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Abstract. In this paper, a method for inferring scene structure
information based on both laser and visual data is proposed.
Common laser scanners employed in contemporary robotic
systems provide accurate range measurements, but only in 2D
slices of the environment. On the other hand, vision is capable
of providing dense 3D information of the environment. The
proposed fusion scheme combines the accuracy of laser sen-
sors with the broad visual fields of cameras toward extracting
accurate scene structure information. Data fusion is achieved
by validating 3D structure assumptions formed according to
2D range scans of the environment, through the exploitation
of visual information. The proposed methodology is applied
to robot motion planning and collision avoidance tasks by us-
ing a suitably modified version of the vector field histogram
algorithm. Experimental results confirm the effectiveness of
the proposed methodology.
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1. Introduction

Laser scanners mounted on mobile robots have recently be-
come very popular for various indoor robot navigation tasks.
Their main advantage over vision sensors is that they are ca-
pable of providing accurate range measurements of the en-
vironment in large angular fields and at very fast rates. Al-
though suitable for many navigation tasks [4,7,13], the quan-
tity of information encapsulated in 2D laser scans may, in
certain cases, be insufficient for more crucial and demanding
robotic tasks, such as obstacle detection and collision avoid-
ance [3,6,9,12,14]. This is because various objects common
even in the simplest indoor environments, such as chairs, ta-
bles, or shelves on walls, are sometimes invisible to laser scan-
ners and thus absent or misinterpreted in the resulting 2D pro-
files.

In this paper, we propose a methodology for fusing laser
with visual information in order to infer accurate 3D informa-
tion. Simple 3D models of the environment consisting of a flat
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Fig. 1. Block diagram of the proposed methodology

horizontal floor surrounded by vertical planar walls are ini-
tially constructed according to 2D laser range data. Vision is
then utilized in order to (a) validate the correctness of the con-
structed model and (b) qualitatively and quantitatively charac-
terize inconsistencies between laser and visual data wherever
such inconsistencies are detected. Scene information recov-
ered through this procedure is directly applied to motion plan-
ning and collision avoidance through an appropriately modi-
fied version of the vector field histogram method [3].

The proposed methodology differs from classical vision-
based depth estimation approaches in that visual depth infor-
mation is extracted only wherever laser range information is
proved to be incomplete. The increased computational effi-
ciency meets the real-time demands for collision avoidance
and facilitates its application to other crucial robotics tasks
as well. Moreover, since information encapsulated in visual
data serves to supplement laser range information, inherent
advantages of both sensors are maintained, leading to imple-
mentations combining accuracy, efficiency, and robustness at
the same time. The proposed methodology has been tested
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Fig. 2a,b. 3D model creation. a Range data and line segments. b Resulting 3D model

on both synthetic and real data. The results obtained are very
promising and demonstrate its effectiveness.

2. Method description

Based on a single 2D range scan, a local 3D model of the
robot’s environment is constructed. This is based on the as-
sumption that the environment consists of a flat horizontal
floor surrounded by piecewise vertical planar walls. This as-
sumption holds in most indoor environments. To facilitate the
construction of the 3D model, range measurements are first
grouped into line segments. For this task, a homebuild seg-
mentation algorithm is used, which is based on the iterative
end point fit (IEPF) algorithm [5]. Each of the resulting line
segments, according to the assumptions made about the envi-
ronment, corresponds to a vertical planar surface in the result-
ing model.

In order to evaluate the developed 3D model, a pair of im-
ages acquired by a calibrated stereo vision rig is used. Points
from the first image are ray-traced to the 3D model, and 3D
coordinates are estimated. Based on this information, image
points are reprojected onto the frame of the second camera. If
the assumed 3D model is correct, then the image constructed
through reprojection should be identical to the one actually
acquired by the second camera. Wherever the model is not
correct, images should differ. A local correlation of image
intensity values reveals regions with such inconsistencies in-
dicating that the corresponding parts of the environment do
not conform to the assumptions made when building the 3D
model.

Vision is further utilized in these cases to provide addi-
tional depth information in regions where the 2D range data
proved to be insufficient. For this purpose, image intensity
matches are sought in the vicinity of the initial position, falsely
indicated by the 3D model, along the direction of the epipolar
line [8]. All intensity matches are transformed to real-world
coordinates and accumulated, along with laser range infor-
mation, on a local 2D occupancy grid that is utilized by the
collision avoidance module to produce proper motion com-
mands.

A block diagram of the proposed methodology is given
in Fig. 1. In the next section, the process of creating local 3D
models of the environment according to laser data is described.
Utilization of visual data to evaluate the generated 3D models
and extraction of visual metric information are discussed in
Sects. 4 and 5. Finally, in Sect. 6, details regarding the appli-
cation of the proposed methodology for collision avoidance
are provided.

3. 3D model generation

In order to build the 3D model of the environment, range mea-
surements (interpreted as points on 2D profiles of the robot’s
environment) are first grouped into line segments. For line
segment extraction, a three-stage algorithm has been imple-
mented. Range measurements are initially grouped to clus-
ters of connected points according to their sphere-of-influence
graph [10]. Clusters are then further grouped to line segments
by utilizing the iterative end point fit (IEPF) algorithm [5]. Fi-
nally, line segment parameters are reestimated by a line fitting
procedure.

For generating the local 3D model of the environment,
an infinite horizontal plane (floor) is assumed right below the
robot, at a known distance from the robot’s coordinate system
(the position of the range finding device). Then, line segments
defined in the previous step are extended to form rectangular
vertical surfaces of infinite height. More specifically, for each
line segment, the plane that is perpendicular to the floor and
contains the line segment is inserted into the 3D model. The
coordinate system of the generated 3D model is assumed to
coincide with the coordinate system of the robot.

Figure 2a shows the line segments extracted by the al-
gorithm described above for a simple artificial environment.
The extracted lines are superimposed on the simulated range
measurements. A rendered view of the resulting 3D model is
depicted in Fig. 2b.

4. Model evaluation

Let M be the 3D model built as described in Sect. 3, accord-
ing to range data acquired at time ¢1, and let I; be an image
acquired by a camera c; at the same time instant.

For each image point p; = (21, y1) of Iy, the coordinates
(X,Y, Z) of the corresponding 3D point P can be computed
by ray-tracing it to the model M. If the assumptions made for
constructing the 3D model are correct, the (X,Y, Z) coordi-
nates found by the above procedure correspond to a real-world
point on M. Let I, be a second image, acquired by the second
camera of the stereoscopic system. Since the coordinate sys-
tem of ¢, with respect to the coordinate system of M is also
known, the projection py = (z2,y2) of P = (X,Y, Z) on ¢o
can also be computed.

The above procedure of ray-tracing points of I; to find 3D
world coordinates and back-projecting them to /5 leads to an-
alytical computation of point correspondences between /7 and
I5. If the assumptions made to form the model M are correct,
corresponding image points would actually be projections of
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Fig. 3a—c. Example of the 3D model evaluation process. a, b Two
frames of an artificial scene containing two cubes. The 3D model and
the range finder points are also projected onto the images. ¢ Results
of the evaluation process, projected onto the second image. Areas
where vision and laser data are inconsistent are marked with “x”s

the same world points and thus should share the same attributes
(color, intensity values, intensity gradients, etc.). If this is not
the case (e.g., image points have different attributes), then a
strong indication exists that the model is locally invalid. The
normalized crosscorrelation metric [5] is employed to evalu-
ate the correctness of the calculated point correspondences.
Low values of the calculated crosscorrelation correspond to
regions within the images depicting parts of the environment
that do not conform to the 3D model.

Figures 3a and 3b show two frames of a synthetic scene
captured by a simulated stereo vision rig at the position corre-
sponding to the range data shown in Fig. 2a. For convenience,
wire-frames of the 3D model, extracted as described in Sect. 3,
together with range finder measurements, are projected on the
images. The scene contains two cubes; one lying at approxi-
mately 1 m above the floor (on the left part of the image) while
the other (on the right) is placed directly on the floor. Figure 3¢
demonstrates the results of the evaluation process. Evidently,
the algorithm succeeds in correctly detecting the cube on the
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Fig. 5. Extraction of metric information by utilization of visual data

left of the image that is “invisible” to the range finder since it
is floating above its scanning plane. The cube on the right of
the image does not yield any unmatched areas since it lies on
the floor and hence is visible to the laser scanner. It should be
noted at this point that the area above the right cube should also
yield inconsistencies, which are not identified due to complete
lack of texture in the specific artificial scene.

5. Extraction of visual depth information

In the previous section, vision was used in order to detect in-
consistencies between the 3D model that was extracted based
on the 2D laser range information and the real 3D environ-
ment. Having already detected such inconsistencies, visual
information can be further exploited to provide quantitative
information (i.e., depth values) for the regions where laser
measurements proved inadequate in modelling the real envi-
ronment.

Let us assume the camera configuration depicted in Fig. 4.
The 3D point P lying on the model M is projected onto the
point p; on the left image (/1) and onto the point ps on the
right image (I2). The epipolar plane 7 created by point P and
the camera centers C and C' intersects the image planes in
lines {; and ls, the epipolar lines [8].

Suppose that the image coordinates of p; are known and
that neither the location of the 3D point P nor point py in
the second image is known. It has already been shown that
by ray-tracing point p; to the 3D model we can compute the
3D coordinates of point P and by projecting the latter to the
second camera plane we can estimate the corresponding point
p2 in the second image. Suppose that by locally correlating
pixel intensity values at the positions of p; and p, we discover
adissimilarity and conclude that the 3D model M is inaccurate
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Fig. 6a—d. Visual depth computa-
tion criteria for collision avoidance.
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and hence the 3D coordinates of point P, as implied by the
model, are not correct. This raises the question of whether
point P actually lies behind model M (further to the camera
than assumed) or in front of it; the latter would make it a
potential obstacle invisible to the range finder.

Whatever the actual depth of point P, its projection on the
second camera will comply to the epipolar constraint; that is,
it will lie on the epipolar line /5. The important observation is

a 0o &8
Initial Robot
Position ¢
b
N : L Fig. 7a—d. Visual depth extraction for collision
b avoidance in an artificial scene. a, b Rendered
view and sectional plan of an artificial environ-
ment. ¢, d Visual depth extraction for collision
d avoidance at the initial position of the robot

that the shorter the actual depth of point P, the closer will be
its projection p, to the epipole es. That is, if point p; actually
corresponds to a 3D point P’ closer to the first camera than
point P, its projection pa’ on the second camera will lie on
the epipolar line l2, between py and the epipole e, (Fig. 4). If
point P’ lies farther from the first camera than P, its projection
p2’ will also lie on I3 but this time in the opposite direction
of es. If the exact location of p,’ corresponding to p; were
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known (known point correspondences), computation of the
intersection of the line passing through points C'; and P with
the line passing though C5 and py’ would yield the exact 3D
location of P’.

However, accurate computation of p,’ is not always possi-
ble due to lack of sufficient image intensity variation (texture)
or simply to image noise. Relying on the assumption that for
robots that move on a planar surface the projection of the ob-
stacles on the 2D surface of motion suffices for navigation, we
alleviate the problem of spurious range evidence by accumu-
lating range estimates in a 2D occupancy grid [1, 11].

Figure 5 demonstrates the results of the procedure de-
scribed above for the synthetic data set used in the previous
sections. As can be easily observed, the location of the left
cube shown in Fig. 3, although not visible by the range finder,
is correctly identified by our method and placed in the resulting
occupancy grid (Fig. 5).

6. Collision avoidance

The proposed framework for fusion of range and visual infor-
mation is directly applicable to the collision avoidance task.
In this section, we present a collision avoidance algorithm
that utilizes range data extracted as described in the previous
sections. The presented algorithm is a modified version of the
vector field histogram (VFH) method [3]. VFH creates motion
commands by considering the peaks and valleys of a polar ob-
stacle density histogram. For computing the values of the polar
histogram, a local occupancy grid combining both laser and
visual information is calculated in real time.

6.1. Efficiency considerations

According to the procedure described in Sect. 5 for inferring
depth information out of visual data, image intensity matches
are sought for each pixel along its corresponding epipolar line.
Elimination of depth computations so that they take place only
wherever laser vision inconsistencies are detected effectively
reduces the required computational time. Further reduction
of computational time is feasible by proper definition of the
search area along the epipolar line.

For collision avoidance, the VFH algorithm does not need
to utilize all aspects of range information. For example, range
information regarding obstacles that lie far from the robot (out-
side the active window) is not directly usable by the VFH al-
gorithm and need not be computed. Moreover, visual range in-
formation obscured by corresponding laser range information
can safely be eliminated as well. Thus a large percentage of
depth computations can be safely eliminated without compro-
mising the performance of the collision avoidance procedure.

The above observations lead to a set of criteria that dictate
when extraction of visual range information is meaningful for
collision avoidance:

e Criterion a: Extracted visual range differs significantly
from corresponding laser range (|Zyision — Ziaser| =
dallow)- According to this criterion, portions of the epipo-
lar line that correspond to 3D points lying very close to the
3D model are eliminated from the search area (Fig. 6a).

e Criterion b: Extracted visual complies with predefined,
application-specific bounds (Zy;sion < Zigser)- That is,
the search area along the epipolar line is bound by the two
points, p2 and the epipole e». This criterion is graphically
depicted in Fig. 6b.

e Criterion c: Extracted visual range lies neither too far nor
too close to the robot (Z,,,in < Zyision < Zmaz)- This cri-
terion imposes a further substantial reduction of the search
space by setting two boundaries along the epipolar line,
corresponding to maximum and minimum depth values,
Zmin a0d Z 4., respectively (Fig. 6c¢).

Each of the above criteria imposes limitations on the search
area along the epipolar line. Figures 6a—c graphically depict
these limitations. In Fig. 6d, the combination of all the above
criteria and the resulting search area are also depicted.

6.2. Algorithm operation

Figures 7 and 8 demonstrate the application of the proposed
algorithm for collision avoidance in an artificial environment
containing obstacles that are both visible and invisible to the
laser range scanner. A rendered view and a sectional plan of
this environment are depicted in Figs. 7a and 7b. Shaded boxes
in Fig. 7b indicate obstacles that are visible to the laser scan-
ner (lying on the floor). Unshaded boxes indicate obstacles
lying above the scanning plane of the laser range finder. The
robot is initially positioned at the bottom of Fig. 7b, and the
desired target is indicated by an “x” in the same figure. The
application of the visual depth computation algorithm on the
initial robot position is depicted in Figs. 7c and 7d. As can be
observed, the potential obstacles that are invisible by the laser
range scanner are correctly identified. For guiding the depth
information extraction process, all criteria defined earlier in
this section were considered.

The operation of the collision avoidance algorithm is
demonstrated in Fig. 8, depicting the robot at three different
time instances while following a path toward the target in the
upper right corner of the scene (marked with a cross).

Figure 9 shows the occupancy maps produced by the robot
after moving for a while in the artificial scene of Fig. 7. Fig-
ure 9a depicts the occupancy map constructed by utilization
of laser only information, while Fig. 9b depicts a map con-
structed by utilization of both laser and visual information.
All boxes, including those lying above the scanning plane of
the laser range finder, were identified by the robot and are
correctly represented on the corresponding map.

7. Results

The method proposed in this paper has been implemented and
assessed on a robotic platform of our laboratory, namely, an
iRobot-B21r equipped with a SICK-PLS laser range finder
and a pair of cameras operating at a standard resolution of
640 x 480 pixels. The range finder is capable of scanning 180
degrees of the environment, with an angular resolution of one
measurement per degree and a range measuring accuracy of
5cm. An internal calibration procedure has been applied prior
to testing our methodology to estimate the relative positions
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Fig. 8a—c. Operation of the motion planner in the artificial scene of Fig. 7

e\

and the intrinsic parameters of all sensors. Extensive tests have
been performed; in all cases, very accurate performance was
observed, verifying the effectiveness and robustness of the
method.

Figure 10 demonstrates the operation of the proposed
method in a corridor environment. A pair of images acquired
by the robot are shown in Figs. 10a and 10b. Projections of
range finder data as well as of the resulting 3D model are also
overlaid on the images. The results of the evaluation process,
projected onto the second image, are shown in Fig. 10c. As can
be verified, various structures lying on the walls of the corri-
dor and invisible to the range finder, were correctly identified
by the evaluation process. Results of the metric information

Fig. 9a,b. Occupancy maps produced for the artificial scene of
Fig. 8a. a Utilizing laser information only. b Utilizing both laser
and visual information

Fig. 10a—d. Visual depth information extraction in a corridor environment

extraction algorithm, in the form of an occupancy grid map,
applied to these areas of range data inconsistency, are depicted
in Fig. 10d. For illustration purposes, line segments used for
constructing the 3D model are also overlaid.

Figure 11 demonstrates the fusion of laser and visual data
in a more complex real scene. Both images used for this pur-
pose are depicted in Figs. 11a,b. As can be observed, the scene
contains obstacles that are not fully visible to the laser range
finder (for example, laser beams pass below the desk to the
right of images 11a,b, reflecting on the wall that is behind
the desk). Results of the evaluation process are depicted in
Fig. 11c, while local occupancy grids, constructed by accu-
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Fig. 11a—e. Utilization of visual information for collision
avoidance. a, b Input images, ¢ evaluation process, d laser
occupancy grid, e combined laser and vision occupancy
J grid

d

mulating laser and laser plus visual information, are displayed
in Figs. 11d and e respectively.

The operation of the proposed framework is further
demonstrated in Fig. 12, depicting a desk lying on the same
corridor structure outside our laboratory. As in the previous ex-
periments, the algorithm successfully identifies the desk that
is invisible to the laser range finder (only its legs are apparent
in the laser scan).

r“‘”“%—-— e Y

RS 1=
Fig. 12a—e. Utilization of visual

. ; information for collision avoid-

ance. a, b Input images, ¢ evalu-

ation process, d laser occupancy

grid, e combined laser and vi-
e sion occupancy grid

Figure 13 demonstrates the application of the obstacle
avoidance algorithm described in Sect. 6 for the scene of
Fig. 11. The robot safely maneuvers around all obstacles in
the scene in order to reach its target.

Figure 14 demonstrates the applicability of the proposed
framework for other navigational tasks besides the collision
avoidance task. Figures 14a,b show two occupancy grid maps
constructed by the simple accumulation procedure described
in Sect. 6. The first map, Fig. 14a, is constructed by accumu-
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a b

Fig. 13a—e. Collision avoidance for the scene of
Fig. 11

Fig. 14a—-d. Global maps constructed (a, b) and paths planned (¢, d) by utilization of laser information only (a, ¢) and laser and vision

information (b, d)

lation of laser only range information, while for constructing
the second map visual information was used as well. The maps
were constructed by using the sensor data collected during the
experiments depicted in Figs. 11 and 12. In this experiment,
a global localization algorithm [2] was used to extract the
required global localization information. Figures 14c,d show
the application of a global path planning algorithm on the two
maps depicted in Figs. 14a,b. The global path planning algo-
rithm used for this purpose is the value iteration algorithm [13].
As expected, the path produced by using laser only informa-
tion (Fig. 14c¢) is not correct; the algorithm suggests a path
through the desk depicted in Fig. 12. On the other hand, use
of visual information, as demonstrated in Fig. 14d, leads to a
correct path.

8. Conclusions and future work

In this paper, a new method for fusion of range and visual data
for the extraction of scene structure information has been pro-
posed. Moreover, an application of the proposed method for
real-time collision avoidance has been demonstrated. Simple
3D local models of the environment are formed based on 2D
range data. Visual information is used to locally evaluate the
constructed models and to detect regions that are inconsistent
with visual data. In places where the evaluation process yields
inconsistencies among the range data and the robot’s envi-
ronment, vision is utilized to provide additional metric depth

information. Since pixel displacements are computed analyt-
ically by rendering image points to the model, their direct
computation is not necessary. The proposed method requires
two views of the environment that are acquired by a calibrated
stereoscopic vision system. However, it can also be applied in
cases of robots with a single camera, provided that accurate
egomotion information can be computed [1].

Besides the demonstrated applicability of the proposed
method for collision avoidance, the general idea presented in
this paper can be used by range-based mapping and navigation
algorithms to make them more accurate and robust. We believe
that fusion of data provided by range and vision sensors con-
stitutes an appropriate framework for mobile robot platforms
to perform demanding navigation tasks. It is our intention to
further investigate the applicability of the methodology pre-
sented in this area.
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