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1. Introduction 

The fusion of audio and visual speech is an instance of 
the general sensory fusion problem.  The sensory fusion 
problem arises in the situation when multiple channels 
carry complementary information about different compo-
nents of a system.  In the case of audio-visual speech, the 
two modalities manifest two aspects of the same underly-
ing speech production process.  From an observer’s view, 
the audio channel and the visual channel represent two 
interacting stochastic processes.  We seek a framework 
that can model the two individual processes as well as 
their dynamic interactions.  

One interesting aspect of audio-visual speech is the in-
herent asynchrony between the audio and visual channels.  
Most early integration approaches to the fusion problem 
assume tight synchrony between the two.  However, stud-
ies have shown that human perception of bimodal speech 
does not require rigid synchronization of the two modali-
ties.  Furthermore, humans appear to use the audio-visual 
asynchronies as multimodal features.  For example, it is 
well known that the voice onset time is an important cue 
to the voicing feature in stop consonants.  This informa-
tion can be conveyed bimodally by the interval between 
seeing the stop release and hearing the vocal cord vibra-
tion.  Therefore, a successful fusion scheme should not 
only be tolerant to asynchrony between the audio and vis-
ual cues, but also be apt to capture and exploit this bi-
modal feature. 

2. Overview of the work 
It is possible to just use conventional hidden Markov 

model (HMM) to model and fuse multiple information 
sources.  This can be accomplished by attaching multiple 
observation variables to the state variable, with each ob-
servation variable corresponding to one of the information 
sources.  Because both channels share the single state 
variable, this approach in effect assumes the two informa-
tion sources always evolves in lockstep.  Therefore, it is 
not able to model asynchronies between the two channels. 

An interesting instance of the dynamic Bayesian Net-
works is the coupled hidden Markov model (CHMM).  

The name CHMM comes from the fact that these networks 
can be viewed as parallel rolled-out HMM chains coupled 
through cross-time and cross-chain conditional probabili-
ties.  An n-chain CHMM has n hidden nodes in a time 
slice, each connected to itself and its nearest neighbors in 
the next time slice.  For the purpose of audio-visual speech 
modeling, we considered the case of n=2, or the 2-chain 
CHMM.  Figure 1 shows the inference graph of such a 
model.   

There are two state variables in the graph.  The state of the 
system at certain time slice is jointly determined by the 
states of these two multinomial variables.  More impor-
tantly, the state of each state variable is dependent on both 
of its two parents in the previous time slice.  This configu-
ration essentially permits unsynchronized progression of 
the two chains, while encouraging the two sub-processes 
to assert temporal influence on each other’s states.  Note 
that the Markov property is not jettisoned by introducing 
the additional state variable and the directed links.  Given 
the current state of the system, the future is conditionally 
independent of the past.  Furthermore, given its two par-
ents, a state variable is also conditionally independent of 
the other state variable. 

In the context of audio-visual speech fusion, the audio 
and visual channels are associated with the two state vari-
ables respectively through the observable nodes.  Inter-
channel asynchrony is allowed.  The overall dynamics of 
the audio-visual speech is determined by both modalities.   
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Figure 1. Audio-visual fusion using CHMM 



In general, the time complexity of exact inference for 
DBN is exponential in the number of state variables per 
time slice.  For systems with large number of state vari-
ables, exact inference quickly becomes computationally 
intractable.  Consequently, much attention in the literature 
has been paid to approximation methods that aim to solve 
the general problem.  Existing approaches include the 
variational methods [4] and the sampling methods [5].  
However, these methods usually exhibit nice computa-
tional properties in an asymptotic sense.  When the num-
ber of states is very small, the computational overhead 
embedded in the approximation method is often large 
enough to offset the theoretical reduction in time complex-
ity.  In this situation, the approximation becomes superflu-
ous and exact inference becomes more desirable.  In this 
work, we propose a model transformation strategy that 
facilitates inference and learning in CHMM.  

3. Results  
Evaluation of the bimodal speech recognition system 

was performed on an audio-visual speech dataset [1] col-
lected by Chen et al. at the Carnegie Mellon University.  
The visual features were derived from the lip-tracking data 
provided with the bimodal speech dataset.  The results are 
summarized in Table 1. 

Table 1. Summary of recognition results (measured in %word 
accuracy).  ‘A’ indicates the audio-only system; ‘V’ indicates the 
visual-only system; ‘A+V’ indicates the bimodal system using 
early integration; and ‘CHMM’ indicates the CHMM-based sys-
tem. 

SNR 10dB 20dB 30dB 
A 4.03 43.61 99.10 
V 42.95 42.95 42.95 

A+V 10.58 72.79 99.74 
CHMM 35.32 86.58 93.32 

An important cue the visual modality provides in bi-
modal speech perception is the information about bound-
ary locations of the speech units within an utterance.  We 
computed forced alignment of a speech segment in the 20 
dB test set using both the acoustic only recognizer and the 
CHMM-based bimodal recognizer.  The results are illus-
trated in Figure 2.  The two subplots on the bottom show 
the word boundaries superimposed with the speech wave-
form.  The upper one is the alignment obtained using au-
dio-visual CHMM; the lower one shows the alignment 
obtained using acoustic only HMM.   The three subplots 
on the top display the static visual features used in the 
bimodal system.  All five plots are time-aligned so that the 
correspondence among them can be visualized.   

From the plot, we see that the audio-only recognizer 
almost always give the incorrect end-of-word boundary at 

this noise level.  In contrast, the bimodal system was able 
to precisely determine the end boundaries in 6 out of 7 
cases.  It is interesting to observe that the bimodal recog-
nizer consistently introduced a lead-time before the audi-
ble starting point of a word.  This observation is consistent 
with the finding from human speech perception, that the 
visual speech usually leads the visual speech by a varying 
time window. 
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Figure 2.  Forced alignment using audio only HMM and 
audio-visual CHMM 


