: the mosaic generating error db; and the stereo match error
0by. The first part mainly comes from the baseline estimation error J.3
(in camera pose estimation), by the following equation:

F

where H is the depth of the fixation plane in generating the mosaics.
From Equation 1.2 the part of the depth error due to the mosaicing
error is

H F
/A—— = _ 4B 1.1
YA dy5b1 dy5 (1.18)

Second, the depth estimation error due to the stereo match error dbs
depends on how big a dby-pixel footprint is on the ground. Since the
image resolution of a point of depth H in the image of the focal length
F is F/H (pixels/meter), the size of the footprint on the ground will be
(Figure 1.11)

H
Y = — 1.1
8V = —oby (1.19)

Obviously shorter focal lengths produce larger footprints, hence lower
spatial resolution. This part of the depth error can be expressed as

F H
7o = —§Y = — 1.2
57 dya dy5b2 (1.20)
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Figure 1.11. Depth error versus focal lengths (and fields of view). Note that rays
are parallel due to parallel projections, which gives the same depth accuracy with
different focal lengths since the larger baseline in the case of the wider field of view
compensates the larger footprint on the ground. However, in practice, stereo mosaics
from a telephoto camera have better depth accuracy because of better stereo match.

Note that the same depth accuracy in terms of stereo matching is
achieved for different focal lengths since the larger baseline in the case
of the wider field of view exactly compensates for the larger footprint
on the ground with parallel projections (Figure 1.11). The total depth
error is

H
04 = —((5()1 + 5()2) (1.21)
dy
or
F H
57 = 6B + "~ 5by (1.22)
dy dy

whose differences will be explained in the following;:

(1). If the registration error in generating mosaics is independent
of the focal length, which could be the case when the relative camera
orientation is directly estimated from interframe image registration and
bundle adjustments, then Equation 1.21 shows that depth error is in-
dependent of the focal length (Figure 1.11). However, since a smaller
focal length (wide FOV) means a larger angle between the two set of left
and right rays of the stereo mosaics (given the same distance of the slit
windows), it will introduce larger matching error dby due to occlusion,
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perspective distortion and illumination changes of larger separated view
angles.

(2) If the absolute camera orientation (and hence the baseline B,
in Equation 1.3) is estimated from other independent instrumentation
other than image registration, the registration error in generating mo-
saics will be proportional to the focal length (Equation 1.17). This
means the same baseline estimation error will introduce a larger mosaic
registration error if a larger focal length is used. In this case, Equa-
tion 1.22 should be used to estimate the depth error, which indicates
that given the baseline estimate error B, a larger focal length will in-
troduce a larger error in the first part due to the multiplication of F'
but a smaller error in the second part due to the smaller stereo match
error dby. As it is hard to give an explicit function of the stereo match
error versus focal length (and view difference), it is roughly true that
the second part is dominant using a normal focal length. In this case, a
shorter focal length (and wider view direction difference) in generating
stereo mosaics will introduce larger matching errors due to lower image
resolution, significantly larger occlusion and more obvious illumination
differences. On the other hand, too long a focal length will result in too
short baselines, hence too big an enlargement of the calibration error
in the images. Therefore, it might be possible to find an optimal focal
length if we can specify a stereo matching error function versus the fo-
cal length (field of view), considering the texture and depth variation of
the terrain and the size of the stereo match primitives in stereo images.
Quantitatively, we have the following conclusion:

Conclusion §: Ideally, depth estimation errors of stereo mosaics
are independent of the focal length of the camera that generates
the stereo mosaics. However, in practice a longer focal length will
give better 3D reconstruction from the stereo mosaics, due to the
finer image resolution, less occlusion and fewer lighting problems
if a reasonably good baseline geometry can be constructed.
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Figure 1.13. Close-up windows of the telephoto stereo mosaics in Figure 1.12 show
high resolution of the trees and good appearance similarity in (a) the left and (b) the
right mosaics, and hence produce (c) good 3D results.

5.2 Experimental analysis

To validate the above analysis, Figures 1.12 to 1.15 compare real ex-
amples of 3D recovery from two sets of stereo mosaics generated from two
video sequences. The video sequences were captured simultaneously by
a telephoto camera and a wide angle camera of the same forest scene (in
the Amazon rain forest for estimation the standing biomass of forests).
The instrumentation package (Schultz, et al, 2000) was mounted on a
light airplane and consists of a GPS system, an INS system and a profil-
ing pulse laser, as well as the two video cameras (side by side and with
different focal lengths). The average height of the airplane was H = 385
m, and the distance between the two slit windows for both the telephoto
and wide-angle stereo mosaics was selected as dy = 160 pixels. The
focal length of the telephoto camera is Fioe = 2946 pixels and that of
the wide angle camera is F,;q. = 461 pixels (which were estimated by
a simple calibration using the GPS/INS/laser range information with
the camera, and the results from image registration). In both cases, the
size of the original frames are 720(x) * 480(y), and the camera moved
in the y direction (perpendicular to the scanlines of the cameras). By a
simple calculation, the image resolution of the telephoto camera is 7.65
pixels/meter and that of the wide-angle camera is 1.20 pixels/meter.

The depth maps of stereo mosaics were obtained by using the Ter-
rest system based on a hierarchical sub-pixel dense correlation method (
Schultz, 1995). Figure 1.12¢ and Figure 1.14¢ show the derived “depth”
maps (i.e., the y displacement maps) from the two pairs of telephoto and
the wide angle parallel-perspective stereo mosaics of the forest scene. In
the depth maps, mosaic displacements are encoded as brightness so that
higher elevations (i.e. closer to the camera) are brighter. It should be
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noted here that the parallel-perspective stereo mosaics were created by
the proposed 3D mosaicing algorithm, with the camera pose parameters
estimated by the same dominant motion analysis as in Figure 1.7. Here,
the fixation plane is a “virtual” plane with an average distance (H = 385
m) from the scene to the camera. Figure 1.12d and Figure 1.14d show
the distributions of the mosaic displacements of the Ay components of
the corresponding stereo mosaics. It can be found that the displacement
distribution of the telephoto stereo mosaics has almost a zero mean,
which indicates that the numbers of points above and below the virtual
fixation plane are very close. In the depth map of the wide-angle mo-
saics, more points on tree canopies can be seen. For both cases, most of
the pixels have displacements within -10.0 pixels to +10.0 pixels, which
is consistent with the parallel stereo mosaic geometry (Equation 1.2),
saying that the y displacements in the stereo mosaics are independent
of the focal lengths used. Using Equation 1.2 we can estimate that the
range of depth variations of the forest scene (from the fixation plane) is
from -24.0 m (tree canopy) to 24.0 m (the ground).

Figure 1.13 and Figure 1.15 show close-up windows of the stereo mo-
saics and the depth maps for both telephoto and wide-angle cameras
respectively. By comparison, the telephoto stereo mosaics have much
better spatial resolutions of the trees and the ground, and have rather
similar appearance in the left and right views. In contrast, the left and
right wide angle stereo mosaics have much large differences in illumina-
tion and occlusion, as well as much lower spatial resolution. The large
illumination differences in the wide-angle video are due to the sunlight
direction that always made the bottom part of a frame brighter (and
sometime over-saturated) than the top part (Figure 1.16). From the ex-
perimental results, we can see that better 3D results are obtained from
the telephoto stereo mosaics than from the wide-angle stereo mosaics.
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Figure 1.15. Close-up windows of the wide angle stereo mosaics in Figure 1.14 show
much lower resolution of trees and largely different illuminations, perspective distor-
tions and occlusions in (a) the left and (b) the right mosaics, and hence produce (c)
less accurate 3D results.

'I:I' Figure 1.16. The camera
sun
moves toward the sun so
the bottom part is al-
camera ways brighter (and some-
) " Left time over- saturated) than
Right mosaic the top part of each frame

MOSaIC Ny \ F due to the sunlight reflec-

tion. It is an unusual case

l \ that you take a photo both
along and against the di-

\ rection of light. The right

\ terrain mosaic comes from the bot-

/\/\/\\y\ \/\/\ tom part while the left mo-

saic comes from the top
part of video frames.

6. Conclusions

In the proposed stereo mosaicing approach for large-scale 3D scene
modeling, the computation of “matching” is efficiently distributed in
three stages: camera pose estimation, image mosaicing and 3D recon-
struction. In estimating camera poses, only sparse tie points widely
distributed in the two images are needed. In generating stereo mosaics,
matches are only performed for ray interpolation between small over-
lapping regions of successive frames. In using stereo mosaics for 3D
recovery, matches are only carried out between the two final mosaics,
which is equivalent to finding the correspondence in a matching frame
with a fixed disparity for every point in one of the mosaics.
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In terms of depth recovery accuracy, parallel-perspective stereo mo-
saics provide adaptive baselines and fixed disparity. We have obtained
several important conclusions. Ray interpolation between two successive
views is actually very similar to image rectification, thus the accuracy
of three-stage matching mechanism (i.e. matching for poses, mosaicing
and correspondences) for 3D recovery from stereo mosaics is comparable
to that of a perspective stereo with the same adaptive/optimal baseline
configurations. We also show that the ray interpolation approach works
equally well for both dense and sparse image sequences in terms of ac-
curacy in depth estimation. Finally, given the same number of pixels
in the original frames, the errors of depth reconstruction is somewhat
related to the focal length (and the image resolution) of the camera that
captures the video frames. Although further study is needed to inves-
tigate what is the best focal length for a certain spatial relation of the
camera and the terrain, it seems that stereo mosaics using a telephoto
lens (with narrower FOV, higher image resolution and less perspective
distortion) gives better 3D reconstruction results than those of a wide
angle lens.

As a future research topic, we want to deal with the issues of stereo
mosaicing using wide FOV cameras. For example, we can extract mul-
tiple (i.e. more than 2) mosaics with small viewing angle differences
between each pair of nearby mosaics (Zhu, 2002) - thus constructing
a “multi-disparity” stereo mosaic system, analog to the multi-baseline
stereo system (Okutomi & Kanade, 1993)). Multi-disparity stereo mo-
saics could be a natural solution for the problem of matching across large
oblique viewing angles.

Appendix: Error Analysis of Ray Interpolation

We formulate the problem as follows: Given an accurate point y3 = —d, /2 in the
view Oz that contribute to the right mosaic, we try to find a match point y; = +d, /2
in a view that contributes to the left mosaic with parallel-perspective projection
(Figure 1.9). The point y; is usually from an interpolated view O; defined by a match
point pair y; and y» in the two existing consecutive views O; and O». Suppose the
interframe baseline between views O; and O» is Sy, and the baseline between views
O: and Os is By. First we can write out equations of the depth errors by two view
stereos O1 + Oz and Oz + O3 , both with almost the same baseline configurations as
the “adaptive” baseline between O; and O3 (with respect to depth). The depth from
the pair of stereo views O; and Os is

B B
Z=F—Y =F l 1.A.1
Y1 — Y3 y1+dy/2 ( )

and the depth estimation error is
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oz) __Z__ (1.A.2)
0y |, yrtdy/2
where y1 is slightly greater than d,/2 by a small value dyi:
y1 = dy/2 + oy (L.A.3)
Similarly, The depth from the pair of stereo views Oz and O3 is
z-rBr =5 _pBi-5 (1.A.4)
Y2 — Y3 y2 +dy /2
and the depth estimation error is
0z __Z (1.A.5)
0y |,y Y2t+dy/2
where y» is slightly smaller than d,/2 by a small value dy»:
y2 = dy/2 + |y (1.A.6)

Using Equation 1.8 we can calculate the translational component Sy; of the in-
terpolated view O; relative to the first view:

v_yl_dy/2 1.A
syl_iyl_y2 Sy (L.A.7)

The localization error of the point Sy;, which determines the mosaicing localization
accuracy using Equation 1.10, depends on the errors in matching and localizing points
y1 and y2, which can be derived by computing the derivatives of Sy; with respect to
both yi and y»:

16,4 = 5,[ Y= ygy)l‘_(g;); /) 15y, + % 154 (1.A.8)

By assuming that dy; = dy» = dy, and using the relation Z = F'Sy/(y1 — y2), we can
conclude that

08y

oy
where F' is the focal length. It is interesting to note that interpolating accuracy is
independent of the magnitude of the interframe motion S,. For comparison, the depth
error from the two consecutive frames O; + O3 is

- % (1.A.9)

_z _Zz
Lo Wiy FS,

6z
dy

(1.A.10)

Apparently smaller interframe motion Sy will introduce much larger depth estimation
error (see the (pink) diamond region in Figure 1.9), and the depth error is proportional
to the square of the depth. On the contrary, the depth estimation from stereo mosaics
can be written as

7 =B =S

F
= —(By — Sy L.A11
g = @ By = Su) ( )
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where we insert y3 = —d, /2 and y; = +dy/2 in Equation 1.A.11 . This equation is
equivalent to Equation 1.2 that is used to calculate depth. Using Equation 1.A.9,
the depth estimation error of stereo mosaics can be derived as

4
dy

_Z (1.A.12)

T d
i,3 ¥

Comparing Equations 1.A.2, 1.A.3 and 1.A.12, it turns out that the depth error
of stereo mosaics is bounded by the errors of two view stereos O1 + O3 and Oz + O3,
both with almost the same adaptive baselines as the stereo mosaics, i.e.

8z
dy

24
=15y

0Z

<|% (1.A.13)
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