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Appendix  2. 1. Motion generalization 

The dominant motion can be generalized to a smooth motion with changing speed and curved 
path. The basic idea is that the smooth motion can be modeled as piece-wise linear motions, and the 
3D model will be a view-based representation along the (curved) path.  The content of this appendix 
is related to both Section 2.2 and Section 2.3, so it is advised to read this appendix after you finish 
reading these two sections. 

1. Translation with varying speed 

The basic vehicular motion model is based on the assumption that a vehicle translates on a 
straight line with constant speed in a considerable long time interval. In fact, the proposed 
algorithms for image stabilization and EPI analysis do not require such a strict 1D constant-speed 
translation in the entire time period [0, T]. Motion with a curved path and varying speed is also 
allowed. First, let us consider the situation when the dominant motion is a translation but with 
varying speed V t( ) . The condition under which the image stabilization and EPI analysis work is (1) 

the speed is piecewise linear (e.g. inside m=64 frames, i.e. 2 seconds), or  (2) the speed function 
V t( ) is known. Based on these assumptions, we have two approaches for the nonlinear translation. 

(1). Temporal re-sampling - If the speed of the vehicle, V t( ) , can be accurately measured, 

then the x coordinate of a point in frame (time) t can be represented as 
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where v(t) = f V(t) / Z is the image velocity of point (X,Y,Z) in time t. The function of such an x-t 
image sequence can be expressed as  
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where g0(x) is the 1D image function in time t=0. Under a nonlinear 1D translation, spatio-temporal 
(ST) loci in an EPI are curves instead of straight lines. It will make ST orientation detection or locus 
tracking much more complex. Therefore, we perform a temporal re-sampling and interpolation in 
the time axis. The new time (i.e. frame index) t’ will be 
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where  V0 is a target speed, for example, V0 =E[V(t)], and v f V
Z0

0=  is the image velocity of the 

point (X,Y,Z) after image re-sampling. Hence the re-sampled x-t image becomes 

g(x,t') = g0(x - f 
V
Z

0  t') = g(x - v0 t')  (a2.1-3) 

Eq.  (a2.1-3) has the same form as Eq. (26), so after temporal re-sampling, we have an equivalent 
image sequence under 1D translation of constant speed V0.  The temporal re-sampling process is 
independent to the structure of the 3D scene. 

(2). Piecewise linear motion model - If the motion can be approximated as a piecewise linear 
motion inside the window of size m (e.g. 64) that is used to detect the orientation of the locus at the 
center of the window, temporal re-sampling may not be necessary. A smooth translation, even with 
varying speed, does not change the occluding relations between objects with different depths. 
However, the depth estimates extracted from such an x-t image are a function of the speed V t( ) . So 

if we know this speed function, we can normalize the depth estimates by using the speed 
information. Suppose that the image velocity of point (x,y,t) is v, then the 3D coordinates of that 
point should be 
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2.  Piecewise circular motion model  

As a generalization of the “translation + fluctuation” motion, we have proposed a motion 
model that consists of piecewise "circular motions + fluctuations”. A piece-wise circular motion has 
one of the following four forms(Fig. a2.1.1): 

(1) Pure rotation: The camera rotates around its nodal point (C5 in Fig. a2.1.1). The relation 
between two camera poses is a pure rotation (1D panning). 

(2) Inner-view rotation: The camera moves along a circular path while its optical axis is always 
pointing to the center of the circle where the circular path is on(C1 and C3 in Fig. a2.1.1). It 
is the situation when the camera moves around an object. The relation between two poses 
of the camera is 2D rotation plus 2D translation.    

(3) Outer-view rotation. The camera moves along a circular path while the opposite direction 
of its optical axis is pointing to the center of that circle (C4 in Fig. a2.1.1). It is the situation 
when the camera does an off-nodal-point  rotation around itself. 
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(4) Translational motion. The camera moves along a straight path while its optical axis is 
pointing to the orthogonal direction of the motion. It can be viewed as a special rotation of 
the camera on a circle whose center is at infinity (C2 in Fig. a2.1.1).  

A combination of the above four types of rotation can model a rather general motion of the 
camera on a curved path (Fig. a2.1.1).  
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Fig. a2.1.1 

(1) Mathematical model of the piecewise circular motion  

We will first model the smooth motion part; the fluctuation of the camera will be added in 
afterwards. When the vehicle is moving on a planar road surface, the path of the camera can be 
represented as piecewise circular segment. Without loss of generality, we assume that the optical 
axis of the camera is always perpendicular to the motion direction and is parallel to the road 
surface. During the movement of the camera on a certain piece of the circular curve, the converging 
point C is defined as the origin of the world coordinate system X Y Zw w w , and the three 
axes X Y Zw w w, , are parallel to the three axes X Y Z0 0 0, , of the camera in the starting point of the 
circular arc (when the time t = 0). Thus the camera’s motion is always a rotation around theYw axis 
(Fig. a2.1.2). Assume the radius of the rotating circle is ρ , then a point P( X Y Z0 0 0, , ) in the camera 

coordinate system in time t can be represented in the world coordinate system as  

        ρ−=== 000 ,, ZZYYXX www  

Denote the coordinates of that point in time t as X Y Zt t t, , , and the rotating angle is ω (Fig. a2.1.2), 

the following relation holds: 
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where the motion is pure rotation when ρ =0, inner-view rotation when ρ >0, outer-view rotation 
whenρ <0 and pure translation when ρ → ±∞ . 
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Fig. a2.1.2 

1) When ∞→ρ , we have 0→ω  therefore ωωω →→ sin  ,1cos  and V→ρω (a constant 

value), hence 
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It is the motion model of a pure translation. 

2) When ρ = 0, we have 

   
X
Y
Z

X Z
Y

X Z

t

t

t

w















=
−

+

















0

0

0 0

cos sin

sin cos

ω ω

ω ω
  (a2.1-7) 

It is the motion model of a pure rotation. The relationship between the corresponding image 
coordinates is 
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In this case, we cannot obtain any depth information. The depth information is also unreliable if ρ  

is too small. However the rotation angle ω can be calculated by image registration of the two 
images in pure rotation.  

3) When  ρ >> Z0 , i.e. ρ  is large enough, V = ρω  approaches a constant value, and 

sin ,cosω ω ω→ → 1, we will have 
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In a short time interval (e.g. m=64 frames), we will have
Z

V0 0
ρ

→  (if ρ >> Z0 ), therefore we can 

model the camera motion as a translation along the tangent of the circular arc. Hence we can still 
use the assumption of the straight loci inside an m×m window of an EPI to find the image velocity 
v of the point at the center of the window. Then the 3D coordinates of that point in time t can be 

calculated as ( ) 





=

v
VF

v
Vy

v
VxZYX ttt ,,,, . The 3D coordinates ( X Y Z0 0 0, , ) in the reference 

frame ( t = 0) can be computed by using the transformation between the current frame t and the 
reference frame. 

4) In the general case, radius ρ  and depth Z0  are at the same scale. If we know f, ρ  andω , 

then 
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By finding the corresponding point pair in the two frames ( ) ( )x y x yt t0 0, , , , the rotating angle ω  

and the depth Z0 can be calculated by using Eq. (a.2.1-10). More accurate estimation can be 
achieved by tracking a feature point in multiple frames. We may not be able to extract epipolar 
plane images in this general case since the epipolar line of a point is a curve. In this case, feature 
point matching is needed (Ishiguro90, Murray95). 

(2). Motion filtering under the generalized motion model 

We model the dominant motion as a circular motion along a circular path with radius ρ  and 
constant angular speed ω . The linear speed is V = ρω . The fluctuation is modeled as a 3 DOF 
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rotation ),,(: zyxR ΩΩΩ . The focal length of the camera in time t is f, the zooming factor is s 

between the current frame t and the reference frame t-1, i.e.,  fsf ′= . Then the relationship 

between the coordinates in two successive images is 
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The relationship between the image coordinates ( )′ ′x y, and ( )x y,  is 
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After a Taylor expansion of the above equation and then omitting the second-order terms ( 
i.e. xy x x x′ ′, ,Ω ω , etc., we have 
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Given N corresponding pairs Niyxyx iiii L,1),,( and),( =′′ , we have 
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where 
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Using least mean square method, The N+3 unknowns( yzxi TsNiT  and ,;,,1, Ω= L ) can be 

calculated given N≥3. Using the motion filtering techniques in Section 2.2, we can decompose the 
fluctuation and rectify the image sequence. 
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Appendix 2.2. Motion estimation  

 The inter-frame image displacements are estimated by using a pyramid-based matching 

algorithm. The hierarchical algorithm consists of four steps: pyramid construction, hierarchical 

block matching, match evaluation and robust estimation of motion parameters.  

Step 1: Generate the pyramids for the current and the reference (preceding) images. For 

computational efficiency, the final image displacements are only given for non-overlapping image 

blocks of a given size, say 16×16, in the finest layer (i.e. original image) of the reference frame. The 

matching process is carried out from coarse to fine resolution layers, starting from a layer with 

certain image size, e.g., 2 times as large as the matching block size. The list of the blocks is 

represented by their center coordinates {(ui,vi), i=0, ...,B-1} in the reference frame. 

Step 2: Determine the image displacements.  For each block in a layer of the reference frame, the 

absolute difference operation (a simple version of correlation) is carried out in an adaptive search 

window over the current frame pixel by pixel. Matches with largest correlation values are 

determined and the one with smallest displacement is selected as the best match. Notice that there 

may be several best matches due to similar patterns within the search window. The search window 

is “adaptive” in that the initial size of the search window is about half the image size in the first 

layer, but it is reduced in the finer layers. The motion vectors for these blocks are presented by 

{(∆ui, ∆vi), i=0, ...,B-1}.   

Step 3: Evaluate each match by combining a texture measure with the correlation measurement. 

This step is important because the confidence values will serve as weights in the parameter 

estimation. The evaluation of the matching itself is calculated from the normalized absolute 

difference of each block as 

∑
∈

∆+∆+−−=
),(),(

|),('),(|
255

10.1
ii vuWvu

ii
w

i vvuuIvuI
N

d  (a2.2-1) 

where ),( ii vuW  is the block centered at (ui,vi), Nw is the pixel number in the block, I(.) and I’(.) are 

the intensity values (0-255) in the reference and current frames, respectively. The texture is 

measured as the normalized average magnitude of the gradient image of the reference frame inside a 

given block i 
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where gmax is the maximum value of average magnitudes of all the blocks. The initial weight for the 

ith match is computed as 
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where κ = 8.0 in our experiments. Note that the weight is maximum (i.e. )0(

i
w = 1) when the match 

has the smallest difference and the best texture among all the blocks (i.e. di=gi=1), and is minimun 

(i.e. )0(

i
w =0) if di=0 or gi=0. 

Step 4: Estimate inter-frame motion parameters. We use a weighted least mean square 

(WLMS) method to iteratively estimate the inter-frame parameters W = (a1,…aN,b',c,d',e,g,h) in 

equation (4) and Eq. (9). The objective function is  
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where ui = (ui,vi)t, u’i = (ui +∆ui ,vi+∆ vi)t , i = 0,..., B-1, and the weight updating function is 
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where the scale factor ρ  is estimated as (Rousseeuw and Leroy 1987; Sawhney and Ayer 1996) 

 4826.1*|)(| )(k
i i

rmedian=ρ  (a2.2-6) 

assuming that the residuals can be modeled as a noisy Gaussian distribution (residuals for the non-

dominant components are the outliers). It has been pointed out in Sawhney and Ayer (1996) that a 

median-based estimate has excellent resistance to outliers. The iterative algorithm is given as 

follows. 

__________________________________________________ 

(1): Initialize : k=0, .(-1) 0W =  
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(2): Find Wk) using WLMS method. 

(3). Compute the distance || )1()()( −−=∆ kkk WWW , and estimate the scale factor ρ based on the 

current residuals. 

(4). If  ε<
∆ || )(

)(

k

k

W
W (e.g. 1.0e-3), or  ερ < , or iterating count k > MaxK (e.g., 20), then stop; else 

update the weights  )(k
i

w , assign k = k+1, and then go to step (2). 

_______________________________________________ 
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Appendix 2. 3. Energy model of the occluding boundary 

Define the following functions for Eq. (30) 

 g x t u x v t f x v t1 2 1 1( , ) ( ) ( )= − −  (a2.3-1) 

  g x t u x v t f x v t2 2 2 21( , ) ( ( )) ( )= − − −  (a2.3-2) 

It is easy to prove that 
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Now we will prove  
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In Eq. (a2.3-1), let x x v t'= − 1 , then x x v t= +' 1 , x v t x v v t− = + −2 1 2' ( ) ,therefore 
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Add Eq. (a2.3-3) and Eq. (a2.3-5), We have Eq. (31). 
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Appendix 2.4. GFOD: a Fast Algorithm  

The implementation of GFOD (Gaussian Fourier Orientation Detector) is based on a 1D Fast 
Fourier Transform (FFT) algorithm, and it is only performed in an m×m moving window along a 
1D scanline (e.g. x0 = 0). Generally speaking, a moving window technique can be designed to make 
use of the overlapping along the time axis in order to save computation time. However, the 
multiplication of a Gaussian window to a spatio-temporal epipolar plane image will increase the 
complexity of the re-use of the previous result. We have designed an fast GFOD algorithm that can 
use the temporal coherence as well as allow adaptive moving steps of the Gaussian window along 
the time axis.  A 2D Gaussian function can be separated as the product of two 1D Gaussian function 
as 

 ( )w x t w x w t, ( ) ( )= 1 1  (a2.4-1) 

The m×m Fouier transform ),( ωξG of g(x,t) = ( ) ( ) )()(),(,, 21 twxwtxftxwtxf = is calculated in two 

steps: first, for each column in the x direction, performing a 1D FFT obtain an intermediate 
result ( )G tξ, ; second, applying 1D FFTs along the t direction to obtain the final Fourier transform 

( )G ξ ω, . When the Gaussian window is centered at (x0, t1), the origin of an m×m sub-image, the 

Guassian Fourier transform for column t in this sub-image is 

 ( ) ( )[ ] ( )[ ]G t F g x t t w x w t F g x t t w x w tt1 1 1 1 1 1 1ξ, , ( ) ( ) , ( ) ( )= + = +  (a2.4-2) 

 

 

 

 

 

Fig. a2.4-1. Moving window method 

Assume that the next location that a Gaussian window will be applied is t t T2 1= + ∆ , then the 
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which means that the 1D Gaussian-Fourier transform of column t in the window of time t2 can use 
the 1D Gaussian-Fourier transform of column t+∆T in the window of time t1, if we have 

t T
m

+ ≤∆
2

, where t
m m

∈ −




2 2

, , and m is the size of the window. For such a column, the 

computation complexity is reduced to O(m), comparing to O( m mlog2 ) if 1D FFT is directly 

applied. When ∆T is smaller (i.e. the ST texture is richer hence the orientation estimation is denser 
and better) the speedup in computation is more obvious. In the extreme case when ∆T =1, For an 
M(row)×N(column) xt image, the multiplication and the addition of a 2D FFT ( using 1D FFT 
directly) is ( )O Nm m2 2

2log . Using the proposed fast algorithm, the computation complexity 

reduces to ( )O Nm m2
2 1(log )+ , which means almost 2 times speedup. 

 


