
Chapter 2.  
Panoramic Vision for Landmark Recognition  

Abstract 

This chapter presents a systematic approach for automatically constructing a 3D panoramic 
model of a natural scene from a video sequence for landmark localization of a mobile robot in an 
outdoor road scene. The video sequences could be captured by an unstabilized camera mounted 
on a moving platform on a common road surface. First, a 3D image stabilization method is 
proposed which eliminates fluctuation from vehicle’s motion so that "seamless" panoramic view 
images (PVIs) and epipolar plane images (EPIs) can be generated. Second, a comprehensive 
panoramic EPI analysis method is proposed to combine the advantages of both PVIs and EPIs 
efficiently in two important steps: locus orientation detection in the frequency domain, and 
motion boundary localization in the spatio-temporal domain. Finally, The texture map and the 
depth map of the route-based panoramic view representation are used to extract landmarks for 
mobile robot navigation. Since camera calibration, image segmentation, feature extraction and 
matching are avoided, all the proposed algorithms are fully automatic and rather general. Results 
of image stabilization and 3D construction for real image sequences are given. 

 

2.1  Introduction 

2.2   Motion Filtering and Image Stabilization 

2.2.1 Vehicular Motion Model (Appendix 2.1, Appendix 2.2) 

2.2.2 Image Rectification  

2.2.3 Motion Filtering Algorithms 

2.2.4  PVI and EPI generation: Examples 

2.3   Panoramic EPI Analysis Approach 

2.3.1 Motion Texture and Motion Occlusion Models (Appendix 2.3) 

2.3.2 GFOD: Large Gaussian-Windowed Fourier Orientation Detector (Appendix 2.4) 

2.3.3 Depth Belief Map and Data Selection  

2.3.4 Motion Boundary Localization and Depth Interpolation 

2.4  Panoramic Modeling and Generalized Landmark Selection 
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2.4.1 Image Rectification and Stabilization 

2.4.2 Panoramic Depth Acquisition: Parallel Processing 

2.4.3 Fusion of Depth and Intensity Maps 

2.4.4 Generalized Landmark Selection 

2.5  Summary and Discussions  

2.1.  Introduction 

What do we memorize when we drive in an unknown urban scene, such as a university 
campus or a downtown area?  We use landmarks (both natural ones and artificial ones) and their 
spatio-contexts. We cannot build an exact 3D model (with texture mapping) of the scene. Instead 
we may maintain a visual map based on landmarks of the road network that locate along the road 
side. Without doubt, 3D information is also useful. But how to represent these landmarks of the 
3D scene in our memories?  If we want to have a mobile robot ( autonomous vehicle) to do this, 
the most suitable sensor is a video camera. Hence the task turns to be maintaining a suitable 
visual representation of a large-scale 3D scene, and in order to do this, the essential issue is 
motion analysis of a long video sequence.  

In this chapter, we will address the problem of automatically constructing a 3D panoramic 
model of a static natural scene from an easily-obtained video sequence. We do not attempt to 
solve the general structure from motion problem; instead, the motion of the camera is somewhat 
constrained. That is, we assume that a dense image sequence can be captured by an uncalibrated 
camera mounted  on an ordinary vehicle, moving on a common (and often bumpy) road surface. 
Accurate motion parameters are generally unknown; the only thing known is that the camera 
roughly points perpendicular to the motion direction and that it is subject to an uncontrollable 
fluctuation. No assumption is made on the structure of the scene. The goal is to construct a 
compact representation of a large scale 3D scene from ordinary video sequences. To begin with, 
a multi-perspective panoramic view image (PVI) and a set of epipolar plane images (EPIs) are 
extracted from a long image sequence captured in the manner described above, and then a depth 
value is calculated for each pixel of the panoramic image by analyzing the corresponding EPIs. 
Thus we try to solve three problems: (1) how to generate seamless PVIs and EPIs from video 
under a more general motion than a pure translation; (2) how to analyze the huge amount of data 
in EPIs robustly and efficiently; and (3) how to extract landmarks from the texture and 3D maps.  
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It has been shown that under strict translation, a panoramic view image (PVI) can be 
generated by extracting a vertical column from each frame and piling them up to form a wide 
angle multi-perspective image (Zheng and Tsuji, 1992), and it has been used in mobile robot 
navigation. Similarly, a well-known epipolar plane image (EPI) first proposed by Bolles et al. 
(1987) can be generated by extracting a horizontal scan-line from each frame and piling them up 
to form a spatio-temporal (ST) image, where the orientation angle of a locus is proportional to 
the depth of the corresponding point. Techniques based on 2D ST image formation (panoramic 
view images and epipolar plane images) meet the need for a compact representation and fast 3D 
recovery (e.g., Ishiguro et al., 1990; Zheng and Tsuji, 1992; McMillan and Bishop, 1995; Dalmia 
and Trivedi, 1996; Murray, 1995; Shum and Szeliski, 1999); however the strong constraints of 
pure translation (or perfect rotation) limit the wide use of PVI representations and EPI methods. 
For EPI-based depth recovery methods, locus extraction is also a hard problem for image 
sequence of a natural scene with complex textures and unpredictable bumping in camera motion. 
In addition, the large amount of data in EPIs often makes it prohibitive in computation.  

In order to apply these two kinds of compact representations to an easily-captured image 
sequence, we have proposed and implemented a two-stage approach.  In the first stage, a 3D 
image stabilization method is proposed to de-couple vibrating motion and scene structure, thus 
making the epipolar plane image analysis and the panoramic view image representation valid for 
unstabilized image sequences. Notice that a commercial off-the-shelf camcorder with a digital 
stabilizing function usually distorts the perspective geometry of an image sequence because it 
uses 2D translation to stabilize the video sequence. Existing digital stabilization algorithms (e.g., 
Hansen, et al., 1994; Morimoto and Chellappa, 1997) are not designed to meet the need of 
keeping the loci straight in an EPI for a long image sequence.  Our 3D stabilization algorithms 
with 3D image warping and motion filtering are specially designed for EPI generation and 3D 
recovery.  Three algorithms are proposed for motion filtering, namely the locus tracking and 
fitting approach, motion classification and selection approach and statistical locus 
smoothing/fitting approach. Experimental results on many real image sequences have shown that 
seamless PVI and EPI can be generated.  

In the second stage, a Fourier energy method over a large Gaussian-windowed area of an EPI 
is proposed to robustly detect multiple orientations of the EPI’s motion texture in the frequency 
domain. This approach is different from the commonly-used locus tracking method (Murray, 
1995; Allmen and Dyer, 1991), or local operator methods, such as Gabor filters (Adelson and 
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Bergen, 1985; Heeger, 1987) and Steerable filters (Freeman and Adelson, 1991; Niyogi, 1995; 
Fleet et al., 1998), where only limited angle resolution can be obtained since a local motion 
detector is often performed in a small ST neighborhood. As far as we know, our work seems to 

be the first attempt to use large neighborhood windows (e.g. 64×64) for detecting local motion 

more robustly and accurately. Furthermore, motion boundaries are accurately located back in the 
spatio-temporal domain by measuring global intensity similarities only along the detected 
orientations. Occluded regions can be recovered by further exploring extra information near 
motion boundaries in the EPI1. Three-dimensional panoramic models have been constructed 
from several image sequences, some of which have more than 1000 frames. Most significantly, 
direct methods for all the steps have been developed in which image segmentation, feature 
extraction, and matching are avoided. We emphasize that only a small number of selected data 
corresponding to the selected PVI is processed in our approach, and the processing for all the 
epipolar planes can be done in parallel. Thus it is quite possible to implement the proposed 
algorithms in real time. Even the current sequential implementation in a Pentium 400 MHz PC 

can achieve a frame rate of about 2 frame per second for 128×128 images. For robot navigation 

application, sparse (or low resolution) 3D estimation may be enough for effectively extracting 
landmarks for robot localization, so it makes the realtime implementation even feasible.  

The rest of this chapter is organized as follows: Section 2 describes the principle and 
algorithms of image stabilization for generating panoramic view images and epipolar plane 
images. In section 3, a motion occlusion model is presented first, and then a Gaussian-windowed 
Fourier method is proposed for multiple-motion orientation detection. Three key algorithms will 
be presented in this section for panoramic epipolar plane image analysis that leads to a dense 
depth map with accurate depth boundary localization. In Section 4, an integrated system of 
constructing 3D panoramic model will be described, and the issues on landmark selection and 
robot localization will be briefly discussed. Experimental results of several image sequences for 
natural scene modeling and rendering are provided. A brief conclusion and discussion are given 
in the last section.  
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2.2. Motion Filtering and Image Stabilization 

2.2.1. The Vehicular Motion Model  

Suppose that a camera is mounted on a vehicle moving on an approximately flat road 
surface. In order to construct the 3D model of a roadside scene, the camera’s optical axis is 
perpendicular to the motion direction and its horizontal axis is parallel to the motion direction1. 
Within a considered long time period  [0,T], we assume that the motion of the vehicle (camera) 
consists of a smooth planar motion and an unpredictable small fluctuation due to the vehicle's 
motion over a rough surface. In many real cases, the smooth motion can be approximated as a 
constant velocity (V) translation.  The small fluctuation between two successive frames is 

modeled by three small rotation angles Ω Ω Ωx y z,  ,   around the X, Y and Z axes and three 

translation components zyx TTT  ,, along the three axes (Fig. 1).  A generalization of this model 

is given in Appendix 2.1 where the vehicle can move along a curved path, and yet the proposed 
methods in this chapter are still valid. 
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Fig. 1. The vehicular motion model  

Under this assumption, the relationship between coordinates of a 3D point at time t and time 
t-1 can be expressed as 





























Ω−Ω
ΩΩ−
Ω−Ω

=














−

−

−

t

t

t

xy
xz

yz

t

t

t

Z
Y
X

Z
Y
X

1
1

1

1

1

1
+















 −

z

y

x

T
T

VT
   

Using a pinhole camera model ( )x y f
X
Z

f
Y
Z

, ,=






, the relation of the image coordinates in the 
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where s is a zooming factor between two image frames. The relation between the image 
coordinate (x, y) (in mm) and the digital frame coordinate (u, v) (in pixels) can be expressed as 

( ) ( )vsfusfyx yx   , , =  (2) 

where sx/sy is the aspect ratio of the image sensor considering the effective focal length in pixels. 
Then the relation between frame coordinates in time t and t-1 can be derived as 
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Given N pairs of points (ut,i,vt,i) and (ut-1,i,vt-1,i) in frames t and t-1, (i=1,...,N), we will have 2N 
equations from Eq. (3), with N+6 unknown parameters (a1,…aN,b',c,d',e,g,h) in the case of small 
translational components (Tx,Ty,Tz) , i.e. 
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 In Eqs. (4) and (5), b′ and d′ are approximately constant values over the entire image in time t 

when (  , ,  T T Tx y z ) are very small and/or the depths of all the selected points do not vary too 

much. (Point pairs can be selected based on the closeness of their displacement (ut,i-ut-1,i, vt,i-vt-

1,i)). Eq. (4) can be solved by giving more than 6 point pairs (N ≥ 6). A hierarchical block 

matching and motion estimation algorithm (see Appendix 2.2; see also Zhu et al., 1999c) has 
been used to estimate the 6+N unknowns in Eq. (4). 

The image stabilization in the following is a process of eliminating fluctuations of the 
vehicle so that the motion after stabilization is a translation motion with constant velocity V 
within the time period [0,T]. This is the basic difference between our 3D image stabilization 
method and other image stabilization methods (e.g., Hansen, et al, 1994; Morimoto and 
Chellappa, 1997). The proposed 3D image stabilization approach consists of two steps: image 
rectification between the current frame and the previous rectified frame, and motion filtering 
over the entire image sequence. 

 

2.2.2. Image Rectification 

The aim of image rectification is to generate an image sequence that has horizontally 
parallel motion parallax between each pair of successive frames. From Eq. (5) we can define  
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k 1)( =  is defined as the "projective depth" of point i. 

Unfortunately we cannot find  a′  directly from Eq. (6) since we do not know Vk i)( in advance. 

However, a′ can be roughly estimated by using the relation of a′ , ai and g in Eq. (5) and (6), as 
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Note that the effect of the translational part Tx/sZi is ignored in Eq. (7), which will be re-
considered and compensated in the motion filtering step. Using a’ calculated from  Eq. (7) 
instead of the actual a’ will still yield a rectified image, since ai only causes a horizontal shift 

(Eq. (4)). Thus frame t can be warped to a rectified image (u′t, v′t) by using the following 

equation 
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By denoting ut = (ut,vt) and u′t = (u′t,v′t) as the coordinates of a point in the original and warped 

images, and the warping function as Wt = {(a',b',c,d',e,g,h) }, the image rectification in Eq. (8) 
can be expressed as 

 )(uWu tt=′t  (9) 

Hence, an estimation of motion parallax ( Vk i)( ) of point i due to smooth motion V can be 

derived as  

 aam i
i

t ′+−=)(ˆ  (10) 

where ai is estimated in Eq. (4) and a′ is estimated in Eq. (7). Now we will summarize the 

rectification process of a video sequence. Naturally the first frame (frame 0) of a image sequence 
is used as the reference frame. It should be warped to a rectified image using some kind of 
offline calibration (see Section 4.2), so that the x axis of the first frame will coincide with the 
motion direction of the camera, i.e.  

 )(uWu 000 =′  (11) 

where u′0 is in the desired coordinate system. The remaining frames are rectified in the following 

manner. Frame t is matched with the warped image of frame t-1. Then the warping function Wt 
for frame t can be found by using Eq. (4) and Eq.(7), where (ut-1,i, vt-1,i) is replaced by warped 

coordinates )(
1

i
t−′u =(u′t-1,i, v′t-1,i),  and an estimation of motion parallax )(ˆ i

tm  for each point i is 

computed by Eq.(10).  After image rectification we have  
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where Ti
t

i
t m )0,ˆ( )()( =m is the motion parallax of point i between the current frame t and the 

previous frame t-1, both of them are warped. Obviously, the interframe motion parallax field 
becomes a horizontal parallel field in the x direction after image warping. Note that in the above 
procedures of match and estimation, there is no requirement to track any point i across multiple 
frames. Index i is only valid between a pair of successive frames. 

2.2.3. Motion Filtering Algorithms 

      Even if the motion parallax field becomes a horizontal parallel field in the x direction 
between two successive frames, the locus of a feature point across multiple frame may not be a 
straight line due to motion model approximation (Eq.(4)) and the decomposition in Eqs. (7) and 

Eq. (10).  Note that )(i
tm  can also form a parallel field by adding any constant value (instead of 

a′ ) to the motion parallax of each point i. To remove this ambiguity, in principle,  we need to 

assume that a specific feature point i can be tracked across multiple frames (t=0,1,…,T) in the 

image sequence. Then the task of motion filtering is to find a straight line out of point set {( )(ˆ i
tm , 

t) (t=0,1,…,T)}, which satisfies the assumption of a 1D translational motion with the constant 
speed V. The procedure of the motion filtering is to find a small shift qt for each frame so that the 
shifted image  
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satisfies the constant speed assumption, i.e.  
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where k(i) is the projective depth of point i and it is not changed with time t. The shift qt has been 
assumed to be a constant between frames. Note that qt is taking into account the effect of Tx/(sZi) 
ignored in Eq. (7), under the assumption that the depth variation in the scene is small compared 
to the distance of the scene from the camera, or/and the x translation component Tx is small.  
From Eq. (12) to Eq. (14)  we have 
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Assume that qt is a random variable with zero mean, then k(i)V , which will treated as one 

variable, can be estimated as the mean (average) of )(ˆ i
tm  over all the frames in the image 

sequence, i.e. 

]ˆ[ˆˆ1 )(

1

)()( i
t

Tt

T

t

i
t

i mEm
T

Vk
∈=

=∑=  (16) 

We can always assume that q0 = 0, so qt can be estimated iteratively by  
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During the time period [0,T] under consideration from frame 0 to frame T, if we have N points 
(i=1,2,…,N),  we will have an estimation of qt irrelevant to any specific points, i.e. 

TtqVkmq ttt ,...,2,1  ,  1 =+−= −   (18) 
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Using more than one points in Eq. (18) means a more robust estimation. After we find qt for each 
frame, we just simply shift the rectified frame t by qt, which resulting in a image sequence as if 
the vehicle undergoes a translation motion with constant velocity V within the time period [0,T]. 
However, in a real situation, it is rare that a point can be in the field of views of all the frames in 
a long image sequence. So three algorithms have been proposed in real applications. 

 

 

 

 

 

 

Fig. 2. Motion filtering through locus tracking and fitting 
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 [Motion Filtering Algorithm 1 - Locus tracking and fitting  approach] 
The first algorithm needs to track some reliable feature points across multiple (warped) 

images. The basic idea of motion filtering will be presented in this algorithm. For illustrative 
purpose, in Fig. 2, each x-t image slice taken from frame t is presented as a light-colored 
rectangle with frame number labeled below it . The algorithm consists of the following steps. 

 

Step 1. Track some reliable feature points (along the scanlines) across as many frames as 
possible in the rectified image sequence. The feature points can be represented as  

{ NiTtu i
t ,...,1 }.,...,0,)( ==′  

In Fig. 2, the feature points being tracked are marked as stars on "raw loci" represented by solid 

lines.  Note that for a given point i,  it only appears in a period of time TTi ⊂ .  For example, for 

point i = 1,  T1 = {1,2,3,4,5,6}. 

Step 2. Compute the "displacement sequence" of each point i as 
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t Ttuum ∈′−′= − ,ˆ )(
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and find the average value k(i)V of ith displacement sequence by using Eq. (16), i.e. 
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= . Note that k(i)V is the slope of the "filtered" straight locus (a dash line in Fig. 

2) of point i, and it is computed from all the frames that the point appears.  Real images of "raw 
locus" and "filtered locus" can be found in Fig. 5(2). 

Step 3. Compute the shift qt at each frame t by averaging the result from all points that 
appear in frame t, i.e. 
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In the illustrative example in Fig. 2, q1 is computed only by point i=1 (assume q0=0),  q2 to q5 by 
point 1 and 2, q6 by point 1, 2 and 3, and so on. The computation is carried out sequentially from 

frame 1 to frame T since the calculation of the residual )(i
tq requires the value of )(

1
i

tq − of frame t-

1. For any point i, the computation of )(i
ts

q  in its start time ts will use the average 1−st
q  in frame 
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ts-1  that has been estimated before.  For example, for point i= 3, ts = 6, and 5
)3(

1 qq
st

=− , where q5 

is estimated from points 1 and 2.  

 

 

 

 

 

 

 

 

Fig. 3. Motion classification and selection 

 

 [Motion Filtering Algorithm 2 - Motion classification and selection approach] 
The second algorithm is directly based on pyramid block matching algorithms and the 

parameter estimation results without explicitly tracking any feature points over multiple frames. 
The basic idea in algorithm 2 is to find in each frame t some kind of depths that will appear in 
the next Tt frames and that will be used to estimate the average projective depth for frame t and 

all the Tt frames. In frame t∈[0,T], we have Nt points (it=1,2,…,Nt) and their displacements 
)(ˆ ti

tm . Even if point sets may be different in different frames, we can also calculate the average 

displacement of Nt points in frame t: 
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and the displacement residual (the shift qt) in each frame can be calculated  

TtqVkmq tttt ,...,2,1  ,  1 =+−= −   (22) 

Note that in Eq. (22), the key is to find the average projective depth tk in each frame, which is a 

function of t (and also of the match points in frame t) due to that each frame have different set of 
match points.  We do not have a close-form solution if points are not tracked from frame to 

scene 
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Dt 
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frame; however, statistically, the points in successive frames do not have obvious differences in 
depth except in the non-overlapping bordering pixels of the two frames , thanks to the dense 

match points in each frame (say, one match per 16×16 block in an image).  The basic idea in 

algorithm 2 is to find in each frame t some kind of depths that will appear in the next Tt frames 
and that will be used to estimate the average projective depth for frame t and all the Tt frames. 
The algorithm consists of the following three steps. 

Step 1. Motion classification. For each frame, the motion vectors )(ˆ ti
tm  are grouped into 

several classes {Cm,t} according to the values of )(ˆ ti
tm  (m is the index of a class). 

Step 2. Dominant motion class selection. A dominant motion class Dt ∈{Cm,t} is selected for 

frame t, which will appear in the next Tt frames by comparing the motion classes in these frames. 
The average displacement and the average projective depth are calculated for frame t and all 
these frames as 

]}ˆ[{

]ˆ[

)(

)(

i
DiT

t

i
t

Di
t

mEEVk

mEm

tt

t

τ
τ ∈∈

∈

=

=
 (23) 

Step 3. Image shifting. Calculate the displacement residuals for each frame using Eq. (22), 
and then apply them to the corresponding frames. 

 Fig. 3 illustrates the a scene with six main depths viewed by a camera. The coverage of the 
motion classes (C1 ~ C6) and the dominant motion for each frame t are also shown in Fig. 3.  

[Motion Filtering Algorithm 3 - Statistical locus fitting / smoothing approach] 
      The third algorithm is also based on pyramid block matching algorithms and the parameter 

estimation results without explicitly tracking feature points. Again, in frame t∈[0,T], we have Nt 

points (it=1,2,…,Nt) and their displacements )(ˆ ti
tm . We want to directly use Eq. (21) and Eq. (22) 

to estimate the displacement residual in each frame.  With some approximation, we can use the 
following rather simple filtering methods: 

(1). Median filter - In the time period [0,T] of the image sequence, the average of the 60% 

median )(ˆ ti
tm  is calculated as the average displacement tm in frame t by using Eq. (21), and 

piece-wise straight lines are fitted to displacement sequence {( tm , t)} in order to estimate tk V. 
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(2). Gaussian Low-pass filtering. In this method, tk V is estimated as the Gaussian low-pass 

filtering part of the average displacement tm  in Eq. (21). It is based on the observation the 

average projective depth should form a smooth curve even in the case of very complex depth 
variation due to the constant speed motion. 

 

 

      The nice thing about our automatic image stabilization is that we only need to fit a global 
model (Eq. (4)) to the motion fields, and only several reliable image matches (say, more than 6 
pairs) between two frames are needed to stabilize a image sequence. For the current 
implementation, we use a pyramid-based correlation match method to find the motion vector of 
each representative block,  which is selected by its texture measurement. Robust estimation 
method is used to reduce the negative effect of outliers by using both the correlation 
measurements and texture measurements as weights. We have found by many experiments of 
real image sequences that Algorithm 3 is the simplest and most robust motion filtering algorithm 
among the three and is good enough for generating the required stabilization results. Further 
work is need to apply Algorithm 1 and Algorithm 2 to more real image sequences. 

 

2.2.4. PVI and EPI Generation: Examples 

Without loss of generality, the effective focal length f of the camera is assumed to be fixed for 
a stabilized image sequence and both sx and sy are assumed to be equal to 1/f, so Eq. (2) becomes 

(x, y) = (u, v). From now on, we will use (x, y) instead of (u, v). Thus the stabilized image 
sequence obeys the following spatio-temporal (ST) perspective projection model  

Z
Yfty

Z
VtXftx =

+
= )(,)(  (24) 

where (X,Y,Z) represent the 3D coordinate at time t=0. A feature point (x,y) forms a straight 
locus and its depth is 

  
dx

Vdtf
v
VfZD ===  (25) 

where dtdxv /=  is the slope of the straight locus. 
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EPI (x=0)x

y

t

PVI (y=0)

 

(1) ST image model 

 

 
(2) Stereo PVIs (x = 0 and x= -56) 

 

 
(3). Real ST images 

Fig. 4. ST images from an image sequence 

In order words, after the image stabilization, two kinds of useful 2D ST images can be extracted 
(Fig. 4). One is the Panoramic View Image (PVI), which possesses most of the 2D information 
of a roadside scene. The other is the Epipolar Plane Image (EPI), whose ST texture orientations 
represent depths of scene points. Fig 4(2) shows two PVIs that are extracted from x=0 and x=-
56. They are parallel-perspective images with multiple viewpoints in the t axis, and depth 
information can be derived from this ST stereo pair. However, 3D recovery of ST stereo faces 
the same problems as in traditional stereo: in addition to the correspondence problem, occluding 
region can not be easily handled. Thus it is important to make use of the continuos information 

PVI (x=0) 

 PVI (x=-56)

EPI (y=9) 

t

y 

0

x

occluded   side 
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in the epipolar plane images. Fig 4(3) shows an EPI (x = 9) from which dense depth map can be 
reconstructed by the proposed panoramic EPI analysis method. 

 

 
(1) PVI (x=0) without and with stabilization 

 

 
(2) EPI (y = 0) without and with stabilization 

 
(3) Panoramic depth map (the nearer, the brighter) 

Fig.5. Stabilization of the TREE sequence (128*128*1024) 

Fig. 5 shows PVIs and EPIs without and with image stabilization for a TREE sequence, 

which consists of 1024 frames of 128×128 images. It is obvious that stabilization plays a vital 

role in the construction of good panoramic and epipolar plane images when the camera's  
fluctuations are large as in this example. In this experiment, median motion filtering method is 
used. The depth map (Fig. 5(3)) can be obtained through our epipolar plane image analysis on 
the stabilized EPIs (Section 3), which is almost impossible without image stabilization (see Fig. 
5(2)). Fig. 6 shows the stabilization results of a BUILDING sequence when tiny fluctuations 
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occurred. Better PVIs and EPIs  are obtained after image stabilization by using a Gaussian low-
pass filtering with a 200-frame Gaussian window. Fine stabilization results can be seen, for 
example,  in the elliptic marked regions. The waterfall-like texture patterns in the left of the EPI 
in Fig. 6(2) are due to the aperture problem – this EPI corresponds to the position along a 
horizontal ridge of the building. A video-clip of an additional image sequence can be found at  
http://www.cs.umass.edu/~zhu/btvstabi.mpg to demonstrate the difference between original and 
stabilized ones dynamically. 

 

 

(1) PVI (x=24) without and with stabilization 

 

 
(2) EPI (y = 0) without and with stabilization 

Fig. 6. Stabilization of the BUILDING sequence  

2.3. Panoramic EPI Analysis Approach 

Spatio-temporal panoramic view images(PVIs) provide a compact representation for large-
scale scene.  Stereo PVIs  can be used to estimate the depth information of the scene. The 
difference between panoramic stereo and the traditional stereo is that panoramic images are 
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parallel-perspective projections. The depth of a point is proportional to the "displacement" in the 

t direction in a pair of stereo PVIs (Fig. 4 (2); in Eq. (25) "disparity" dx is fixed and D∝ dt), 

which means that depth resolutions are the same for different depths ( Zhu et al., 1999a). 
However, there are some disadvantages when we use stereo PVIs to recover the depth of a scene. 
First, stereo PVI approach faces the same correspondence problem as in any traditional stereo 
methods.  Second, occluding regions in two panoramic views cannot be easily handled due to the 
lack of information. The solution to these two problems is to effectively use the information in 
between, i.e. that of the epipolar plane images. Our panoramic epipolar plane analysis method 
consists of three important parts: orientation detection, motion boundary localization and 
occlusion recovery. It has the following three advantages. (1) It is roust applying to a complex 
natural scene and a motion with fluctuation. With a spatio-temporal-frequency domain analysis, 
no feature detection, hard thresholding and locus tracking are used in our algorithm. (2) It is 
efficient in that it only processes a small fraction of the necessary data instead of the entire 3D 
ST images. (3). It is versatile since occlusion and textureless regions have been handled. In this 
section, after we derive the motion occlusion model in spatio-temporal and frequent domain, we 
will describe each module in details. 

2.3.1 Motion Texture and Motion Occlusion Models  

The 1st order motion texture model of an EPI can be expressed in the spatio-temporal 
domain as (Allmen and Dyer, 1991; Adelson and Bergen, 1985; Heeger, 1987) 

 g(x,t) = f(x - vt) (26) 

where f(x) is the image of a single scan line at time t =0. By Fourier transform, the model in the 
frequency domain can be derived as 

G( ξ, ω) = F ( ξ) δ (v ξ + ω) (27) 

which states that object points with the same depth values and the same constant translation 
occupy a single straight line  passing through the origin in the frequency domain, i.e., 

v ξ + ω = 0 . It is well-known that orientation can be easy to detect in the frequency domain than 

in the spatio-temporal domain when a single orientation is presented in the window of the 
processing [Jahne, 1991]. In this paper we will deal with multiple orientations due to depth 
changes. We model the motion occlusion in an x-t image (EPI) as  

),()),(1(),(),(),( 21 txgtxmtxgtxmtxg ss −+=  (28) 
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where the first layer ),(1 txg  is occluded by the second layer ),(2 txg , and ms(x,t) is a occluding 

mask (Fig. 7). Under a 1st order translation, the ith layer with velocity vi can be expressed as  

 g x t f x v t ii i i( , ) ( ),( , )= − = 1 2  

where v1 < v2.  The occluding mask is a step function moving with velocity v2, i.e., 

 )(),( 2tvxutxms −=  (29) 

and the value of the function is 0 or 1. Hence the 1st order motion occlusion model can be 
written as 

 )())(1()()(),( 222112 tvxftvxutvxftvxutxg −−−+−−=   (30) 

and the Fourier transform of the model can be derived as (Appendix 2.3) 

)()()()(1),( 22
21

1

12

2
1

21
ωξδξ

ωξωξ
ωξ ++

−
+

−
+

−
= vF

vv
vU

vv
vF

vv
G u  (31) 

where )(*)()()( 222 ξξξξ UFFFu −=  is the Fourier transform of f(x)(1-u(x)), the visible parts 

of f(x), and )(ξU  is the Fourier transform of u(x). Without loss of generality, we assume 

0,1
0,0{)( ≥

<= x
xxu  , so we have 

 )(1)( ξπδ
ξ

ξ +=
j

U  (32) 

which implies that the peak value of U(ξ) appears at ξ = 0 (Fig. 7(3)). From Eq. (31) and (32) we 

can conclude that most of the energy spectra lie in line ξ ω= − / v1  and line ξ ω= − / v2 , which 

correspond to the two depth layers(Fig. 7(2)) . Fourier transforms along these two lines are  

)0()(1),( 1
21

1 UF
vv

vG ξξξ
−

=−  

which displays a peak corresponding to the occluding layer and 

)()0(1)(),( 1
21

22 ξξξξ UF
vv

FvG u −
+=−  

which shows a peak corresponding to the occluded layer, with an addition that only has obvious 

effect when ξ = 0. 
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(1)  g(x,t)                  (2) |G(ξ,ω)|                         (3) |U(ξ)| 

Fig. 7. The motion occlusion model 

2.3.2 GFOD: Gaussian-Windowed Fourier Orientation Detector 

In order to detect multiple orientations more precisely and robustly, a Fourier transform is 
performed in a large ST window on an EPI. Simple calculation shows that the angle resolution is 

about 1° if the window size m×m is 64×64. Obviously, however, all the oriented textures in the 

large window will contribute to the energy spectrum. So for a multiple orientation pattern, 
multiple peaks could be detected when the window slides thorough a rather wide region near the 
depth boundary. For example, in Fig. 8 (1), two peaks can be detected from frame 296 to frame 
322. Therefore, a Gaussian-Fourier Orientation Detector (GFOD) is designed in order to keep 
the precision for both orientations of motion textures and localization of motion boundaries. If 
the spatio-temporal Gaussian window is defined as  

)exp(),( 22

22

σ

txtxw +=  

where 
4

12 −= mσ , then the windowed motion texture can be represented as  

 g(x,t) = f(x - vt)w(x,t) (33) 

and its Fourier transform can be derived in the same way as for Eq. (31) : 

 )()
1

()(),(
2

ω+ξ
+

ω−ξ
=ωξ vW

v
vFvcG vw  (34) 

where  c v v
v
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+
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Again, most of the energy lies in the line ξ ω= − / v , where 

  )0()(),( vw WFvG ξξξ =−  

since Wv(ω) is a Gaussian function with peak at ω = 0.  

  The derivation of the energy model for cases of multiple orientation and motion occlusions 
is quite complex; however, similar conclusion can be drawn. Here we only give a qualitative 
analysis. From the principle of the Fourier transform, the multiplication of a Gaussian window 

w(x,t) in the ST domain is equivalent to the convolution of a Gaussian function W(ξ,ω) in the 

frequency domain, which will smooth the energy distribution. The larger the covariance, the 
more smoothing to the energy spectrum3. By applying the Gaussian  window, the ST patterns 
that are farther from the center of the window has less contribution to the final energy spectrum, 
but they are not eliminated. So the design of the GFOD operator tries to reach a balance between 
the orientation resolution (over a large window) and the localization accuracy of depth 
boundaries (in the center of the window).  

  Representing the “energy spectrum” P ( )ωξ , =log(1+G2 ( )ωξ ,  in the polar coordinate system 

( )φ,r  by a coordinate transformation 





+=+=

ω
ξπφωξ arctan

2
,22r , we obtain a polar 

representation P ( )r,φ  and an orientation histogram  

 ( ) [ ]πφφφ ,0,)( 2
1

∈∫= r
rd drrPP  (35) 

where φ  corresponds to the orientation angle of a ST texture and [r1,r2] is a frequency range of 

the bandpass filter, which is selected adaptively according to the spatial-temporal resolution of 
the image. Initially, r1 and r2 are set to 8 and 30 respectively for a 64x64 window. An orientation 

energy distribution map Pd(φ,t) can be constructed, which visually represents the depths of the 

points along a scan line corresponding to the processed EPI. 
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  Fig. 8 and Fig. 9 compare experimental results for the BUILDING sequence using a 

rectangular window ( ∞=2σ ) and a Gaussian window (
4

12 2 −= mσ ). For example, in Fig. 8 (1), 

two peaks can be detected within a large neighborhood (27 frames from frame 296 to frame 322) 

of a depth boundary at frame 131 when a rectangle window is used. By using the Gaussian 

window, the Fourier spectrum is smoothed; however motion boundaries can be located in a much 

smaller range. In Fig. 8(1), two peaks are detected only in 8-frame intervals from frame 305 to 

frame 313 without degrading the angular resolution of orientation. This is because the ST texture 

off the center is decreased but is not eliminated by using a Gaussian window. Note that multiple 

orientations are still detected both at and near motion boundaries even if Gaussian windows are 

used. Therefore, motion boundaries are further localized by using a spatial orientation selection 

method presented in Section 3.4, which results in the final dense histogram of the orientation 

angles in Fig. 9.  Fig. 8(2) shows that the detecting errors by the rectangle windowed Fourier 

method could not even be correctly selected by using the motion boundary localization method 

in Section 3.4. This set of images is taken from the EPI of a region with gradually changing 

depths (side façade of a building - see Fig. 6 and Fig. 9). The reason for this kind error is that the 

stronger oriented texture off the center has different orientations from the weaker motion texture 

at the center. In frame 661, none of the two orientations detected is that of the locus in the center; 

but rather they are the orientations of the loci of the left and right stronger textures. In frames 

613, 661 and 670, the correct orientation is among the two detected peaks, but the orientation 

selection by the algorithm in Section 3.4 is not correct since it is almost textureless along one of 

the orientations ( refer to Section 3.4 for how to select an orientation).  However, if the Gaussian 

windowed Fourier orientation detector is used, the correct orientations can be found in all the 

three frames (613, 661 and 670); the weak but correction orientation is detected by the GFOD in 

frame 661, even though the final selection in this case need further study. 
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t ∞=2σ (no Gaussian) 
4

12 2 −= mσ  

296 

  
305 

 
313 

  
322 

  
356 

  
 (a) (b) (c) (d) (a) (b) (c) (d) 

(1) GFOD operator on occluding boundary 

t ∞=2σ (no Gaussian) 
4

12 2 −= mσ  

613 

 
631 

 
661 

 
670 

 
 (a) (b) (c) (d) (a) (b) (c) (d) 

(2) GFOD operator on side face 

Fig. 8. Multiple orientation Detection using GFOD. The frame index (t) corresponds to the time in the EPI 
shown in Fig. 9. In both (1) and (2): (a) 64×64 x-t image block superimposed by multiple orientation vectors 
( the darker line is the final orientation for the point in the center selected by the spatial comparison method 
in Section 3.4). (b) energy spectra  (c) orientation histogram with the detected peak(s). (d) Gaussian 
weighted x-t image. 
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(1). Orientation detection using a rectangular window 

 

(2) Orientation detection using a Gaussian window 

Fig. 9. Multiple orientation detection by GFOD (rows 1-4 of both (1) and (2): x-t image (EPI, y = 56), 
orientation energy distribution map (the darker one as the selected peak, lighter one as the second 
peak), histogram of orientation angles and part of the corresponding PVI (PVI x = 24 is selected in order 
to shown the side face of building around frame 613; the horizontal line in the PVI corresponds to the 
EPI in the first row) 

2.3.3. Depth Belief Map and Data Selection 

    Basically, our panoramic epipolar plane analysis method processes only the EPI data 
around a panoramic view image (e.g., the centered horizontal line in the EPI of Fig. 9). Small 
amount of additional data is processed only for the motion boundaries (see Fig. 12 in Section 
3.5). Moreover, the algorithms also deal with the following two problems: the aperture problems 
of horizontal edges that run along the motion direction, and depth interpolation in textureless 

t=0                                                     313                                             613                                                               1024     
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regions. Depth estimations at vertical edge points are more robust. To take this observation into 
account, a belief map corresponding to a PVI IPVI(y,t) is calculated as  

 
y

tyI
t

tyItyB PVIPVI
∂

∂
∂

∂ ),(),(),( −=  (36) 

 

(1). Panoramic intensity image ( x =0) 

 

(2). Panoramic belief map 

Fig. 10.  Panoramic belief map 

      Fig. 10(2) shows the belief map corresponding to the PVI in Fig. 10 (1). The brighter 
intensity in the belief map shows stronger belief. The basic data selection is as follows. For the 

epipolar plane image ( )txI EPI ,  corresponding to a y coordinate of a given PVI, orientations are 

detected only at the x coordinate from which the panorama has been taken (typically x = 0). The 
GFOD is applied only to each location (x,ti) where the belief value B(y,ti) is greater than a given 

threshold; typically it is a very small value (e.g., 2). A fast GFOD algorithm of such that use the 
temporal overlapping of the successive Gaussian windows is given in Appendix 2.4. Single or 
multiple orientation angles ( )θ k k K= 1, ,L are determined by detecting peaks in an orientation 

histogram. Image velocity can be calculated for each orientation as kkv θtan= . A motion 

boundary will appear within the Gaussian window if the orientation number K is greater than 1 
(K=2 for double peaks). The additional data selection in motion boundary localization, depth 
interpolation, occlusion recovery and resolution enhancement will be given in the next two 
subsections. 
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2.3.4. Motion Boundary Localization and Depth Interpolation 

      Since multiple orientations are detected not only at but also near the motion boundaries by 
using the large GFOD operator, a Motion Boundary Localizer is designed to verify if the motion 
boundary is right in the center of the Gaussian window. In order that the method is valid for most 
of the cases encountered in a natural scene and applicable to the EPIs generated by a fluctuating 
camera, we use a different approach other than locus tracking which often fails due to the non-
ideal ST textures from a complex scene and  a real motion. In our algorithm, multiple scale 
intensity similarities are measured along the detected orientations ( )Kkk ,,1L=θ , and the 

orientation with the greatest similarity measurement is selected as the right orientation.  Note 
that only a "comparison and selection" operation is used without assuming any feature points 
detecting and thresholding. 

      Consider the case in which two orientations 1θ  and 2θ  ( 21 θθ > ) are detected within a 

Gaussian window. Dissimilarity measurements along 1θ  and 2θ  for a given circular window of 

radius R centered at the point (x0,t0)  are defined as (Fig. 11 (a) and (b);  refer to Fig. 8) 

( ) ( ) ( )∑ −±=
=

±±
R

r
kkk RIrI

R
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1

22 ,,1, θθθ    (k=1,2)  (37) 
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0 ,1,       , θθ . Sub-indices ‘+’ and ‘-’ denote 

the dissimilarity measurements along the detected orientations in positive and negative x 

directions respectively. This is designed for dealing with occlusion of a far object ( 2θ ) by a near 

one ( 1θ ). The dissimilarity measurements for near and far objects are defined as 
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respectively, where weight Pd( kθ ) is the value of the orientation histogram (Eq. (35)) at kθ  

(k=1,2). The higher the value is,  the lower the dissimilarity measurement will be.  A verification 
criterion can be expressed as 
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The condition of occlusion and reappearance can be judged either by comparing ( )RC ,2θ+  and 

( )RC ,2θ−  (see Fig. 11), or by analyzing the context of the processing (i.e., the change of depths 

- refer to Fig. 12 ). In case of occlusion of a far object by a near object (far to near, Fig. 11(a)), 

we have ( ) ( )RCRC ,, 22 θθ +− < , and in reappearance (near to far, Fig. 11(b)), we have 

( ) ( )RCRC ,, 22 θθ −+ < .  

 

 

 

 
(a). occlusion        (b) reappearance    (c) multi-scale window      (d) depth interpolation 

Fig. 11. Principle of the depth boundary localization and depth interpolation 

 

Fig. 12. Multiple orientation detection, depth boundary localization and depth 

interpolation (rows 1-4: x-t image (EPI, y = 9) with the processed points and depth 

boundaries, orientation energy distribution map, histogram of orientation angles and part 

of the corresponding PVI (x = 0;  the horizontal line is corresponding to the EPI  in the 

first row) 

In order to handle cases of different object sizes, motion velocities and object occlusions, 

multiple scale dissimilarity measurements ( )ik RE ,θ  (e.g., i=1,2,3) are calculated within 

multiple scale windows of radii Ri (i=1,2,3),  R1<R2<R3. In our experiments, we have selected  
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R1=m/8, R2=m/4, R3=m/2 (m = 64 is the window size; see Fig. 11(c)).  By defining the following 

ratio 

 
( )
( )ii

ii
i RERE

RERED
,(),,(min

),(),,(max

21

21
θθ
θθ

=  (40) 

scale p (p=1,2,3) with maximum Dp is selected for comparing the intensity similarities.  For 

example, in Fig. 11(c), R2 will be selected. 

 

The selected orientation angle θ  can be refined by searching for a minimum dissimilarity 

measurement for a small-angle range aroundθ . The accuracy of the orientation angle, especially 

that of a far object, can be improved by using more possible frames. The frame number can be 
decided by examining the occluding relations near the far object (e.g., the left part of the EPI in 
Fig. 9 and the indicated location in Fig. 12). In order to obtain a dense depth map, interpolations 
are applied to textureless or weak-textured regions /points where no orientation can be detected). 
The proposed interpolation method (Fig. 11(d)) is based on the fact that depth discontinuity 
almost always implies an occluding boundary or shading boundary. The value )(tθ  between two 

instants of time t1 and t2 with estimated orientation angles θ1 and θ2 is linearly interpolated for 

smooth depth change (i.e., dis21 T<−θθ , Tdis is a threshold), and is selected as ),min( 21 θθ , i.e. 

, the angle of the farther object, for depth discontinuity (i.e., dis21 T≥−θθ ). The processing 

results of a real  x-t image(EPI) are shown in Fig. 9  and Fig. 12 by histograms of  orientation 
angles.  

 

2.4.  Panoramic Modeling and Generalized Landmark Selection 

Our 3D panoramic scene modeling approach consists of four modules: (1) Image 

rectification and stabilization, (2) depth map acquisition, (3) fusion of the depth and intensity 

maps, and (4) landmark selection. The system diagram is shown in Fig. 13. We will discuss each 

module with the results of real image sequences.   
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Fig. 13. System diagram 

2.4.1. Image Rectification and Stabilization 

In order to compute absolute depths of objects in a scene, it is necessary to calibrate the 
camera. Fortunately, accurate intrinsic and extrinsic parameters of the camera are not a necessity 
for our purpose and our method. We assume that the optical axis passes through the center of the 
image and the approximate focal length f can be easily determined by a simple calibration 
procedure. The accuracy of f is not so important. In our approach, it is only used twice. First it is 
used to approximately decomposition the translational components (motion parallax) and the 
rotation angles (in Eq.(7)). In our experiments, we can assume the fixed focal length (i.e., s =1) 
and 1:1 aspect ratio (i.e., sx=sy = 1/f). Note that the motion filter step after the first image 
rectification step using such decomposition will compensate the errors introduced by inaccurate 
focal lengths and other approximations. Second, it is used to compute the depth in Eq.(25), 
which is only a scale factor for depths of all the points. Neither do we need to acquire the 
extrinsic parameters of the camera explicitly. What we need is to rectify each image as if the 
horizontal X axis of the camera is along the direction of motion. This can be easily done by a 
pure image rotation transformation by referencing an original image in an image sequence to a 
known rectangular planar surface in the scene whose horizontal edges are parallel to the motion 
direction, instead of actually measuring the coordinates of any 3D objects (Zhu, 1997).  Such 
surface patch may be a window on a building's facade. Now we have a “software-adjusted” 
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camera whose motion is satisfied the motion model in Section 2.1. The image stabilization 
operation can then be applied to the rectified image sequence. The stabilization method and 
experimental results have been given in Section 2, and image stabilization have been 
implemented at 30 Hz for 256×256 images (Zhu et al., 1998b). 

 

 

 (1)  depth boundaries (red lines) overlay on the panorama  

Horizontal wedge and a row of flags       Pine tree                                         depth changes in the wall   

 

(2) original panoramic depth map 

 
building façade and steps                       trees                              building bridge   pedestrian                  pine tree and bamboo 

(3) panoramic depth map after depth-intensity fusion 

 

(4) parallel projection of the 3D panorama 

Fig. 14. Panoramic depth map for the BUILDING sequence 
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2.4.2. Panoramic Depth Map Acquisition  

Suppose that a video sequence has F frames, each of size W×H, and the size of the Gaussian 

window is m×m. The panoramic depth map corresponds to a panoramic view image (PVI). The 

H×F depth map is acquired by the independent and parallel processing of H images of 2D 

panoramic epipolar planes (Fig. 13). After the belief map for depth measurement ( e.g., Fig. 10) 
is calculated from the panorama, depth information for each scan line of the PVI is obtained by 
executing the algorithms of multiple orientation detection, motion boundary localization and 
depth interpolation in the corresponding epipolar planes, as described in Section 3. Fig. 14(2) 
shows the original panoramic depth map of the BUILDING sequence. The nearer depths are 
represented by brighter intensities.  

2.4.3. Fusion of Depth and Intensity map 

It has been pointed out that depth information cannot be completely recovered using only the 
motion cue (Black and Jepson, 1998). A deeper understanding of the fusion of motion and 
texture needs further study. In this paper, a simple two-step algorithm was used: 

(1). Median filtering on the depth map preserves each depth boundary while eliminating errors 
due to aperture problems and complex non-rigid motion of trees, etc.  

(2). Intensity boundaries and depth boundaries are labeled in vertical directions. If there is no 
intensity boundary at a depth boundary, then the depth boundary is moved to the location of a 
most suitable intensity boundary.   

Fig. 14(3) shows the fusion result for the BUILDING sequence. Depth boundaries of the depth 
map, superimposed on the panoramic intensity image as red lines in Fig. 14(1), shows the 
accuracy of localization. A parallel projection of the 3D panorama in Fig. 14(4) visualizes the 
depth estimates. The panoramic depth map of the more complex TREE sequence has been shown 
in Fig. 5(3) where three distinctive depth layers of the trees can be observed. 

2.4.4. Generalized Landmark Selection 

There are two important issues in landmark localization for a mobile robot: where to look at 
and what to look at? The first is the viewing direction issue, and the second is the landmark 
selection issue. 

Let us consider the viewing direction issue first. In the camera model of Section 2.1, we 
assume that the camera points perpendicular to the road side. In that case, the scene model based 
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on panoramic view images will be the same for the driving in both directions if we do not 
consider other dynamic objects (e.g. vehicles, people) on the roads. The only difference is that 
the panoramic view images run in opposite directions (Fig. 15)1. It seems that  we only need to 
build a single model for a scene by a single tour. However, many people have the experiences 
that we can only recognize a scene well from certain view directions, especially when we go to 
an environment that we are not so familiar with. We may remember a distinctive landmark (e.g. 
a T with surrounding buildings) on the way to a destination, but we could be surprised to find 
that we miss that landmark on the way back after we pass that location. 

 

 

 

 

(1) front left to right                                 (2) from right to left 

 

 

 

 

(3). PVIs from three slit of a camera 

Fig. 15. Viewing directions in generating panoramic view images (PVIs). When an orthogonal viewing 
direction is used, the panoramic images  are the same (PVI0) for both motion directions. When a forward 
looking viewing direction is used, the panoramic view images are different (PVI1 and PVI2). 

The reason is that we almost always need to look forward to know the next landmark in 
advance. With a forward-looking viewing direction, we may see quite different things from 
opposite directions. Fig. 16 shows three panoramic view images (PVI0, PVI1, PVI2) generated 
from the central slit, left slit and right slit of a moving camera as shown Fig. 15(3). It can be seen 
that in some places that have distinctive depth changes (e.g. in the location marked by a red 

                                                 

1 We assume that the camera always points to the same road side. For a real application, we can easily using 

two cameras on a sensor system described in Chapter 5 to build models of both sides of the road scene.  The depth 

offsets in two different lanes of opposite directions can be easily compensated. 
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rectangle), the appearances of the same scene from the forward-viewing direction (PVI1) is quite 
different from those from the backward-viewing direction (PVI2).  

How to solve this problem? A simple solution is to build the landmark model on the 
orthogonal-looking PVI (Fig. 16(2)), then use temporal context information to predict where is 
the next landmark before the robot really see it. However, the robot does not  make full use of 
the information in the scene, especially the more distinctive features that vary from different 
viewing directions. So the natural extension of the panoramic landmark model is to use both the 
forward-looking PVI and the backward-looking PVI to represent landmarks that will be used in 
robot localization from two opposite directions. 

 

 

(1) PVI2 from the left slit 

 

(2) PVI0  from the central slit 

 

(3) PVI1 from the right slit 

Fig. 16. Panoramic view images (PVIs) from three different viewing directions: backward-looking PVI, 
orthogonal-looking PVI and forward-looking PVI. 

 

There are several ways to build a bi-PVI representation of a scene. First, we can use a single 
camera that points to the orthogonal direction of the motion vector (Fig. 17(1)) and generate two 
PVIs from the left and right slit windows. This only requires on pass to build the scene model; 
however the viewing direction is limited by the viewing angle of the camera. Second, we can use 
two cameras pointing to two larger separate directions as shown in Fig. 17(2). In this case only 
one pass is required to build the scene model, but two cameras are needed. In addition, we need 
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to perform a image rectification to each frame to generate a rectified image sequence that has a 
“virtual” optical axis pointing orthogonal to the road side.   Finally, we can use one forward-
looking camera but run two passes to build the bi-PVI representation of the scene (Fig. 17(3)).  

 

 

 

 

(1) one camera, one pass;  (2) two cameras, one pass; 

 

 

 

(3) one camera, two passes 

Fig. 17. Three ways to build a bi-PVI representation 

 

 Hence, the proposed panoramic landmark model is a view-based representation that is built 
with the road network that the robot will navigate on. The landmarks in this context is the so 
called “generalized landmarks” that is the salient features ( texture, color and depth) in the 
panoramic view images, and their spatial relations.    
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2.5. Conclusions and Discussions  

Structure from motion is still a hard problem. In order to construct 3D natural scenes from 
video sequences, we make reasonable constraints on the motion of the camera.  However, the 
motion model is not an ideal one but a practical one that properly describes the motion of an 
ordinary automobile moving on typical roads. In this manner we generalize the motion of the 
panoramic view approach and epipolar plane approach from translation (or smooth motion) to a 
more general and practical outdoor motion: an approximately known translation plus random 
fluctuations. A systematic approach is proposed to give a full solution from image sequence to 
large scale and compact 3D model.  The proposed two-stage method de-couples fluctuation 
motion and structure and thus simplifies the structure from motion problem. The panoramic 
epipolar plane analysis algorithm is more effective than the general ST image analysis methods 
since only the representative data are processed and the processing for each panoramic epipolar 
plane can work in parallel. Furthermore, effective methods are proposed and tested for 
localization of depth/motion boundaries, and interpolation of depth in textureless areas. Image 
segmentation, feature extraction, and matching are avoided so that the algorithm is fully 
automatic. It is interesting to note that the same basic algorithms (plus a occlusion and resolution 
recovery algorithm) can be used to construct 3D model for image-based rendering and 
synthesized images of arbitrary views can be generated from this model.  

While the proposed method is a practical solution for 3D scene modeling, there exist some 
open problems that need further study. The current algorithm can work well only with dense 
image sequences with constrained motions; only the modeling of the static scene is studied; 
errors in the image stabilization stage may propagate to the next stage. More experiments of 3D 
LAMP construction for high resolution image sequences are needed where methods of depth 
layering and time re-sampling should be improved. The fusion of depth/motion and spatial 
structures (textures, edges) also need further study. 
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Notes 
1. This part is discussed (Zhu and Hanson, 2001) under the context of image-based modeling and 
rendering. For robot navigation, this may not be a necessary step.  

2. Camera settings other than this standard stetting are also applicable but an image rectification 
procedure should be applied first (Zhu, 1997). 

3. So in practice, the covariance will be selected adaptively according to the real situation of an ST 

texture instead of using 
4

12 −= mσ directly. 
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