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ABSTRACT 
 
Virginia Tech is currently developing a new autonomous vehicle as a research platform.  This vehicle is being used to 
investigate techniques in autonomous landmine/UXO detection.  In addition, it was entered in the 2000 Intelligent Ground 
Vehicle Competition.  This vehicle senses its surroundings using two (non-stereo) color CCD cameras, a SICK laser range 
finder, and wheel encoders.  The cameras give a color representation of the area in front of the vehicle; while the laser range 
finder provides range data for obstacles in a 180-degree arc in front of the vehicle.  Encoder feedback is used to determine 
position and velocity of the vehicle.  This paper presents the techniques used to fuse this diverse and asynchronous data into a 
useful representation.  The software architecture, which allows the various sensor fusion methods to be tested in a modular 
fashion, is also presented, along with the results from field-testing.  
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1. INTRODUCTION 
 
The Autonomous Vehicle Team (AVT) at Virginia Tech has a history of building vehicles for entry into the annual 
Intelligent Ground Vehicle Competition(IGVC), formerly known as the International Ground Robotics Competition. 1  The 
team has begun to branch out and explore other application areas, such as landmine/UXO detection, for its vehicles.  
Preliminary work in this field required the development of a vehicle capable of carrying currently available detectors across 
uneven and cluttered ground terrain.  The design of this new vehicle was undertaken by the AVT during the 1999-2000 
academic year.  The main focus of this first year’s development was upon the base vehicle, and supporting sensors and 
navigation algorithms.  This new vehicle, shown in Figure 1, is called Navigator and was entered into the 8th annual IGVC, 
held July 8-10, 2000, in Orlando, Florida. 2   
 

 
 

Figure 1. Navigator – a 3-wheeled differentially driven autonomous vehicle 



 
2. VEHICLE DESIGN 

 
Navigator is a 3-wheeled differentially driven vehicle, with two large front wheels to provide both drive and steering.  A third 
wheel in the rear of the vehicle acts as a caster and is free to rotate about its vertical axis.  This configuration allows for the 
capability of zero radius turns and leads to a nimble vehicle that can steer without causing damage to the ground like tracked 
or multi-wheeled skid steering.  The zero radius turn allows the vehicle to operate in cluttered environments where a similarly 
sized steered vehicle could not operate.   The 26-inch drive wheels are driven by 2 24-Volt DC gearmotors rated at 75 rpm.  
This gives the vehicle a top speed of 5.8 miles per hour.  Two 24-volt lead acid battery packs provide power to the vehicle. 
One battery powers the electronics, while the other powers the motors. 
 
Navigator uses two separate computer systems for vehicle navigation and control.   An industrial programmable logic 
controller (PLC) executes the main motor control, while a dual Pentium III computer (PC) handles the higher-level sensor 
fusion and navigation tasks, as well as providing the user interface.  Both the PLC and the PC use 24-Volt DC power 
supplies, supplied by the batteries.  The PLC provides the output signal to the motor drive amplifiers and reads the encoders 
to provide velocity and position feedback.  Additionally, the PLC provides both analog and digital inputs and outputs.  The 
inputs are used to read switch positions to determine the vehicle mode and motor current.  The outputs are used to drive 
several status LED’s and power relays and provide motor amplifier control commands.  The PC includes the video frame 
grabbers and Ethernet card.  By using a powerful computer system, several vision processing strategies could be tested in 
software.  In a production vehicle, the best operations could be handled in hardware, thereby limiting the need for such a 
computer. 
 
The vehicle operates using a hierarchical control scheme: the PLC handles low level motor controls, while the PC handles 
high-level navigation decisions.  By using this structured control strategy, each piece of hardware is able to handle those 
tasks for which it is best suited. The PC and PLC communicate across the Ethernet to exchange control and status 
information.  The PLC includes interlocks that stop the vehicle if communications are lost. 
 
Navigation Manager, the software developed at Virginia Tech, fuses the diverse input data and makes the higher-level 
navigation decisions.  Later sections of this paper discuss this software in detail.  For now, assume that once the navigation 
decision is made, the steering commands are passed to the PLC via the Ethernet connection.  The steering commands consist 
of a speed command and a turning rate command.2,3  Together these two commands specify a desired arc for the vehicle to 
travel.2  Additionally, the Navigation Manager software handles such user interface tasks as starting and stopping, along with 
data logging and real time data plotting. 
 
The lower level control functions are handled by the PLC.  The PLC includes hardware modules for interfacing with the 
industry standard drive amplifiers.  The actual motor control is implemented in ‘C’ code in the PLC’s central processing unit 
(CPU).  The PLC receives speed and turning rate commands from the PC, and the control code converts these commands into 
the desired wheel speeds required for steer the desired path.2, 3   The relationship between the speed, turning rate, and the 
vehicle wheel rotations is specified by the vehicle kinematics.2, 3   Once the desired wheel speeds are calculated, a discrete 
implementation of the PID algorithm handles the actual motor control based on feedback from the encoders.  The 
implementation uses a non-standard form of the discrete PID to avoid some problems discovered with tuning the algorithm 
under saturation conditions.2 
 
 

3. SENSORS AND SENSOR FUSION 
 
In order for the vehicle to act in manner that appears intelligent, the vehicle must be capable of sensing changes to its 
environment.2  The ability to sense these changes is given by the vehicle’s sensors, while its ability to react well is limited by 
its ability to use the data from its various sensors in an coherent manner.  This section discusses the sensors used on 
Navigator and the method used to fuse the sensor data.  
 
3.1 Charge Coupled Device cameras and Frame Grabbers 
 
Two color Charge Coupled Device (CCD) cameras are used for image acquisition.  The cameras are configured to give an 
overlapping view of the ground in front of the vehicle, as shown in Figure 2.  The images are captured using two frame 
grabbers and processed using the Intel Image Processing Library (IPL) functions.  The IPL functions, which are optimized 



 

  

for the Intel processors used on the vehicle, offer 
increased performance for basic image processing 
operations.  The use of the dual processor computer 
allows the images to be processed in parallel, which 
increases the overall frame rate of the vision system.2 

 

Once the images are acquired, they are processed in order 
to distinguish relevant features—such as course boundary 
lines, debris, and obstacles—from the background image.  
Once the individual images are processed, they are 
transformed to the ground reference plane, and combined 
into a composite image.  This composite image is further 
processed to remove spurious bright pixels due to noise or 
glare.2  This processing step requires some tuning based 
on the lighting conditions and the size of the relevant 
objects in the image.  

Figure 2. Camera projections relative to the vehicle 
 

3.2 Laser Rangefinder 
 
To supplement the computer vision system, Navigator 
used an LMS-200 laser rangefinder, manufactured by 
SICK.  The laser rangefinder returns 361 data points in a 
180-degree arc, giving a 0.5o resolution.  The laser 
rangefinder has a range of up to 30 meters; however, the 
look-ahead distance for Navigator was set at 5-meters.  
Figure 3 shows a graphical representation of the data. 
 
The system detects obstacles based on the first derivative 
approximation of the range data.  This enables specific 
obstacles to be identified.  For tasks such as follow-the-
leader, the obstacles are tracked according to the 
predicted position of the selected target obstacle. 
 

 

 
Figure 3.  Laser rangefinder data (range in meters) 

 

3.3 Encoders 
 
Navigator includes wheel encoders on both of the drive wheels to provide velocity and position feedback.  The PLC 
interfaces with the encoders and converts the encoder pulses into engineering units.  The encoder feedback is used in the PLC 
control algorithm to regulate wheel speeds, and therefore the overall speed and turning rate of the vehicle.2,3  Because the 
navigation system, to be described later, is reactive and is not concerned with position , the navigation system does not use 
the encoder feedback in its current configuration.  The encoder feedback is used in position estimation for controller testing 
and tuning.  The position estimate is based on dead reckoning.  For applications that require position estimates more accurate 
than can be obtained by dead reckoning alone, it has been proposed to instrument the rear caster wheel as well.3 
 
3.4 Evidence Grids 
 
The concept of an evidence grid, which has also gone by the terms certainty grid, occupancy grid, or histogram grid, is a 
proven technique for fusing sensor data.5, 6  The concept uses a tessellated view of the world, which is mapped to a grid.  
Each cell in the grid contains a value measuring the probability that the area represented by the cell exhibits some property.  
Typically this is used to determine if an area is occupied or free, based on sensor readings.  The more modern 
implementations use probabilistic measurements to determine the cells values.5  Furthermore the cells are manipulated 
according to probabilistic techniques.  A common use of the evidence grid is for mapping an unknown space using the sensor 
measurements during vehicle exploration. 
 



Navigator uses a technique similar to an evidence grid.  Although not based in probability theory, the grid does represent a 
tessellated view of the ground in front of the vehicle.   Once the camera images have been processed, transformed, and 
combined into a single composite image, the composite image is decimated to give a much coarser view of the world.  This 
process is shown below in Figure 4.  Because the image is a pixellated view of the world, the decimated result gives a 
tessellated view of the world.  Although the resulting grid is still stored as an image, it functions as an evidence grid.  Each 
pixel intensity in the decimated image relates to the expectation of a line or obstacle in the area represented by the pixel.  As 
configured, Navigator uses a decimated image where each pixel represents an area upon the ground approximately 6 cm 
square.   
 

 
Figure 4. Image of line to evidence grid representation 

 
The current version of Navigator does not use any sense of history in the decimated image.  Future development will 
transform the resultant image based on vehicle motion, and then combine it the latest information obtained from the cameras.  
By weighting the old and new data differently, the algorithm can adjust the relative importance of the data based upon the 
confidence in that data.2   For example, if the motion tracking is accurate and the vehicle is moving slow relative to the frame 
rate of the vision system it may be wise to use the historical data to build up confidence in the image processing.  On the 
other hand, if the vehicle is moving fast or the motion tracking is inaccurate, it may be advisable to weight the new data 
heavier, and only use the old data if the cameras fail to obtain new data.  Once this historical tracking is included in the 
algorithm, the decimated image will behave more like a tradition evidence grid, in the sense that the evidence builds up with 
repeated measurements.  At any rate, the use of the decimated image in the algorithm does not differ from a traditional 
evidence grid. 
 
3.5 Vector Field Histograms 
 
In order to fuse the data from the computer vision system and the laser rangefinder into a useable representation, Navigator 
uses a method based on the Vector Field Histogram (VFH) developed by Johann Borenstein.6   The VFH was developed to 
overcome limitations found in traditional potential field methods, while maintaining a fast, reactive, navigation scheme.6,7  
Although the VFH uses intermediate representations, such as an evidence grid, the overall operation is such that it reacts to 
changes in its sensor information, rather than planning its path based on its sensor model.6  This leads to a relatively fast and  
computationally efficient algorithm for determining paths through densely cluttered environments. 
 
The VFH is based upon a one-dimensional polar histogram, where the histogram value represents the obstacle density in a 
given polar sector about the vehicle.6 Because the sensors are looking at different types of obstacles in different ways, the use 
of the VFH provides an convenient method of combining the data into a common and useful format that represents both 2-D 
obstacles (lines, potholes, etc.) and 3-D obstacles (barrels, trees, etc).  This polar obstacle density (POD) is generally a 
function of the distance from the vehicle to an obstacle.2, 6  Several different functions have been proposed, with each 
function giving a slightly different behavior.2,  8  The current implementation in Navigator uses a linear version of the form 
 
 )( dbaekPOD −=  (1) 

 



where a and b are positive constants, d is the distance from the vehicle to the obstacle, e is the evidence value, and k is an 
arbitrary scaling coefficient.    The linear form was chosen over other forms because it offered a good compromise between 
reacting to obstacles as they get closer to the vehicle and over reacting when they first come into view.2 
 
The VFH for Navigator used 91 values representing sectors, in 2-degree increments, from -90o to +90o relative to the forward 
direction of travel.  Two separate vector field histograms were calculated: one for the vision data and one for the laser 
rangefinder data.  The polar form of the VFH is nicely suited to use with the laser range finder data, which is inherently polar.  
The POD for each sector in the laser rangefinder VFH was calculated using the closest reading within that sector.   
 
The VFH for the vision data required conversion from the 2-D planar distribution of evidence values to the 1-D polar 
histogram form.  Figure 5 shows the relationship between the 2-D evidence grid and the VFH sectors.  The basic technique 
uses a pre-calculated map of POD values at each cell in the evidence grid, which is then multiplied by the actual evidence 
values to obtain the POD for each cell at a given time.  The VFH takes the maximum POD for the cells within a given sector 
for the histogram value.  Because the evidence grid is stored as an image, it is possible to precalculate several masks used in 
the VFH calculations during the program initialization.  
During run time, a series of image processing operations 
are used to apply the masks to the evidence grid to 
calculate the POD values needed for the VFH.  Use of 
these functions, optimized for the matrix operations on 
the computer processor, significantly increases the 
processing speed.  The calculation of the values of the 
POD mask is based on the transformation of the camera 
coordinates to the ground plane coordinates.  A series of 
masks are created which select the pixels within a given 
sector.  The sectors are allowed to overlap, which 
compensates for missing pixels within a densely crowded 
area.   
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Figure 5.  Evidence grid with polar sector shown. 

 
Once the two histograms are calculated, fusion of the two data sets is straightforward.  For each sector, the maximum POD is 
selected.  Because the maximum POD value represents the closest obstacle, this technique allows the obstacles of greatest 
concern to dominate the navigation decisions.  Figure 6 shows a representation of the two sets of VFH data superimposed on 
one graph.  Areas of low POD represent obstacles in the distance, while zero values for POD represent free space at a given 
orientation. 
 

 
 

 
Figure 6.  Composite VFH using range and visual data 

 
 

4. NAVIGATION 
 
Once the sensor data is fused into meaningful representation, the vehicle must select the most appropriate direction for travel.  
The selection of this direction is what gives the vehicle its apparent intelligence.2  Navigator used a multistep process to 
polish the data, and select the most appropriate direction of travel. 
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The VFH representation is such that a high value represents an impassable area.  In this arrangement, the vehicle must search 
for the minimum polar obstacle density.6  Typically the VFH has areas of high POD and areas of low POD, Borenstein refers 
to these as “peaks” and “valleys”.6  In the original VFH algorithm, the vehicle selected the valley, closest to the target.  Later 
refinements included aspects of the vehicle dynamics in the selection of the candidate valleys.8  One complication with the 
software developed for Navigator was the lack of a predefined target.  This lack of a predefined target, along with a desire to 
simplify processing, lead to the development of the passability representation. 
 
4.1 Passability representation 
 
The passability representation is the inverse of the obstacle density.  This relationship is given by the following formula: 
 

 
threshold
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POD

PODPOD
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Sectors above a threshold obstacle density are considered impassible; therefore, the passability is set to zero.    Furthermore, 
the passability is normalized against the threshold obstacle density, such that the maximum passability is one.  By controlling 
the threshold obstacle density, the programmer can control how close a vehicle can approach a given obstacle.  In Navigator, 
the obstacle densities were calculated relative to the position of laser rangefinder, therefore the threshold was calculated to 
correspond to an obstacle outside of the wheel boundaries so that the vehicle will never collide with obstacles. 
 
4.2 Alleyway selection 
 
In the VFH representation, the vehicle selects the direction based on the lowest POD values.6  The VFH algorithm used low 
pass filters and  obstacle enlargement to account for the vehicles size.6, 8  The algorithm used on Navigator modifies these 
concepts slightly.  Using the passability representation, the algorithm scans the passability histogram searching for 
discontinuities, which mark edges of obstacles.  By seeking the higher passability regions between obstacles the algorithm 
identifies candidate alleyways(valleys  in VFH).  The algorithm then checks the angular opening of the alleyway to determine 
if the alleyway is wide enough for the vehicle to pass.  Given equations 1 and 2, the width of the vehicle, and the passability 
at the obstacle, it is possible to calculate the required angular opening.2  If the candidate alleyway opening is less than the 
required opening, the alley is marked as closed at the obstacles passability.  Because the relationships are known a priori, the 
required openings for each passability can be calculated during program initialization and stored in a look up table.  A final 
step in the passability processing uses a filtering process to round the corners of the alleyways.  This has the effect of shading 
the passability values away from the obstacle boundaries.  The filter is coded such that the filter is only applied using smaller 
adjacent values. 
 
4.3 Steering selection 
 
Once the candiate alleyways are identified and processed, the vehicle must select an appropriate navigation direction.  For the 
Intelligent Ground Vehicle Competition, there is no target known ahead of time.  The vehicle must travel an unknown course, 
staying within the boundaries and avoiding obstacles.  For this reason, it was decided to bias Navigator to continue straight 
ahead until forced to turn by a course boundary or obstacle.  This was accomplished by scaling the passabilities according to 
their orientation relative to the vehicle.  In this way there is a cost associated with large steering angles.  Figure 7 shows the 
resultant passabilitiy map in polar form after processing for alleyway width and the orientation scaling. 
 
Once the passability histogram has been processed, a steering direction must be chosen.  Early attempts based on the 
alleyway with the highest average passability did not work for large alleyways such as the right side of figure 7.  Also, once 
an alley is chosen, the steering direction within that alley must be chosen.  Again, early attempts based on steering toward the 
alley centroid caused the vehicle to oscillate on the course.  The current version of Navigator searches for alleyways starting 
in the center and searching left and right.  Boundaries of alleyways are marked according to the passability derivative.  
Furthermore, if the derivative is smooth but the absolute value changes by more than a given amount from the start a 
boundary is also marked.  In this way, large alleys, such as shown in Figure 7, are subdivided into smaller alleys.  Once the 
large alleys are subdivided, the vehicle picks from the small alleys chosing the one with the largest average passability.  The 
vehicle steers toward the selected alley’s centroid.  Because of the scaling factor, this centroid is naturally weighted toward 
the forward direction.  The steering is accomplished by calculating the turning rate as a function of the alley centroid.  The 
speed setpoint of the vehicle is calculated as a function of the average passability of the selected alley.  The Navigation 



Manager program then sends the calculated speed and turning rate values to the PLC.  Once the PLC receives the speed and 
turning rate commands, it handles the motor control as previously described.   
 

 
Figure 7.  Polar passability plot showing raw, filtered, and scaled values 

 
 
This reactive scheme never calculates an explicit path for the vehicle.  The steering commands are updated based on the latest 
readings from the sensors.  It the vehicle is not turning fast enough the changes in the VFH will force a larger turning rate.  
This happens because the POD values increase as the obstacles approach, eventually exceeding the threshold and forcing a 
new direction of travel.6 
 
 

5. CONCLUSION 
 
This paper has described the development and operation of a navigation method based upon the vector field histogram 
method.  The method has proven to be reliable for fusing diverse data from the cameras and laser rangefinder. This method 
has been validated upon an actual hardware platform, the Navigator.   
 
5.1Vehicle Performance 
 
The overall performance of the vehicle was exceptional for a first generation vehicle.  The vehicle was awarded 1st place in 
the design competition at the 8th annual Intelligent Ground Vehicle Competition.  The vehicle obtained a 2nd place tie in the 
follow the leader competition, 3rd place in the road debris avoidance competition, and a 5th place finish in the autonomous 
challenge course.  Navigator missed 4th place on the autonomous challenge course by just over 10 feet, while distancing the 
next closest competitor by over 60 feet.  Lessens learned at the competition lead to refinements in the navigation code that 
improved the navigation decisions during subsequent testing. 
 
5.2 Future Work 
 
The next phase in the design of Navigator, being undertaken this year by a new team at Virginia Tech, is to analyze the 
dynamic forces on the vehicle, and optimize the frame design to lessen the vehicle weight.  Most of the remaining issues with 
the performance of Navigator are dynamic issues related to the vehicle weight.  By gaining a more complete understanding of 
the dynamic forces on the vehicle frame, the conservative design can be optimized in a fashion that both lessens the weight 
and provides a better distribution of weight. 
 
Like all local path planners, this VFH based method requires trap detection and escape algorithms.6  If a complete dead end is 
encountered, the vehicle must be programmed to execute a zero-radius turn and begin wall following or some other trap 
avoidance behavior.  Additionally, cyclic behaviors, such as cycling between different traps, must be identified and avoided.6 
 
Another area of development is the building of a global map based on the sensor data obtained during vehicle operation.  The 
idea is to record data about the environment in order to build confidence in the location of objects.  In this manner, obstacles 
can be used as references for localization in the global map.  As Navigator “learns” the environment it can plan its desired 



path based on obstacles predicted to appear but which are out of the current view of the sensors.  This will allow the vehicle 
to maintain a good constant speed and fluid motion throughout the environment.   
 
Finally, the navigation system is built as an obstacle avoidance system.  Use in landmine/UXO detection system will require 
more precise navigation specifically designed to provide coverage of a given area.9, 10 
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