A Fault-Tolerant Distributed Vision System
Architecture for Object Tracking in a
Smart Room *

Deepak R. Karuppiah, Zhigang Zhu,
Prashant Shenoy, and Edward M. Riseman

Department of Computer Science,
University of Massachusetts,
Ambherst, MA - 01003, USA

{deepak|zhu|shenoy|riseman}@cs.umass.edu

Abstract. In recent years, distributed computer vision has gained a
lot of attention within the computer vision community for applications
such as video surveillance and object tracking. The collective informa-
tion gathered by multiple cameras that are strategically placed has many
advantages. For example, aggregation of information from multiple view-
points reduces the uncertainty about the scene. Further, there is no single
point of failure, thus the system as a whole could continue to perform
the task at hand. However, the advantages arising out of such coopera-
tion can be realized only by timely sharing of the information between
them. This paper discusses the design of a distributed vision system that
enables several heterogeneous sensors with different processing rates to
exchange information in a timely manner in order to achieve a common
goal, say tracking of multiple human subjects and mobile robots in an
indoor smart environment.

In our fault-tolerant distributed vision system, a resource manager man-
ages individual cameras and buffers the time-stamped object candidates
received from them. A User Agent with a given task specification ap-
proaches the resource manager, first for knowing the available resources
(cameras) and later for receiving the object candidates from the resources
of its interest. Thus the resource manager acts as a proxy between the
user agents and cameras, thereby freeing the cameras to do dedicated
feature detection and extraction only. In such a scenario, many failures
are possible. For example, one of the cameras may have a hardware fail-
ure or it may lose the target, which moved away from its field of view.
In this context, important issues such as failure detection and handling,
synchronization of data from multiple sensors and sensor reconfiguration
by view planning are discussed in the paper. Experimental results with
real scene images will be given.

* This work is supported by DARPA /ITO Mobile Autonomous Robots S/W (MARS)
(Contract Number DOD DABT63-99-1-004) and Software for Distributed Robotics
(SDR) (Contract Number DOD DABT63-99-1-0022)

1 Introduction

In the recent years, rapid advances in low cost, high performance computers and
sensors have spurred a significant interest in ubiquitous computing. Researchers
are now talking about throwing in a lot of different types of sensors in our homes,
work places and even on people. They hope that the wealth of information from
these sensors when processed and inferred carefully would significantly enhance
our capacity to interact with the world around us. For instance, today, humans
rely largely on their innate sensory and motor mechanisms to understand the
environment and react to the various situations arising thereof. Though our
intelligence is far superior to today’s AI, the memory and number crunching
capacity of an average person leaves much to be desired. But with a distributed
backbone of processors and sensors augmenting our brain and senses, elaborate
information gathering and complex and systematic decision-making could be-
come possible for everyone. A smart environment could assist humans in their
daily activities such as teleconferencing, surveillance etc. The smart environment
idea is therefore not to replace a human but to augment one’s capacity to do
things in the environment. An interesting perspective into this area from the
machine vision point of view has been provided in [14].

Distributed computer vision forms a vital component in a smart environment
due to the rich information gathering capability of vision sensors. The collective
information gathered by multiple cameras that are strategically placed has many
advantages. For example, aggregation of information from multiple viewpoints
reduces the uncertainty about the scene. Further, there is no single point of
failure, thus the system as a whole could continue to perform the task at hand.
However, the advantages arising out of such cooperation can be realized only
by timely sharing of the information between them. The distributed system can
then share the information to carry out tasks like inferring context, updating
knowledge base, archiving etc. A distributed vision system, in general, should
have the following capabilities

Extraction of useful feature sets from raw sensor data
Selection and fusion of feature sets from different sensors
Timely sharing of information among the sensors

— Fault-tolerance and reconfiguration

This paper discusses the design of such a distributed vision system that en-
ables several heterogeneous sensors with different processing rates to exchange
information in a timely manner in order to achieve a common goal, say tracking of
multiple human subjects as well as mobile robots in an indoor environment, while
reacting at run-time to various kinds of failures, including: hardware failure, in-
adequate sensor geometries, occlusion, and bandwidth limitations. Responding
at run-time requires a combination of knowledge regarding the physical senso-
rimotor device, its use in coordinated sensing operations, and high-level process
descriptions.

1.1 Related Work

The proposed work is related to two areas in literature - multi-sensor network
and distributed self-adaptive software. Research on multi-sensor network devoted
to human tracking and identification can be found in [4], [13], [12], [14] and [15].
An integrated system of active camera network has been proposed in [16] for
human tracking and face recognition. In [2], a practical distributed vision system
based on dynamic memory has been presented. In our previous work [17], we
have presented a panoramic virtual stereo for human tracking and localization
in mobile robots. However, most of the current systems emphasize on vision
algorithms, which are designed to function in a specific network. Important issues
concerning fault-tolerance and sensor reconfiguration in a distributed system of
sensors are seldom discussed.

These issues are addressed to some extent in the second area namely dis-
tributed self-adaptive software. Much of current software development is based
on the notion that one can correctly specify a system a priori. Such a specification
must include all input data sets, which is impossible, in general, for embedded
sensorimotor applications. Self-adaptive software, however, modifies its behavior
based on observed progress toward goals as the system state evolves at run-time
[8]. Current research in self-adaptive software draws from two traditions, namely
control theoretic and planning. The control theoretic approach to self-adaptive
software treats software as a plant with associated controllability and observabil-
ity issues [7]. Time-critical applications require the ability to act quickly without
spending large amounts of time on deliberation. Such reflexive behavior is the
domain of the control theoretic tradition. Drawing from the planning commu-
nity, a generic software infrastructure for adaptive fault-tolerance that allows
different levels of availability requirements to be simultaneously supported in a
networked environment has been presented in [6]. In [1], a distributed control
architecture in which run-time behavior is both pre-analyzed and recovered em-
pirically to inform local scheduling agents that commit resources autonomously
subject to process control specifications has been presented.

1.2 Architecture Overview

The proposed distributed vision system has three levels of hierarchy - sensor
nodes (S ...Sn), resource managers (RM;...RM[), and user agents (U A;...UAp),
as shown in Fig. 1. The lowest level consists of individual sensors like omni-
directional cameras and pan-tilt-zoom cameras, which perform human and face
detection using motion, color and texture cues, on their data streams indepen-
dently in (near) real-time. Each sensor reports its time-stamped object candi-
dates (bearing, sizes, motion cues) to one or more resource managers at the next
level. The communication protocol between the sensor and the resource man-
ager could be either unicast or multicast. A resource manager acts as a proxy
by making these object candidates available to the user agents at the topmost
level. Thus the resource manager could serve many user agents simultaneously,
freeing the sensors to do dedicated feature detection and extraction only. The

user agent, in our application, matches the time-stamped object candidates from
the most favorable sensors, estimates 3D locations and extracts tracks of moving
objects in the environment. There could be other user agents that use the same
or different sensor information but with a different task specification as well.

All the components of the system communicate using the FEthernet LAN.
Thus Network Time Protocol (NTP) is used to synchronize the local clocks of
the nodes after justifying that the synchronization resolution provided by NTP
is sufficient for our task. For further details in implementation and applications
of NTP, the reader is referred to [10] and [11].

UA ¢ _><: .
RM ¢
A2 —@4— UA : User Agent
RM : Resource Manager
| @ | S : Sensor Node
RM
UA I O

Fig. 1. System Architecture

2 Sensor Nodes

The typical flow of information at a sensor node is shown in Fig. 2. The lowest
level is the sensor layer. A sensor node consists of a physical sensor and a proces-
sor. In general, the sensor node could also have motor capabilities, for example,
a camera that could pan or a camera that is mounted on a robot. The pro-
cessor could be a desktop computer or a simple embedded processor depending
on the computational needs of the sensors. For example, a 68HC11 processor is
sufficient for a simple pyro-electric sensor, which detects temperature changes.
But a powerful desktop computer is needed for running algorithms for motion
detection using vision sensors in real-time. In any case, the nodes should be able
to connect to a Local Area Network (LAN). This enables them to communicate
with the layer immediately above in hierarchy. Two such vision sensor nodes
used in our human tracking system will be discussed in Sec. 6.

At the sensor level, the physical sensor perceives the environment, typically
within a certain frequency spectrum of electromagnetic waves. The raw data is
then, digitized by the device drivers of the sensor. The digitized data is pre-
processed to get rid of random and systemic noise (if the noise models are avail-
able). The noise-free data is then used to extract useful features of interest. The

Resource Manager Sensor Node
< :> Interface

Fedure P Pre-processng |
Extradion Noise filter - D<] \/V\

Sensor Stimuli

Fig. 2. Sensor Node

features thus extracted are streamed out to the resource manager via the Re-
source Manager Interface (RM-Interface), shown in Fig. 2. The extracted feature
set falls into two classes namely basic features and special features. Typically,
basic features are common to all the sensor nodes, require low bandwidth and are
streamed by default to the resource manager while the special features are node
specific, require high bandwidth and are provided on-demand by user agents.
For the task of tracking and localization of human subjects in a smart room,
the basic features include the bearing and size of moving subjects while special
features include their texture, color and motion cues. The special features can be
used to match the objects across two cameras and thereby determine their 3-D
location. Object matching using special features is further elaborated in Sec. 6.

When a sensor comes online, its RM-Interface reports to a resource manager,
the sensor’s unique ID followed by its location and geometry in a global refer-
ence frame. On receiving a confirmation from the RM, it activates the sensor’s
processing loop, which does the motion detection and periodically reports the
feature. The RM-Interface is capable of receiving commands from the resource
manager. Some commands are general like pausing operation or changing the
reporting rate. Others are specific to the resource like motion commands to a
PTZ platform or a mobile robot.

3 Resource Manager

A resource manager structure is shown in Fig. 3. The resource manager (RM)
is the via-medium between the producers of information (the sensor nodes) and
their consumers (the user agents). The resource manager keeps track of the cur-
rently available sensors and reports their status to the user agent periodically.
The user agent chooses the best sensor subset from the available pool to ac-
complish its goals. The resource manager, therefore, acts as a proxy between the
sensors and user agents. Thus the resource manager could serve many user agents
simultaneously, freeing the sensors to do dedicated feature detection and extrac-
tion only. This way the sensors are not committed to a single agent, but could

be shared among many agents. However, the motor functions of a node cannot
be shared because they cause conflicts when more than one agent attempts to
perform a motor task on the same sensor node. So, a lock manager manages
the motor functions of a node. There is also the facility of maintaining multiple
resource managers simultaneously (see Fig. 1). This improves fault-tolerance in
the event of failure of a particular resource manager and improves performance
in reducing load per resource manager. While using multiple resource managers,
the better bandwidth utilization is achieved by employing multicast communica-
tion protocol. In such a scenario, a sensor node pushes the data on the wire only
once addressing it to the multicast group to which the resource managers belong.
The multicast backbone, then, efficiently routes the data to all the members of
the group.

Multi-threaded
data buffer

oo)

4+ User Agent Proxy
1

Data Buffer —

[“fl=1 DataBuffer [—

Y
From Sensor nodes

User Agent Proxy
<+ 2

—owone)

Fig. 3. Resource Manager

3.1 Multi-threaded Data Buffer

In the RM, the Multi-threaded Data Buffer (MDB) collects these time-stamped
feature sets from different sensors and buffers them. When the RM-Interface of a
sensor begins the registration process by sending its unique sensor ID, the MDB
checks for the validity of the ID (i.e. if it is a trusted and known sensor). This

simple security check prevents the MDB from being flooded by unscrupulous
requests for service. After validation, a thread is spawned to serve that particular
type of sensor. The buffering process that is crucial for synchronization of data
from different sensors is discussed in Sec. 5.

3.2 User Agent Proxy

User Agent Proxy (UA-proxy) is the end point in the RM, which serves the
user agents. Similar to MDB, UA-proxy registers and validates a user agent and
a thread is spawned to begin the information exchange with the user agent.
UA-proxy provides the user agents with the list of currently available sensors.
Depending on a user agent’s choice from this list, the UA-proxy delivers the
corresponding sensor parameters and their time synchronized feature sets to the
user agent. In Fig. 3, the solid lines between the UA-proxies and the data buffers
in MDB indicate the respective user agent’s choice of sensors.

The states of sensors are pushed to the user agents when one of the following
occurs

— A new sensor has registered or,
— A sensor has failed.

Depending on this information, the User Agent modifies its choice set and
informs the UA-Proxy which then responds accordingly. The User Agent can
also request special features in addition to the default feature set from sensors
via the Resource Manager.

4 User Agents

User Agents are processes that achieve a specific goal by using multiple sensori-
motor resources. When they go about doing this, the availability of the required
resources is not always guaranteed. Even if all the resources are available, the en-
vironmental context may prevent them from reaching the goal. This may require
some action in the form of redeployment of sensors to handle the new context.
User agents are thus adaptive to hardware, software and environmental contexts.
A straightforward way to realize a user agent is to identify useful system con-
figurations and assign a behavior to each configuration. Since the combinatorics
of this procedure is prohibitive when there are a large number of sensors, an
inductive method could be used. In this method, the system could learn from
past behavior and identify useful system configurations by itself. An example of
user agent used in our system will be given in Sec 7.

5 Time Synchronization Mechanism

The Resource Manager plays a vital role in making the sensors available to the
user agents in a timely and fault-tolerant fashion. In this section we discuss how

the features from multiple sensors are synchronized in time. A simple way to solve
this would be to synchronize all the cameras using an electronic trigger signal.
However, this hardware solution is not general enough to handle heterogeneous
sensors and mobile sensors, which are an inevitable part of a smart environment.
Even in the case of an all camera network, such synchronization could prove to
be difficult and expensive, especially when there are many cameras scattered
over a wide area. With the objective of providing a simple, inexpensive yet
general solution, we propose a software solution exploiting the existing time
synchronization protocol (NTP) running in today’s computer networks.

Once the computer nodes are synchronized by NTP, the sensors attached to
them could work independently and time-stamp their dataset based on their local
clocks. These datasets are buffered at the multi-threaded data buffer (MDB) in
the resource manager. When a report has to be sent to a UA, its UA-proxy in the
resource manager queries the MDB for the current data from the user agent’s
sensor set. The query is parameterized by the current time. Each sensor’s feature
set that is closest in time may be returned. This method works when different
sensors process at approximately the same rate. However, if their processing
rates differ by a wide margin, this procedure could lead to errors.

®. 1

(&.1)
e,

Track

Fig. 4. Illustration of errors due to lack of synchronized matching across two sensors.
PANO_2 detects the object at white circles 1, 3, & 5 while PANO_1 does at 2 & 4.
The dark circles show the location estimates using the most recent bearings from the
sensors while the gray circle shows the estimate at time t when interpolation is used

Let’s demonstrate this by a simple example in which only the bearing an-
gles to the moving subjects from the sensors are used. Suppose, two panoramic
sensors PANO_1 and PANO_2 are registered in the RM and they report their
bearings (to a single moving object in the scene) at different rates as shown
in Fig. 4. If UA-proxy were to push the latest reported feature sets from the

sensors to the UA, the result of fusion would be inaccurate, as shown in Fig. 4,
because of timing discrepancy between the two sets. The white circles show the
real positions of the moving object along the track. The dark circles show the
error in triangulation caused due to matching datasets not synchronized in time.

So in such situations, using suitable interpolation techniques (polynomials or
splines), the feature sets must be interpolated in time. Interpolation algorithm
must also be aware of certain properties of the feature sets like the angular
periodicity in the case of bearings. MDB is capable of interpolating the data
buffer to return the feature set values for the time requested by the UA-proxy
(see Fig. 5). This ensures the feature sets being used to fuse are close in time.
However, it should be noted that for doing the interpolation, we need to assume
that a linear or spline interpolation will approximate the motion of a human
subject between two time instants, ¢; and ¢2. In a typical walk of a human
subject, the motion track can be approximated to be piecewise linear, so the
bearing requested for time ¢ in PANO_1 can be calculated as

(6, — 62)
(t1 = t2)
where 6; and 0, are bearings measured in PANO_1 at time #; and ¢, respectively.
The time ¢ used in the above equation is the time for which a measurement of
bearing, ¢, is available from PANO_2. The angular periodicity of bearing angles
has not been shown in Eqn. 1 for the sake of simplicity. However it has been
incorporated in the interpolation calculations on the real system. We can see that
the result of triangulation using bearings 6 (in PANO_1) and ¢ (in PANO_2),
represented by a gray circle in Fig. 4, has reduced the error considerably. Real
scene examples will be given in Sec. 7.

6= (t—t1)+01. (1)

Data Buffer 1

| Interpolate |- T T T 7T T

User Agent Proxy @

| Data Buffer 2
Interpolate T T T T 7717

Fig. 5. Interactions between User Agent Proxy and Data Buffer

This algorithm will work provided all the different layers in the hierarchy
have a global notion of time. Using Network Time Protocol (NTP), one could

achieve time synchronization resolution of the order of 5ms among the nodes of
a Local Area Network (LAN). If the fastest sensor in the system would take at
least twice this time (every 10ms) to produce a report, then this resolution is
acceptable. Typically this is valid because cameras have a frame rate of 25Hz
with added overload in processing (i.e. a report at every 40ms at most from a
camera).

6 Vision Sensor Nodes

6.1 Panoramic Camera Nodes

Effective combinations of transduction and image processing is essential for op-
erating in an unpredictable environment and to rapidly focus attention on im-
portant activities in the environment. A limited field-of-view (as with standard
optics) often causes the camera resource to be blocked when multiple targets are
not close together and panning the camera to multiple targets takes time. We
employ a camera with a panoramic lens [3] to simultaneously detect and track
multiple moving objects in a full 360-degree view.

Figure 6 depicts the processing steps involved in detecting and tracking mul-
tiple moving humans. Four moving objects (people) were detected in real-time
while moving in the scene in an unconstrained manner. A background image
is generated automatically by tracking dynamic objects though the background
model depends on the number of moving objects in the scene and their motion.
Each of the four people were extracted from the complex cluttered background
and annotated with a bounding rectangle, a direction, and an estimated dis-
tance based on scale from the sensor. The system tracks each object through the
image sequence as shown in Fig. 6, even in the presence of overlap and occlu-
sion between two people. The dynamic track is represented as an elliptical head
and body for the last 30 frames of each object. The human subjects reversed
directions and occluded one another during this sequence. The vision algorithms
can detect change in the environment, illumination, and sensor failure, while
refreshing the background accordingly. The detection rate of the current imple-
mentation for tracking two objects is about 5Hz.

With a pair of panoramic sensor nodes, 3D location of multiple moving ob-
jects can be determined by triangulation. This pair could then act as a virtual
sensor node which reports the 3D location of moving objects to the resource
manager. But there are two issues that must be considered namely, matching
objects from widely seperated viewpoints and triangulation accuracy when the
object is collinear with the cameras. Robust matching can be done by using spe-
cial features from the sensor nodes like size, intensity and color histogram of the
motion blobs in addition to the basic features [17]. When the object is in collinear
configuration with the cameras (and if they are the only ones available at that
instant), we employ the size-ratio method described in [17]. By using the ratio
of the size of objects as seen from the two cameras, their distances from each
camera, could be calculated (see Fig. 7a). Figure 7b shows two subjects (walk-
ing in opposite directions on a rectangular track) being successfully tracked by

Fig. 6. Motion detection & tracking in a panoramic camera

the algorithm. There are outliers in the track caused due to false detections and
mismatches which can be rejected using the fault-tolerance mechanism described
later in Sec. 7.1

6.2 Pan-Tilt-Zoom Camera Nodes

The PTZ cameras are another type of sensors used in our system. A PTZ camera
can function in two modes - 1) motion detection, and 2) target tracking. In
mode 1, the camera remains still and functions in exactly the same way as a
panoramic camera, except that now it has a narrow field of view with high
resolution. Though the area covered is very limited due to narrow field of view,
it is better than panoramic camera for face detection. In mode 2, the camera
gets information about a moving target from the higher level and tries to pursue
the target. In this mode, it could continuously receive information from the
higher level for target location, or it could take over tracking itself (see Fig. 8).
Whenever a face is detected in its field of view, it could zoom in and snap a face
shot of the moving person immediately. Face shots fall under the catergory of
special features for this sensor node and are sent to user agents on demand.

7 Experimental Results

In this section, the implementation of the system as well as preliminary ex-
perimental results has been described. The smart room consists of four vision
sensors to monitor the activities of human subjects entering the room. Our
experiments were conducted using different arrangements of sensors which are
shown in Figs. 11 & 13. Two of the sensors are panoramic cameras represented
as Pano-I and Pano-II respectively, while the other two are Sony Pan-Tilt-Zoom
(PTZ) cameras represented as PTZ-T and PTZ-II respectively. A single resource
manager coordinates the cameras and reports their availability to the Track User
Agent (Track-UA). The goal of this user agent is to track multiple humans in
the smart environment and get face shots of the human subjects (see Fig. 9

ﬂ 80 b }cﬂll.inearregion

Exrors due to false matches)
o
0 o
o|®
o l“h 1)
o

(b) False matches in the center of the track could be rectified by a third camera

Fig. 7. A virtual sensor node comprising of two panoramic cameras providing 3D lo-
cations of objects in the scene

Fig. 8. Illustration of using flow to track moving object in a PTZ camera node

and Fig. 10). The efficacy of the system can be evaluated based on two crite-
ria, namely fault-tolerance and accuracy of the tracking. The former criterion
evaluates the usefulness of hierarchical design while the latter evaluates vision
algorithms and synchronization between multiple sensors.

7.1 Fault-Tolerance Evaluation

The first criterion was evaluated by generating faults at the sensor nodes and ob-
serving how the system reacts. As explained in Sec. 3, the resource manager is at
the core of the fault-tolerant operation of the system. In our system, the resource
manager maintains an availability list. This list is pushed to the Track-UA upon
occurrence of certain events like a sensor coming online or a sensor failure. The
Track-UA uses the rule-based decision making engine shown in Table 1 to take
appropriate actions.

Table 1. The rule-based decision making engine in Track-UA

Availability Action
At least one camera Keep track of the heading of the human subjects
Panoramic PTZ pair that|Use the bearing information from panoramic camera to
are close to each other pan the PTZ towards the most dominant human subject
Two Panoramic and one|Match objects across the panoramic cameras. Triangulate
PTZ to find the 3-D location of each matched object. Use the
PTZ to look at one of the objects

Two Panoramic and two|Same as previous state, except assign the two of the ob-
PTZ jects to the two PTZ

The system reacting to the event of Pano-II failing is shown in Fig. 11. When
both the panoramic cameras are available, the 3-D location of the moving subject

01 02

Fig. 9. Frames from PANO-I & PANO-II showing objects O1 & O2 being tracked

Fig. 10. Face shots of O; from PTZ-I and O from PTZ-II respectively

can be estimated by triangulation (Fig. 11(a)). In this case any PTZ camera
(PTZ-I or PTZ-II) can be assigned to focus on the human subject. However if
Pano-II fails, we can only use Pano-I to estimate the bearing of the subject. If
no other cameras are available for 3-D localization via triangulation, we can only
use PTZ-I that is closely placed with Pano-I to obtain the face of the human
subject.

In Sec. 6.1, we showed two kinds of failures when only a pair of panoramic
cameras is used for 3D-localization namely, poor triangulation at collinear con-
ditions and stereo mismatches. Both these errors can be detected and can be
easily handled by a third camera as shown in Fig. 12. Collinear conditions can
be detected easily from the bearing angles. The triangulation accuracy under
such conditions can be improved by either using a third camera or by using the
size-ratio method when one is not available. A more difficult problem is the de-
tection of false objects due to stereo mismatches. Again by verifying each object
candidates with a third camera, false ones can be rejected.

T %
o
[J
4
P DOOR|
oP
0P
JUCH
prz| Pejio-I1 PTZII]
(a) (b)

Fig.11. Pano-I and Pano-II are available in (a). Pano-II failed in (b)

Camera-1 Camera—2

Camera—3

Fig.12. Object Ty is collinear with Camera-1 and Camera-2 but can be localized
by (Camera-1,Camera-2) pair using size-ratio method or better by either (Camera-
1,Camera-3) pair or (Camera-2,Camera-3) pair using triangulation method. A mis-

match could result in the false object Ty which can easily be discarded when verified
by Camera-3

In a multi-sensor network, information from many cameras can thus provide
a better degree of fault-tolerance and allow for dynamic resource reconfiguration
to perform a particular task. Results from a real run are shown in Fig. 13.
Figure 13a shows two sensors triangulating at the moving object. But as the
object moves further to the right, it is occluded from the view of one of the
sensors. So in Fig. 13b, we observe that another sensor is brought in to continue
tracking. The same process is repeated for the case of collinear sensor geometry
in Figs. 13c & 13d. We have discussed fault-tolerance by sensor reconfiguration
in more detail in [5].

7.2 Synchronization Results

In this experiment, a person walked along a pre-determined path at a constant
velocity and two panoramic cameras - Pano-I and Pano-II are used to track
the motion (Fig. 14). Before the start of the experiment, the local clocks on all
the sensor nodes are synchronized using NTP. In this experiment, Pano-II is
set to process twice as fast as Pano-I. The result of target tracking under this
situation is shown in Fig. 14a. We can notice that the error in the track result
is quite large with a mean of around 60cm due of lack of synchronization. After
we employed the interpolation method discussed in Sec. 5, the mean localization
error is reduced within 15cm (Fig. 14b).

8 Conclusion

A distributed sensor network architecture comprising of three levels of hierarchy
has been proposed in this paper. The hierarchy consists are sensor nodes, re-
source manager and user agents. The resource manager acts as a proxy between
the sensor nodes and the user agents allowing many user agents to simultaneously
share sensor resources. The system was implemented using two types of vision
sensors, namely panoramic cameras and pan-tilt-zoom cameras. The system was
evaluated for its fault-tolerance performance and accuracy of tracking. A simple,
cost-effective way of synchronizing data streams from heterogeneous sensors us-
ing NTP was discussed and the experimental results showed the practical utility
of this approach.

Given the general nature of the proposed architecture, it is possible to add dif-
ferent types of sensors such as acoustic and pyroelectric sensors, and use them to
perform a variety of tasks. The system will be extended to realize its full potential
of having multiple user agents, each pursuing a specific goal in the smart envi-
ronment, simultaneously using multiple resource managers in the multi-sensor
framework. The system could be further extended to provide a human interface
by building semi-autonomous user agents. A semi-autonomous user agent could
interact with a human who can make decisions. While acting under guidance, the
agent can learn and increase its confidence in handling certain situations. When
it encounters similar situations in the future it can autonomously act without
guidance.

(d)

Fig.13. Frames from a tracking task demonstrating pair-wise sensor mode changes
induced on occurrence of faults like object track lost by one of the sensors (a-b), or
collinear sensor geometry (c-d)

(a) (b)

Fig. 14. (a) Unsynchronized tracking and, (b) Synchronized tracking

Ac no ledgements

We would like to thank other members of our research team - Gary Holness,
Subramanya Uppala, S. Chandu Ravela, and Prof. Roderic Grupen - for their
involvement in the development of this research. We would also like to thank

uichi Kikuchi for his contribution to the development of the Pan-Tilt-Zoom
sensor node.

Re erences

1 D. R. Karuppiah et al. Software mode changes for continuous motion tracking.
In P. Robertson, H. Shorbe, and R. addaga, editors, ,
volume 1936 of , Oxford, UK, April 1 -19
2000. Springer erlag.

2 T. Matsuyama et al. Dynamic memory Architecture for real time integration of
visual perception, camera action, and network communication. In

)
volume 2, Hilton Head Island, SC, une 2000.

3 P. reguss. Panoramic imaging block for three-dimensional space. U.S. Patent
4,566, 63, anuary 19 6.

4 1. Haritaoglu, D. Harwood, and . S. Davis. W4 Real-time system for detection
and tracking people in 2.5d. In

, Freiburg, ermany, une 199 .

5 . Holness, D. Karuppiah, S. Uppala, R. rupen, and S. C. Ravela. A service

paradigm for reconfigurable agents. In
, Montreal, Canada, May 2001. ACM.
To appear.

6 Z.T. Kalbarczyk, S. Bagchi, K. Whisnant, and R. K. Iyer. Chameleon A software

infrastructure for adaptive fault tolerance.
, 10(6) 1 20, wune 1999.

10

11

12

13

14

15

16

M. Kokar, K. Baclawski, and . A. Eracar. Control theory based foundations of
self controlling software. , 14(3) 3 45, May 1999.
R. adagga. Creating robust-software through self-adaptation.
, 14(3) 26 29, May 1999.
K. Marzullo and S. Owicki. Maintaining the time in a distributed system.
,19(3) 44 54, uly 19 5.

D. . Mills. Internet time synchronization The network time protocol.
, 39(10) 14 2 1493, October 1991.
D. . Mills. Improved algorithms for synchronizing computer network clocks.

, 3(3) 245 254, une 1995.
A. Nakazawa, H. Kato, and S. Inokuchi. Human tracking using distributed vision
systems. In , bages 593
596, Brisbane, Australia, 199 .
Kim C. Ng, H. Ishiguro, Mohan M. Trivedi, and T. Sogo. Monitoring dynamically
changing environments by ubi uitous vision system. In
, Fort Collins, Colorado, une 1999.
A. Pentland. ooking at people Sensing for ubi uitous and wearable computing.
,22(1) 10 119,
anuary 2000.
T. Sogo, H. Ishiguro, and Mohan. M. Trivedi.
, chapter N-Ocular Stereo for Real-time Human Tracking.
Springer erlag, 2000.
Mohan M. Trivedi, K. Huang, and I. Mikic. Intelligent environments and active
camera networks. , October
2000.
Z. Zhu, K. Deepak Rajasekar, E. Riseman, and A. Hanson. Panoramic virtual
stereo vision of cooperative mobile robots for localizing 3d moving objects. In
, bages
29 36, Hilton Head Island, SC, une 2000.

