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Abstract 

 
A compact visual representation, called the 3D Layered, Adaptive-resolution and Multi-

perspective Panorama (LAMP), is proposed for representing large-scale 3D scenes with large 

variations of depths and obvious occlusions. Two kinds of 3D LAMP representations are 

proposed: the relief-like LAMP and the image-based LAMP. Both types of LAMPs concisely 

represent almost all the information from a long image sequence. Methods to construct LAMP 

representations from video sequences with dominant translation are provided. The relief-like 

LAMP is basically a single extended multi-perspective panoramic view image. Each pixel has a 

pair of texture and depth values, but each pixel may also have multiple pairs of texture-depth 

values to represent occlusion in layers, in addition to adaptive resolution changing with depth. 

The image-based LAMP, on the other hand, consists of a set of multi-perspective layers, each of 

which has a pair of 2D texture and depth maps, but with adaptive time-sampling scales 

depending on depths of scene points.  Several examples of 3D LAMP construction for real image 

sequences are given. The 3D LAMP is a concise and powerful representation for image-based 

rendering. 

 

Keywords: image-based modeling and rendering, layered representation, multi-resolution, 

multi-image processing, spatio-temporal image, epipolar plane image 



 2

 

1. Introduction............................................................................................................................. 3 

1.1. Related Work .................................................................................................................. 3 

1.2. 3D LAMP: Overview of Our Approach ......................................................................... 5 

1.3. Organization of the Paper ............................................................................................... 6 

2. Basic Panoramic Geometry..................................................................................................... 7 

3. Relief-like 3D LAMP Representation .................................................................................. 10 

4. Image-Based 3D LAMP Representation .............................................................................. 14 

4.1. Depth Layering ............................................................................................................. 14 

4.2. Temporal Re-Sampling................................................................................................. 15 

5. Depth, Occlusion and Resolution Recovery ......................................................................... 18 

5.1. Depth Recovery: the Panoramic EPI-Based Approach ................................................ 18 

5.2. Depth Boundary Localization....................................................................................... 21 

5.3. Occlusion Recovery...................................................................................................... 24 

5.4. Resolution Recovery..................................................................................................... 26 

6. LAMP Construction and Rendering: Experimental Results................................................. 27 

6.1. 3D LAMP Construction Results ................................................................................... 27 

6.2. Extended Panoramic Image (XPI) Representation ....................................................... 30 

6.3. LAMP-Based Rendering............................................................................................... 32 

7. Comparisons and Discussions .............................................................................................. 34 

7.1. Layered Representation ................................................................................................ 34 

7.2. Full Perspective, Full Orthogonal,  Multi-Perspective and Multivalued Representations
 36 

8. Conclusions........................................................................................................................... 38 

9. Acknowledgements............................................................................................................... 39 

10. References......................................................................................................................... 39 

 

 



 3

1. INTRODUCTION 

The problem of modeling and rendering real 3D scenes has received increasing attention in 

recent years in both the computer vision and computer graphics communities [1-3, 5, 6, 8, 17-19, 

22, 23, 27]. In order to build a visual representation from image sequences for re-rendering real 

3D natural scenes, there are two challenging issues that need to be solved: the correspondence 

problem between two (or multiple) views, and a suitable geometric representation of large scale 

scenes. Usually a suitable visual representation will ease the correspondence problem. Many of 

the successful image-based modeling and rendering approaches [1-3, 5, 6, 8-10] have tried to 

simplify or avoid the correspondence problem by using 2D image interpolation or video 

registration/mosaicing. On the other hand, more general approaches need sophisticated vision 

algorithms, such as in multi-view stereo [17, 18] or general motion analysis [10, 11, 22, 23] of an 

image sequence. Three classes of image-based representations have been proposed to represent 

video sequences of large-scale 3D scenes: panoramic (mosaic) representations, multi-view 

representation and layered representations. Building and maintaining a suitable visual 

representation of a large-scale scene remains an important research topic in image-based 

modeling and rendering. 

1.1. Related Work 

Mosaic-based approach - A video mosaic is a composite of images created by registering 

overlapping frames. Many of the current successful image mosaic algorithms, however, only 

generate 2D mosaics from a camera rotating around its nodal point [1,2,3]. Creating multi-

perspective stereo panoramas from one rotating camera off its nodal point was proposed by 

Ishiguro, et al [4], Peleg, et al  [5], and Shum & Szeliski [6]. A system for creating a global view 

for visual navigation by pasting together columns from images taken by a smoothly translating 

camera (comprising only a vertical slit) has been proposed by Zheng & Tsuji [7]. The moving 

slit paradigm was later used as the basis of the 2D manifold projection approach for image 

mosaicing [8], the multiple-center-of-projection approach for image-based rendering [9], the 

epipolar plane analysis techniques for 3D reconstruction [15], and the parallel-perspective view 

interpolation methods for stereo mosaicing [16, 27]. Multi-perspective panoramas (or mosaics) 

exhibit very attractive properties for visual representation and epipolar geometry; however, 3D 
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recovery from stereo mosaics still faces the same problems as traditional stereo methods - the 

correspondence problem and occlusion handling.  The 3D information for regions that are 

occluded in one of the views is usually difficult to obtain since no correspondences can be 

established for those regions. 

Layered representation - In a layered representation, a set of depth surfaces is first estimated 

from an image sequence from a single camera, and then combined to generate a new view. Wang 

and Adelson [10] addressed the problem as the computation of 2D affine motion models and a 

set of affine support layers from an image sequence. The layered representation that they 

proposed consists of three maps in each layer: a mosaiced intensity map, an alpha map, and a 

velocity map.  Occlusion boundaries are represented as discontinuities in a layer's alpha map 

(opacity). This representation is a good choice for image compression of a video sequence and 

for limited image synthesis of selected layers. Recently, Ke & Kanade [22] proposed a subspace 

approach to reliably extract planar layers from images by taking advantage of the fact that 

homographies induced by planar patches in the scene form a low dimensional linear space. 

Occlusion regions are excluded from their layered representation. Sawhney and Ayer [11] 

proposed a multiple motion estimation method based on a Minimum Description Length (MDL) 

principle. However, their algorithms are computationally expensive and require a combinatorial 

search to determine the correct number of layers and the "projective depth" of each point in a 

layer. Occlusion regions are not recovered in their layered model. Baker, Szeliski & Anandan 

[12] proposed a framework for extracting structure from stereo pairs and represented a scene as a 

collection of approximately planar layers. Each layer consists of an explicit 3D plane equation, a 

texture map (a sprite), and a map with depth offsets relative to the plane. The initial estimates of 

the layers are recovered using techniques from parametric motion estimation and then refined 

using a re-synthesis algorithm which takes into account both occlusion and mixed pixels. More 

recent work on 3D layer extraction [23] uses an integrated Bayesian approach to automatically 

determine the number of layers and the assignment of individual pixels to layers. For more 

complex geometry, a layered depth image (LDI) has been proposed [13] which is a 

representation of a scene from a single input camera view, but with multiple pixels along each 

line of sight. 
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Multi-view approach - Rather than constructing a single mosaic from a sequence of images, 

multi-view approaches represent a scene by multiple images with depth and texture. Chang and 

Zakhor [17] proposed a method to obtain depth information of some pre-specified “reference 

frames” of an image sequence captured by an uncalibrated camera scanning a stationary scene, 

then to transform the points of reference frames onto an image of the desired virtual viewpoint. 

However, reference frames were chosen quite heuristically; a synthesized image from a 

viewpoint far away from that of the reference frames leads to erroneous results since occluded or 

uncovered regions cannot be well represented. Chang and Zakhor later extended this work to a 

multivalued representation (MVR) [26], which is automatically constructed with respect to a 

single reference frame from a set of dense depth maps. They pointed out that occlusion levels 

come naturally from the dense depth information and argued that because of visibility 

limitations, real-world scenes typically do not have more than three occlusion levels. This 

distinguishes their MVR from the layered representations, which usually have a much larger 

number of layers when using affine motion to group regions. Szeliski [18] presented a new 

approach to computing dense depth and motion estimates from multiple images. Rather than 

estimating a single depth or motion map, a depth or motion map is associated with each input 

image (or some subset of them). Furthermore, a motion compatibility constraint is used to ensure 

consistency between these estimates, and occlusion relationships are maintained by computing 

pixel visibility. 

1.2. 3D LAMP: Overview of Our Approach 

The goal of our work is to construct a layered and panoramic representation of a large-scale 3D 

scene with large variations of depths and obvious occlusions from primarily translating video 

sequences. Our approach in this paper is based on a multi-perspective panoramic view image 

(PVI) [7]  and a set of epipolar plane images (EPIs) [14]  extracted from a long image sequence, 

together with a panoramic depth map generated by analyzing the EPIs [15, 21]. To accomplish 

this, we need to solve four problems: 1) generating seamless PVIs and EPIs from video under 

more general motion than pure translation in a large and real scene, 2) analyzing the huge 

amount of data in EPIs robustly and efficiently to obtain dense depth information, 3) enhancing 

resolution and recovering occlusions in a parallel-perspective PVI representation, and 4) 

representing a large scale 3D scene with different depths and occlusions efficiently and 
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compactly. While the first two issues are very important in constructing a 3D model of a scene, 

they have been discussed in our previous work [15, 21], so this paper will mainly focus on the 

last two issues.  

We propose a new compact representation - 3D Layered, Adaptive-resolution and Multi-

perspective Panorama (LAMP). The motivation for layering is to represent occluded regions and 

the different spatial resolutions of objects with different depth ranges; meanwhile the model is 

represented in the form of a seamless multi-perspective mosaic (panorama) with viewpoints 

spanning a large distance. Two kinds of 3D LAMP representations are constructed: the relief-like 

LAMP and the 2D image-based LAMP. The relief-like LAMP is basically a single, extended, 

multi-perspective PVI with both texture and depth values, but each pixel has multiple values of 

texture-depth pairs to represent results of occlusion recovery and resolution enhancement. The 

image-based LAMP, on the other hand, consists of a set of multi-perspective layers, each of 

which has both texture and depth maps with adaptive time-sampling scales depending on depths 

of scene points. The LAMP representation is related to such representations as the panoramic 

view image (PVI) [7, 15], sprite [12], and the layered depth image (LDI) [13]. However, it is 

more than a multi-perspective PVI in that depth, adaptive-resolution and occlusion are added in 

our representation. It is different from the sprite (or the layered depth image) since the latter is a 

view of a scene from a single input camera view and is without adaptive image resolution. The 

3D LAMP representation is capable of synthesizing images of new views within a reasonably 

restricted but arbitrary moving space, as its intensity and depth maps contain almost all the 

information that could be obtained from an image sequence.  

1.3. Organization of the Paper 

This paper is organized as follows. In section 2, we describe the basic panoramic representation 

with parallel-perspective geometry, including both texture and depth maps. Based on this 

“supporting” panoramic representation, we propose a relief-like LAMP representation in Section 

3, which features multiple layers, adaptive resolution, multi-perspective, and panoramic views. 

In Section 4, an image-based LAMP representation is presented with just a set of 2D images in 

order to simplify the 3D scene representation. Steps to convert a relief-like LAMP to an image-

based LAMP are provided. Section 5 discusses a unique EPI-based approach to construct a 

relief-like LAMP. This approach does not explicitly extract features, track loci, or match 
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correspondences. Instead, a spatio-temporal-frequency domain cross-analysis is performed to 

create dense depth maps, to localize accurate depth boundaries, and to extract occluded regions 

that cannot be seen in the selected panoramic view. In Section 6, experimental results and some 

practical considerations are given for 3D LAMP construction, and 3D rendering based on LAMP 

representations are discussed.  In Section 7, we make two comparisons. First, we compare our 

LAMP representation based on parallel-perspective projection with those representations having 

full perspective or full orthogonal projections. Second, we compare our image-based LAMP 

representation with several existing layered representations. The last section is a summary of this 

work. 

2. BASIC PANORAMIC GEOMETRY 

For completeness, we give a brief introduction to the constructions and representations of 

Panoramic View Images (PVIs) and Epipolar Plane Images (EPIs) and to the reconstruction of a 

“supporting PVI surface” - a panoramic map with both depth and texture - from PVIs and EPIs. 

 

EPI (y=0)
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Fig. 1. ST image model. A PVI is a yt image inside the xyt cube and an EPI is an xt 

image  

Let us consider the situation in which a model of a large-scale scene will be constructed from a 

long and dense video sequence captured by a camera moving in a straight line whose line of 

sight (i.e., optical axis) is perpendicular to the motion (Fig. 1). The resulting sequence obeys the 

following spatio-temporal (ST) perspective projection model  

          
Z
Yfty

Z
VtXftx =

+
= )(,)(  (1) 

where (X,Y,Z) represents the 3D coordinate of a point at time t=0, f is the camera focal length, 

and V is its speed . A feature point (x,y) forms a straight locus and its depth value is 
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dx

Vdtf
v
VfZD ===  (2) 

where  

dtdxv /=   (3) 

is the slope of the straight locus. In other words, two kinds of useful 2D ST images can be 

extracted:   (1) Panoramic View Images (PVIs) - the y-t intersections in the xyt cube (Fig. 1), 

which is a parallel-perspective image including most of the 2D information of the scene from 

multiple viewpoints, and (2) Epipolar Plane Images (EPIs) - the x-t intersections in the xyt cube, 

whose ST locus orientations represent depths of scene points.  Fig. 1 illustrates the central PVI 

and one of the EPIs. 

 

(b) 

(c) 

(a) Frame 0           Frame 200             Frame 400            Frame 600             Frame 1000    

 

Fig. 2.  A few frames of the stabilized Main Building (MB) sequence in (a), and a 

pair of stereo PVIs: (b) x = 0 and (c)  x= -56. White lines indicate matches. 

In real scenes, the motion of a camera usually will be composed of a dominant translation plus 

unpredictable variations. In addition to depth recovery and occlusion handling, a pre-processing 

step is needed to generate a stabilized image sequence with only a 1D translation by using image 

stabilization and image mosaicing techniques [15, 21].  Fig. 2 shows two PVIs that are extracted 

from x=0 and x=-56 of a 128*128*1024 xyt image cube of a building scene - the stabilized Main 

Building (MB) sequence. The MB sequence was captured by a camcorder mounted on a tripod 

carried by a moving vehicle. Other than the small vibration of the vehicle on a normal outdoor 
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road, the translational velocity was mostly constant. Fig. 2a shows a few frames after video 

stabilization; image transformations for removing the camera vibration produce blank regions 

(shown in black) around the borders of the stabilized frames, particularly visible on the right 

sides of Frame 0 and Frame 1000. The camera vibration is also demonstrated by the irregular 

boundaries of the mosaic in Fig. 7.  

Multi-perspective PVIs provide a compact representation for a large-scale scene, and stereo PVIs 

can be used to estimate the depth information of the scene [7, 6, 16, 27]. In panoramic stereo 

(Eq. (2), Fig. 2), the "disparity" dx is fixed; and the distance D is proportional to dt, the 

stereoscopic “displacement” in t. This indicates that depth resolutions are the same for different 

depths. However, we still face two problems in order to use stereo PVIs to recover 3D 

information - the correspondence problem and the occlusion problem.  

 

 PVI (x=0) 

 PVI (x=-56) occluded   side 

EPI (y=9) 
 x 

o 

 y 

 t 

Fig. 3. Each EPI is a composite image of a scanline from all possible views of an 

image sequence, and includes information about depth, occlusion and spatial 

resolution of 3D scene points 

Our solution to these two problems is to effectively use the information that is continuous 

between two views, i.e., the epipolar plane images, to obtain a “supporting PVI surface” - a 

panoramic view image with both texture and depth maps, and then the occluded regions that 

cannot be seen from the PVI. Fig. 3 shows an EPI from which the occluded (and side) regions as 

well as depths can be recovered; the algorithms to extract depth and to recover 

occlusion/resolution will be discussed in Section 5. The supporting PVI surface is a 2D 

panoramic view image with both texture and depth map (Fig. 4a) and is the base for our LAMP 

representation.  The texture map is a y-t intersection plane in the xyt image cube, and the depth 

map has depth values for each pixel. In principle, we can extract the supporting PVI surface from 
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any x location inside the xyt cube. In this paper, we usually select a central PVI (with x = 0) that 

has orthogonal parallel rays along the direction of motion. For constructing a dense depth map 

for the supporting PVI, we need to process all the EPIs inside the xyt cube. While the 1D motion 

model will be used to develop our EPI-based approach in this paper, LAMP representations can 

be constructed under a more general [15, 16, 27] or different motion [5,6], and/or using other 

approaches [10, 11, 12, 22, 23]. 

          

          

 (a)  Texture and depth maps of the supporting PVI surface (back of the relief). 

 y 

 -x  t  y 

-x  t  

 (b)  Texture and depth maps of the relief surface (front of the relief). 

Fig. 4. The base layer of the relief-like LAMP representation for the MB sequence.  

3. RELIEF-LIKE 3D LAMP REPRESENTATION 

Based on the representation of a multi-perspective supporting PVI surface (containing both 

texture map and depth map), we propose a compact and comprehensive representation called the 

3D LAMP- Layered, Adaptive-resolution and Multi-perspective Panorama. We will explain the 

LAMP model by an illustrative example shown in Fig. 5 using a simple 1D scene. Recall that a 

3D ST image (which is a 2D EPI for the 1D scene in Fig. 5) includes everything from an image 
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sequence. First, we will give a basic LAMP representation - the relief-like 3D LAMP - that is 

directly carved from the 3D  ST image (xyt image). The  relief-like 3D LAMP basically cuts out 

some essential part of the 3D ST image depending on the depth value for each pixel. It has the 

following four properties that make it very suitable for image-based modeling and rendering: 

(a) 
d2  1D scene 

d1  s1 

d4 

d3              ( o1      o2  ) s2 

(b) 

x 

t 
0 

relief-surface 

supporting-surface
base layer 

side layer s2  occluded layer o1 

side layer s1  occluded layer o2 

d1 

d2  d3 

occluding object d4 

EPI loci 

Z 

O X  V 

view directions for LAMP 

 ts   te 

 t0 

  

Fig. 5. A 1D illustrative scene and its LAMP representation. (a) 1D scene with four 

horizontal depths (d1-d4) and two sides (s1,s2), (b) relief-like LAMP and depth 

layering for the image-based LAMP from an EPI. Note that in order to represent all 

the information presented in an image sequence of the scene, different parallel 

viewing directions in (a) are needed, which are reflected  in the LAMP 

representation as multiple layers in (b). 

1). It is a  panoramic image-based representation with 3D information.  A large-scale scene will 

first be represented by a base layer, which is indexed by a seamless 2D panoramic view image 

(PVI) consisting of both texture and depth maps. This  2D PVI (see Fig. 4a for a real example) is 

defined as the supporting surface (back surface) of the base layer in the relief-like LAMP, which 

makes the LAMP representation very efficient for archiving (modeling) and retrieval 

(rendering). 

2). It has adaptive image resolution.  In the base layer (which includes depths d1, d2, d3 and d4 in 

Fig. 5b), each point has an attached streak of multiple pixels in the x direction, with both texture 

and depth information, in order to represent the resolution loss in the multi-perspective PVI (the 

supporting surface).  The slope of the locus, i.e. the image velocity v in Eq. (3), gives us the 
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number of pixels if it is greater than 1 (v>1). Otherwise the number of pixels is 1. Real examples 

can be found in the right hand side of the panoramic image in Fig. 4a where the doors of the 

buildings and the bushes in front of it appear narrower than the real ones. In the LAMP 

representation, the number of pixels (“temporal resolution”) at each point in the supporting 

surface (where x = 0) adaptively changes with the depth of that point. The adaptive temporal 

sampling in the horizontal direction and the inherent adaptive spatio-sampling of perspective 

projections in the vertical direction recover and preserve image resolutions of the original frames 

in a satisfying way. 

The name “relief-like” comes from the fact that the appearance of the front surface (relief 

surface) of this representation is somewhat like a relief sculpture, in which forms and figures 

(with image velocities v > 1) are distinguished from a surrounding planar surface (the supporting 

surface) (Fig. 5b). Fig. 4b shows the corresponding relief surface of the base layer of the relief-

like LAMP representation for the MB sequence (refer to Fig. 14 for all the internal data). Each 

pixel in the relief-like LAMP is associated with a location with (x,y,t) coordinates; for the 

supporting surface, we have x = 0.  The end point in the relief surface in the location (y,t) is 

exactly connected with the start point in the supporting surface in the location (y, t+1) (Fig. 5). 

This feature allows us to generate seamless mosaics in the image-based LAMP representation in 

the next section.  

3). It is a layered representation. Additional occluded layers, which are smaller pieces of multi-

perspective view images compared with the “complete” based layer, represent the occluded and 

side regions (regions o1, o2, s1 and s2 in Fig. 5b) that are not visible in the selected parallel 

panoramic view of the base layer (which is orthogonal to the camera path in Fig. 5). They are 

attached to the base layer with the same representation (texture, depth and adaptive resolution) as 

the base layer. Each of the occluded x-segments is attached to a depth boundary point (y,t0), and 

has an x coordinate, a start time ts and an end time te that mark its position in the xyt image (Fig. 

5b). We want to emphasize that in order to represent all the information presented in an image 

sequence of the scene, different parallel viewing directions (shown in Fig. 5a) are needed, which 

are reflected in the LAMP representation (Fig. 5b) as multiple layers with different x 

coordinates. 
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4).  It is a multiple perspective image. The PVI is a multi-viewpoint perspective image (i.e., the 

y-t image). Each sub-image (a one-column slit-image in concept) in the multi-perspective 

panorama is full perspective, but successive slit images have different viewpoints. The multi-

perspective representation acts as a bridge in the image-based modeling and rendering pipeline 

between the modeling end from the original perspective sequences and the rendering end for new 

perspective images, both with changing viewpoints over a large distance. 

In conclusion, a relief-like LAMP is composed of a “complete” base layer and a set of occluded 

layer pieces. It can be viewed as an essential part of the xyt image cube in which each pixel has 

two attributes - texture (represented by intensity I ) and depth (represented by the image velocity 

v ) - connected to its coordinates (x,y,t), where the x coordinate is implicitly represented. The 

data structure of a relief-like LAMP is a spatio-temporal (ST) 2D array that is defined as follows: 

struct  x-Streak 
{ 
 int x0; // start x coordinate, indicating the viewing direction of the supporting surface  
 int xlen; // length of the x-streak, indicate thickness of the relief  
 int I[xlen]; // texture: intensity array of the x-streak 
 float v[xlen]; // depth: image velocity array of the x-streak  
} 
struct  Occlusion-Segment 
{ 
 char type; // segment type: OCCLUDED or SIDE 
 int ts, te;  // start frame and end frame of the segment  
 x-Streak r[te-ts+1]; // x-Streaks in this segment  
} 
struct  Relief-LAMP-Element 
{ 
 x-Streak *r; // a x-streak 
 Occlusion-Segment *occ; // a occluding segment; NULL if not a depth boundary 
} 
Relief-LAMP-Element  rLAMP[YDIM][TDIM]; // rLAMP[y][t]: y=0~ YDIM, t = 0~TDIM 

 

It is clear that a relief-like LAMP is a 2D spatio-temporal array indexed by y and t; at each (y,t) 

location there is an x-Streak, which is a 1D segment along the x direction inside the xyt cube and 

an optional Occlusion_Segment that consists of a number of x-Streaks. In the current 

implementation, each x-Streak assigns the same image velocity v of the start  point (x0,y,t) in the 

supporting surface. In other words, for resolution enhancement, we only sample v pixels along 

the x direction and assign them the same v value. An Occlusion-Segment is one of two types - 

OCCLUDED that has the same depth, or SIDE that has linearly interpolated depths.  Clearly, the 
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representation here allows further refinement of the depth map in that each (x,y,t) pixel in the 

relief-like LAMP can has its own depth. The 3D coordinates of each pixel (x,y,t) in the relief-

like LAMP can be recovered by the following equation 

Vt
v
VxX

v
VyY

v
VFZ −===   ,  ,  (4) 

given v(x,y,t) in the relief-like LAMP representation. 

4. IMAGE-BASED 3D LAMP REPRESENTATION 

A  relief-like LAMP can be viewed as having adaptive time sampling for every single pixel in 

the panoramic supporting surface as well as including all the occluded regions represented in the 

same way. This representation is good for a complex scene that has many small depth layers. 

However, in terms of data structures, the relief-like LAMP is an inhomogeneous representation 

rather than a set of homogeneous 2D image arrays. In addition, the base layer usually includes 

objects at different depth levels, and the occluded layers are not merged into the regions they 

belong to. For example,  regions o1 and o2 in Fig. 5 belong to the same depth surface as region 

d3, but they are segmented into two additional “occluded” layers. Hence a natural extension of 

the basic LAMP is to extract from it a more concise representation - an image-based 3D LAMP.  

In an image-based 3D LAMP, a scene is represented as multiple layers of 2D mosaiced images 

in which each layer is truly represented by two 2D arrays - a texture map and a depth map. We 

wish to create a panoramic mosaic image for each layer that is both seamless and preserves 

adequate image resolutions. There are two steps necessary to fulfill this goal: depth layering and 

time re-sampling. 

4.1. Depth Layering  

The motivation for layering is to represent occluded regions and different spatial resolutions of 

objects with different depth ranges in different layers.  An image based LAMP is layered 

according to occluding relations rather than merely depths, which is also used by other 

researchers as a powerful observation to generate a more compact image-based representation 

[26]. The scene parts with varying (but not discontinuous) depths in a single layer will further 

use adaptive temporal sampling rates in the second step to represent different resolutions for 
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different depths along the direction of parallel projection. Conceptually, the implementation of 

depth layering from a relief-like LAMP is straightforward since we can  easily determine where 

the occluding regions in the relief-like base layer should be segmented and put into separate 

image-based layers. The same is true for the occluded or side regions in the occluded layers. 

Generally speaking, layers either in the same depth range or with continuous depths will be 

merged into one single layer. Regions with occluding boundaries will be divided. For example, 

in Fig. 5b, the two occluded regions ( o1 and o2) will be merged into the base layer with depth d3, 

while the occluding region (d4) originally included in the base layer will be separated out as  a 

new layer. Ideally, side regions ( s1 and s2 in Fig. 5b) should be inserted into the base layer since 

they can connect well (in both depth and texture) with the base layer. However, in our current 

implementation we put them into two separate layers for simplicity.  

After depth layering, the original relief-like LAMP is divided into several single-layer relief-like 

LAMPs, ready for creating image-based layers. Each of them only includes a base layer, with an 

x coordinate to indicate where it is taken from in the xyt cube. Different x coordinates in the 

relief-like LAMP imply different viewing directions of parallel projections in order to better 

capture surfaces with different orientations (see Fig. 5a ).  
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(front) 
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x-segment 

 

                  Fig. 6 . Temporal re-sampling and seamless mosaicing 

4.2. Temporal Re-Sampling 

From each single-layer relief-like LAMP that is obtained by depth layering (as shown in the left 

part of Fig. 6), we will generate a seamless 2D panoramic image with both texture and depth 

attributes. In each column (t) of such a relief-like LAMP (Fig. 6), the number of pixels in the x 

direction of a point in the supporting surface is inversely proportional to the depth of that point. 

Since depths may change along the y direction, the x-y slice at each column t usually has varying 

widths in the x direction. In order to create a regular 2D image, we want to warp each irregular x-
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y slice (in the relief-like LAMP) with varying widths in the x direction into a rectangular  t-y 

slice of equal width wt (wt ≥ 1) in the t direction, which will be stitched into a 2D seamless 

mosaic in the image-based LAMP (see the right part of Fig. 6). The width of the t-y slice image 

at time t is calculated as the dominant image velocity of all v(y, t) in column t of the  supporting 

surface, e.g.  

)},({)( tyvmediantvw
yt ==  (5) 

Note that each x-segment of the x-y slice in a relief-like LAMP starts from x0 and ends at xe(y,t)= 

x0-v(y, t); for the base layer x0=0. A temporal re-sampling is performed for each x-segment by 

turning it into a t-segment of wt-pixels (Fig. 6 and Eq. (5)). In this way, super-time sampling is 

virtually achieved within a frame’s time t (usually 1/30 second as the unit) such that each pixel 

of a transformed wt-pixel slice represents a point captured in a time unit of 1/wt.  Hence, the 

texture map and the depth map of a layer starting from time t0 are represented as I(y,k) and v(y,k) 

where index k for time t is  
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For computing 3D coordinates, the super-sampled tk corresponding to column k is stored in a 1D 

array as part of the image-based LAMP model: 
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In this manner, each column k in the image-based LAMP array is virtually a 1-column 

perspective image at the “super” viewpoint (time) tk. The densities of viewpoints adaptively 

change with depths of the scene. The parallel-perspective views between time t and t+1 are 

approximated by transforming the corresponding part of the perspective image in frame t. Note 

that this is a correspondenceless approach to implementing view interpolation and is different 

from the global parametric method in [24] or the local match method in [16, 27] for image 

mosaicing.  Fig. 7 shows a seamless adaptive-resolution panoramic mosaic (corresponding to the 

PVI shown in Fig. 4a), where the time scale in each instant t is determined by the dominant 
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(median) depth of points along the corresponding vertical line (the y direction) in frame t.  Note 

that the aspect ratios of the objects in the right-hand side of Fig. 4a are restored. 

 trees 

 

Fig. 7. Multi-viewpoint mosaic with adaptive time scales (the right edge of the upper 

part connects with the left edge of the bottom part). The width of each vertical slice 

from the corresponding original frame is determined by the dominant image velocity 

v of pixels along the y-axis in the corresponding PVI (the supporting surface of the 

base layer). Circles in this figure indicate the corresponding OCCLUDED and SIDE 

regions that are shown on the EPIs in Fig. 12. 

In conclusion, in an image-based 3D LAMP each layer is basically a 2D parallel-perspective 

panorama with an x coordinate (to indicate viewing direction). It has three components: 1) 

texture map I(y,k); 2) depth map v(y,k); and  3) a 1D super time-sampling array tk=t(k) (to 

indicate densities of viewpoints, or adaptive temporal resolutions).  The data structure is  

struct Image-LAMP-Layer 
{ 
int I[YDIM][KDIM];  // texture map I[y][t]: y = 0~YDIM; k = 0 ~KDIM 
float v[YDIM][KDIM]; //depth map v[y][t] : y = 0~YDIM; k = 0 ~KDIM 
float t[KDIM]; // super-time index tk; k = 0~KDIM; 
} 
Image-LAMP-Layer iLAMP[L]; // layer l = 0~L 

 

From this representation, we can find the corresponding 3D coordinates of a point (y,k) in the 

image-based LAMP by 

kVt
v
VxX

v
VyY

v
VFZ −===   ,  ,  (8) 

given v(y,k) and tk = t(k). 
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As a comparison, Table 1 shows the tradeoff between relief-like and image-based LAMP 

representation. While the former is more general and more appropriate for complex scenes, the 

latter is more compact. 

Table 1. Comparison between relief-like LAMP and image-based LAMP 

representations 

 Relief-like LAMP Image-based LAMP 
Scene general, complex scenes well-layered scenes, 2-3 layers 
Representation  inhomogeneous homogeneous, more compact 
Construction intermediate level higher level 
Rendering fast faster 

 

5. DEPTH, OCCLUSION AND RESOLUTION RECOVERY 

In this section, we will discuss one approach – our panoramic EPI approach [15, 21] - to obtain a 

dense depth map for the supporting surface of the relief-like LAMP. Further, we will show how 

to generate occluded layers and adaptive resolution by selectively using the most essential 

information from all the EPIs. The support surface is a PVI with selected parallel viewing 

direction; for example, a viewing direction orthogonal to the camera motion direction when x=0. 

The panoramic EPI approach consists of four important steps: locus orientation detection, 

motion/depth boundary localization, depth-texture fusion, and occlusion/resolution recovery. 

The results of the first three steps are a panoramic depth map with accurate depth boundaries as 

well as the corresponding texture map (Fig. 4a).  

5.1. Depth Recovery: the Panoramic EPI-Based Approach  

The panoramic EPI approach we proposed in [15, 21] uses a frequency-spatio-temporal cross-

analysis to estimate loci’s orientations in each EPI, without explicitly tracking the loci in EPIs. 

We will give a brief summary of how this goal is achieved in the first three steps of the 

panoramic EPI approach. The method consists of three steps: frequency domain loci orientation 

estimation, spatio-temporal domain depth boundary localization, and depth-texture fusion. Since 

it is very important to accurately localize the depth boundary for layered representation in image-

based rendering applications, we will focus on the method for accurate depth boundary 

localization. 
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First, a Gaussian-Fourier Orientation Detector (GFOD) is performed along a scanline (x=x0) in 

the EPI, which is the intersection line of this EPI with the supporting PVI. The GFOD operator 

uses Gaussian-windowed Fourier transforms to detect orientations of the image under the 

Gaussian window. A large window (e.g. 64×64) is used in order to detect accurate locus 

orientations. Multiple orientations are detected for a certain temporal range when the GFOD 

operator moves across a depth boundary. Thus, the Gaussian window is applied to reduce this 

range by assigning higher weights for pixels closer to the center of the window. However, the 

response of multiple (two in our current implementation) orientations does not only happen 

exactly at the point on the depth boundary (see Fig. 8 for locations with two peaks).  

 

y 

(d) t

θ 

(c) t

θ 

(b) t

 

 x 

(a) t

Fig. 8.  Multiple orientation detection by Gaussian-windowed Fourier Orientation 

Detector (GFOD), and depth boundary localization. (a). An x-t image (i.e., EPI, with 

y = -18) with the processed points (white dots) and a Gaussian window (indicated by 

a circle). (b) Orientation energy distribution map Pd(φ,t) and loci orientation 

detection: the long dashed curve (red in color version) indicates the first selected 

peaks, and several pieces of solid lines (blue in color version) indicate the second 

peaks. (c) Loci orientation angles selected after depth boundary localization and 

depth interpolation. (d) Part of the corresponding PVI (x = 0); the horizontal line in 

the PVI corresponds to the EPI in (a). Significant depth boundaries are marked by 

vertical black lines across (a) to (d). 

The Fourier transform G ( )ωξ ,  is obtained for a 64×64 Gaussian-windowed EPI pattern centered 

at (x0, t) (shown as a circle in Fig. 8a). The “energy spectrum” P ( )ωξ , =log(1+G2 ( )ωξ , ) is 

mapped into the polar coordinate system ( )φ,r  by a coordinate transformation 
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,22r . From the resulting polar representation P ( )r,φ , an orientation 

histogram is constructed as  

( ) [ ]πφφφ ,0,)( 2
1

∈∫= r
rd drrPP  (9) 

where φ  corresponds to the orientation angle of the ST texture centered at (x0, t) and [r1,r2] is a 

frequency range of the bandpass filter, which is selected adaptively according to the spatial-

temporal resolution of the image. Initially, r1 and r2 are set to 8 and 30, respectively, for a 64×64 

window. An orientation energy distribution map Pd(φ,t) can be constructed (Fig. 8b), which 

visually represents the depths of the points along the time (t) axis, corresponding to the 
processed EPI. 

 

 

 

Fig. 9.  Panoramic depth construction: raw depth map, refined depth map and the 

texture maps with depth boundaries superimposed in black lines (red in color 

version). 

In the second step, a Depth Boundary Localizer (DBL) is used to accurately localize the depth 

boundary. It measures intensity consistencies along the two detected orientations with the two 

highest peaks, taking occlusion/reappearance relations into account. The best consistent 

measurement should be achieved right at the depth boundary since otherwise one of the 

measurements will cross both locus patterns (Fig. 8 c; see also Fig. 10a and Fig. 10b).  

Then in the third step, a depth-texture fusion (DTF) algorithm is applied to reduce the errors 

produced in each EPI analysis (due to aperture problems, noise, etc.) and to refine depth 
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boundary localizations. The refinement is based on the observation that a depth boundary almost 

always coincides with an intensity boundary in a visual scene. This observation is also used by 

others [22, 25]. Fig. 9 compares the raw depth map (after the first two steps) and the refined 

depth map, and shows superimposed depth boundaries in the panoramic texture map. 

5.2. Depth Boundary Localization 

Since multiple orientations are detected not only at but also near the depth/motion boundaries by 
using the large GFOD operator, a Depth Boundary Localizer is designed to determine whether or 
not the depth/motion boundary is right in the center of the Gaussian window. For the method to 
be valid for most of the cases encountered in a natural scene and applicable to the EPIs generated 
by a un-stabilized camera, we use an approach that does not rely on locus tracking (which often 
fails due to the non-ideal ST textures generated from a complex scene with changing 
illuminations and  un-smooth camera motion). In our algorithm, multiple scale intensity 
similarities are measured along all the detected orientations ( )Kkk ,,1L=θ  by the GFOD operator. 

Among them the orientation with the greatest similarity measurement is selected as the correct 
orientation.  Note that only a comparison-and-selection operation is used, without assuming any 
detection of feature points or using any troublesome thresholds. 

Consider the case in which two orientations 1θ  and 2θ  ( 21 θθ > ) are detected within a Gaussian 

window. Dissimilarity (i.e., variance) measurements along 1θ  and 2θ  for a given circular 

window of radius R centered at the point (x0,t0)  are defined as the variance of intensity values 
(Fig. 10 (a) and (b);  refer to Fig. 8) 

( ) ( ) ( )∑
=
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In the above equations, subscripts ‘+’ and ‘-’ denote the dissimilarity measurements along the 
detected orientations in positive (+) and negative (-) x directions respectively. This is designed 

for dealing with the occlusion of a farther object ( 2θ ) by a closer one ( 1θ ): the occluding (i.e., 

closer) object can be seen in both the positive and the negative x directions, but the occluded 
(i.e., farther) object can only be seen in one of the two directions (Fig. 10a). The dissimilarity 
measurements for closer and farther objects are defined as 
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respectively. Notice the difference in the two measurements - the occluded object only takes the 
smaller measurement among the positive and negative directions. In addition, we give more 
weights to stronger oriented texture patterns: Pd( kθ ) is the value of the orientation histogram 

(Eq. (9)) at kθ  (k=1,2). The higher the value is,  the lower the dissimilarity measurement should 

be.   
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Fig. 10. Principle of the depth boundary localization and depth interpolation 

Fig. 10a shows how to use these measurements to localize a depth boundary when the farther 
object will be occluded by the closer object (which is the occlusion case). Multiple peaks are 
detected by the GFOD operator when the Gaussian window (indicated by circles) is near the 
depth boundary. When the Gaussian window is to the left of the depth boundary, the 
dissimilarity measurement (i.e. variance) along the locus direction of the occluding object 

( )RE ,1θ  will be larger, since the measurement is performed across the loci pattern of the to-be-

occluded object (left of Fig. 10a). On the other hand, the dissimilarity measurement along the 
locus direction of the to-be-occluded object ( )RE ,2θ  will be much smaller, since the 

measurement is right along the locus of the to-be-occluded object. Whenever the center of the 
Gaussian window is precisely at the depth boundary, both measurements will be small since both 
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measurements are along their own loci’s directions. However, since the occluding boundary of 
the closer object usually will be visually stronger than the ST pattern of the occluded object, the 
measurement will be in favor of the closer object at this location (middle of Fig. 10a). As the 
center of the window moves into the occluding (closer) object, the dissimilarity measurement of 
the occluded object will be significantly increased, since the measurement will cross the loci of 
the occluding object, but the dissimilarity measurement for the occluding object will remain 
small (right of Fig. 10a). Similar arguments hold for the reappearance case, when the occluded 
object reappears behind the occluding (closer) object (Fig. 10b). Therefore, a simple  verification 
criterion can be expressed as 
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In fact, the condition of occlusion and reappearance can be judged either by comparing 

( )RC ,2θ+  and ( )RC ,2θ−  (see Fig. 10) or by analyzing the context of the processing (i.e., the 

change of depths). In the case of occlusion of a far object by a near object (far to near, Fig. 

10(a)), we have ( ) ( )RCRC ,, 22 θθ +− < , and in reappearance (near to far, Fig. 10(b)) we have 

( ) ( )RCRC ,, 22 θθ −+ < . 

In order to handle cases of various object sizes, different motion velocities, and multiple object 

occlusions, multiple scale dissimilarity measurements ( )ik RE ,θ  (e.g., i=1,2,3) are calculated 

within multiple scale windows of radii Ri (i=1,2,3),  R1<R2<R3. In our experiments, we have 

selected  R1=m/8, R2=m/4, R3=m/2 (m = 64 is the window size; see Fig. 10(c)).  By defining the 

following ratio 
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a scale p (p=1,2 or 3) with maximum Dp is selected for comparing the intensity similarities.  For 

example, in Fig. 10(c), R2 will be selected. 

The selected orientation angle θ  can be refined by searching for a minimum dissimilarity 

measurement for a small-angle range around θ . The accuracy of the orientation angle, 

especially that of a far object, can be improved by using more frames.  
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In order to obtain a dense depth map, interpolations are applied to textureless or weak-textured 
regions/points where no orientation can be detected. The proposed interpolation method (Fig. 
10(d)) is based on the fact that a depth discontinuity almost always implies an occluding 
boundary or shading boundary. The value )(tθ  between two instants of time t1 and t2 with 

estimated orientation angles θ1 and θ2 is linearly interpolated for smooth depth change (i.e., 

dis21 T<−θθ , Tdis is a threshold), and is selected as ),min( 21 θθ , i.e., the angle of the farther 

object, for depth discontinuity (i.e., dis21 T≥−θθ ). The processing results of dense depth 

measurements from a real  x-t image(EPI) are shown in Fig. 8c.  

5.3. Occlusion Recovery 

Because the supporting PVI only contains information from a single viewing direction (for 

example, the direction perpendicular to the motion direction when we select a PVI with x0 = 0), 

some parts of the scene that are visible in other parts of images from an original (or a stabilized) 

video sequence are missing due to occlusion. They will be recovered by analyzing depth 

occlusion relations in the EPIs. The basic algorithm is performed in each EPI after the panoramic 

depth map and its depth boundaries have been obtained. The algorithm consists of the following 

steps  (Fig. 11,  Fig. 12): 

Step 1. Find the location of a depth boundary - A point on a depth boundary, p0(x0,t0), and 

orientation angles (θ2 and θ1) of the occluded (far) and occluding (near) objects are encoded in 

the depth map. A point is considered as a point on the depth boundary with a depth discontinuity 

when, for example, o2|| 21 >−θθ . 

Step 2. Localize the missing part - The missing (occluded) part is represented by a 1D 

(horizontal) spatio-temporal segment pspe in the EPI, on which points have the same parallel 

viewing directions but from moving viewpoints. It is calculated from the slopes of the two 

orientation patterns that have generated the depth boundary, and it is denoted by an x coordinate 

and start/end frames (ts/te). Basically, the largest possible angle of viewing direction (indicated 

by the x position in the EPI) from the viewing direction of the PVI (indicated by the x0 

coordinate) possesses the most missing information, but possible occlusions by other nearby 

objects should be considered. For example, the second missing region from the right in Fig. 12b 

was determined by checking the occlusion of the locus patterns of the missing part against those 
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of other nearby foreground objects (trees), resulting in an ST segment with smaller x coordinate, 

i.e. smaller viewing angle from the viewing direction of the PVI. In this way, a triangular region 

p0pspe can be determined, and the 1D segment pspe will be used as the texture of the missing part 

that is occluded by the foreground objects. 
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Fig. 11.  Region classification and adaptive resolution. (a) Locus patterns near an 

occlusion boundary;  (b) locus patterns of front- side  surfaces and (c) temporal 

resolution enhancement by using spatial resolution. 

Step 3. Verify the type of the missing part. The triangular region also contains  depth 

information of the missing part - the 1D segment pspe. In principle, similar treatments can be 

made here as for the basic depth map as in Eq. (10). For simplicity, the missing parts are 

classified into two types in our current implementation: OCCLUDED and SIDE. If the loci 

within the triangular region form a parallel pattern of angle θ2 (Fig. 11a), then the missing part is 

classified as OCCLUDED; otherwise, as SIDE if the angle of the oriented pattern  
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changes linearly inside the triangle (Fig. 11b). By assuming the missing part as each of the two 

types, an overall consistent measurement along the hypothesized locus orientations (indicated by 

arrows in Fig. 11a and b) can be calculated within the triangle region (similar to measurements 

in motion boundary localization [15]). The type of missing part is selected as the one with the 

better consistent measurement of the two hypotheses. The loci’s angle θ  of the OCCLUDED 

region will be the same angle θ2 as the occluded object, whereas loci’s angle θ  of the SIDE 

region gradually changes from θ1 to θ2 (or from θ2 to θ1), as expressed in Eq. (14).  
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In this way, the depths of the occluded or side region can be assigned. Fig. 11 illustrates the 

situation of reappearance where the farther object re-appears behind the closer object. Fig. 12 

shows other situations (occlusion and side) with real image.: Fig 12(a) shows an example of 

recovering an occluded region (building façade) behind a tree, as indicated by the first circle in 

Fig. 7. Fig 12(b) shows three recovered “side” regions. The first two correspond to the first side 

of the building indicated by the second circle in Fig. 7, which is separated into two regions by a 

tree in front of it. The third side region corresponds to the second side façade indicated by the 

third circle in Fig. 7. The x location of the second side region is much closer to the supporting 

PVI (with x = 0), since it is occluded by the tree.   

p0 

ps pe 

(a) 

OCCLUDED 

trees(b)

peps

p0 

SIDE

 

Fig. 12. Occlusion and resolution recovery results in real EPIs.  (a) an OCCLUDED 

region;  (b) three SIDE regions (two of them belong to a side facade separated by 

trees). Circles in Fig. 7 show the corresponding OCCLUDED and SIDE regions in 

this figure. 

 

5.4. Resolution Recovery 

As we have shown, the panoramic view image (PVI) in the t direction is under-sampled if the 

image velocity v of a point in the PVI is greater than one  pixel per frame (as in the right hand 

part of Fig. 4a, where the images of doors of the building look thinner than the real ones). 

Το enhance temporal resolution, a v-pixel segment in the x direction is extracted from the EPI (as 

opposed to a single pixel in a PVI, as in Fig. 2 and Fig. 4a). Fig. 11c shows the principle: a nice 

feature is that the front (relief) point px(x,t) of an x-segment p0px at time t will exactly connect 

with the back (supporting) point p1(0,t+1) of the x-segment at time t+1 in the relief-like LAMP 

representation, since both image points are on the same locus of a 3D point. This property has 

been used to generate seamless, adaptive-time panoramas in Fig. 7. The thickness of the red 
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(dark in B_W version) horizontal lines (including those of SIDE and OCCLUDED regions) in 

the two EPI tiles in Fig. 12 indicates the number of points (pixels) to be extracted in the x 

direction of this epipolar plane image. As shown in Fig 7, a seamless panoramic mosaic is 

generated after resolution enhancement, where much higher temporal resolutions are achieved in 

the second part of the mosaic.  

                     

EPI 2         

(1a) video stabilization 

Panoramic texture map 

(1b)PVI & EPI generation

(2b)Texture-depth fusion 

   Panoramic depth map 

EPI H  H: height of a frame 

EPI 1      

video 

(3). Occlusion & resolution recovery 

Relief-like LAMP Image-based LAMP 

Image-based rendering

(2a) Depth Map Acquisition
 
 
 
 
… … 

 Loci orientation  
& motion boundary 
   estimation

 

Fig. 13.  System diagram of 3D panoramic scene modeling (PVI: Panoramic View 

image; EPI: Epipolar Plane Image; LAMP: Layered, Adaptive-resolution and Multi-

perspective Panorama) 

6. LAMP CONSTRUCTION AND RENDERING: EXPERIMENTAL RESULTS 

6.1. 3D LAMP Construction Results 

Our 3D panoramic scene modeling approach consists of three modules: (1) video stabilization 

(and PVI/EPI generation), (2) dense depth map acquisition (with texture-depth fusion), and (3) 

depth layer construction (with occlusion/resolution recovery). The system diagram is shown in 

Fig. 13. For using the EPI-based approach to recover dense depth maps, our method requires a 

dense, long, 1D translational video sequence as the input in order to generate parallel-perspective 

panoramic mosaics. It is particularly effective when the number of frames is larger than the 

width of an original video frame in order to generate mosaics with “panoramic” view. In the 
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ideal case, the representation of parallel projection requires a pure 1D translation along one 

image axis. However our algorithms still work under more practical motion given that a video 

stabilization module is used to preprocess the sequence. Our 3D video stabilization module 

estimates interframe camera motion, models the camera motion of the image sequence as a 1D 

dominant translation plus a small vibration (the latter is modeled by a homography between 

successive frames), and removes the vibration by a motion filtering and image warping step so 

that a rectified video sequence with virtually 1D translational motion can be created. Detailed 

algorithms and results can be found in [15, 21]. The depth map acquisition module was 

summarized in Section 5.1. LAMP representations and construction are presented in Sections 3 

and 4, while the algorithms for occlusion/resolution recovery has been discussed in Sections 5.2 

and 5.3. In this section, we will present some construction results from real image sequences, 

look at some practical considerations in LAMP representations, and discuss the LAMP-based 3D 

rending issues. 

 occlusion (a) 

(b) after occlusion recovery 

 

Fig. 14. Internal data of (a) the base layer, and (b) all the layers of (part of) the 

LAMP  of the MB sequence. The images are truncated for fitting into the page. 

The MB sequence was captured by a camcorder mounted on a tripod carried by a moving 

vehicle. Aside from the small vibration of the vehicle on a normal outdoor road, the velocity of 

translation was mostly constant. The small vibration in the video sequence (which is 

demonstrated by the irregular boundaries of the mosaic in Fig. 7) was removed by a video 

stabilization process discussed in our previous work[15, 21]. The frequency-domain depth 

estimation method is robust for dealing with the non-ideal loci created from this real-world video 
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sequence with vibration. We have shown the supporting surface and the relief-surface of the 

relief-like LAMP representation constructed from the MB sequence; Fig. 14 shows the internal 

data for the base layer and all the layers. Recall that a relief-like LAMP representation is part of 

a 3D xyt cube. That is to say, for each pixel (y,t) in the supporting surface, there is an x-segment 

of v pixels in the x direction. The internal data of the base layer is displayed in Fig. 14a as the 

sequential head-tail arrangement of all the segments of the base layer in each row. We have 

found that both the texture and the depth map show almost seamless connections between 

successive segments, and it is obvious that higher resolutions than in the corresponding PVI are 

recovered for closer objects. The internal data of the relief-like LAMP, including all the 

occluded layers, is displayed in Fig. 14b as similar head-tail arrangements of all the x-segments 

in all the layers, including all the occluded layers as well as the base layer. The x-segments in the 

occluded layers are inserted into the locations of their corresponding depth boundaries.  

Comparing Fig. 14b to Fig. 14a, additional data for the occluded regions are shown. For 

example, the portion of the building’s facade occluded by the trees and the side facades of the 

building are partially recovered.  Note that since both images are truncated to the same length, 

leaving out different amounts of scene points on the right side.  

The compactness of the LAMP representation can be seen from the following key numbers for 

the MB sequence (W*H*F= width*height*frames, P: number of pixel per location in the PVI): 

- Original video sequence: S0 = W*H*F=128*128*1204 bytes (gray level images) = 16MB  

- PVI supporting surface (both texture and depth in 1 byte/pixel): Sp=H*F*2 = 

128*1024*2 bytes = 256KB 

- LAMP representation (texture 1 byte/pixel, depth 4 byte/pixel, as in the x_Streak 

structure in Section 3): 1.739 MB.  

The last number approximately corresponds to P = 3 pixels per location and 5 bytes per pixel on 

average in the PVI supporting surface, which count for both adaptive resolution and occlusion 

representation. This ends up with an estimated LAMP size of 128*1024*5*3 = 1.92MB, which 

is close to the real size. If we use 1 byte/pixel to represent depth, then the LAMP size will be  

Sl = H*F*2*P = 128*1024*2*3 = 768 KB,  

which is simply three times that of the PVI supporting surface. 
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In conclusion, the size of the LAMP representation in this example is about 1/10 (if floating 

point depth is saved) or 1/20 (if  byte/pixel depth is saved) of the data size of the original video 

sequence. In the general case, the LAMP-to-sequence size ratio is Sl/So= 2P/W, where W is the 

width of each frame in the original video sequence and P is the number of pixels per location of 

the PVI supporting surface. 

6.2. Extended Panoramic Image (XPI) Representation 

We have shown in [15] how to make full use of the original image sequence by generating an 

extended panoramic image (XPI). Suppose that an image sequence has F frames of images of 

size W×H. An example is the frequently used flower garden (FG) sequence(W×H×F = 352×240×

115).  A PVI and an EPI is shown in Fig. 15a and Fig. 15b. It is unfortunate in this case that the 

field of view of the panoramic view image turns out to be “narrow” due to the small number of 

frames and large interframe displacements. Therefore, an extended panoramic image (XPI) is 

constructed. The XPI is composed of the left half of frame m/2 (m is the GFOD window size), 

the PVI part formed by extracting center vertical lines from frame m/2 to frame F-m/2, and the 

right half of frame F-m/2 (Fig. 15c). The total width of the XPI is Wx =W/2 +(F – m)+ W/2 = 

W+F-m.  
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Fig. 15.  PVI, EPI and XPI of the flower garden (FG) sequence 

Fig. 16 shows the results of 3D recovery of the XPI of the FG sequence. In the depth map, the 

tree trunk stands out distinctly from the background, and the gradual depth changes of the 
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flowerbed are detected. The occluded regions and resolutions are recovered in a way similar to 

that for a PVI image, except that the EPI analysis is performed along a zigzag line (Fig. 15b). 

 a   b  
 

Fig. 16. Panoramic depth map for the FG sequence. (a) Isometric depth lines 

overlaid in the intensity map   (b)panoramic depth map. 
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Fig. 17. Image-based LAMP model of the FG sequence 

Fig. 17 shows the two extracted layers of the image-based LAMP representation for the FG 

sequence, each of which has both texture and depth maps. These two pairs of images, along with 

a 1D temporal sampling rate array (Eq. (7)) for each layer, are constructed from the 115-frame 

FG image sequence. In the yt part of the background layer of this extended image-based LAMP, 

the time-sampling rate is adaptively changed according to the dominant depth in each time 

instant. The time scales are less than 0.5 (frames); this means that higher resolution is achieved 

than that of the original PVI (shown in Fig. 16) in both texture and depth maps (the uneven 
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super-timing in Fig. 17a is due to quantization). Furthermore, the background regions occluded 

by the tree trunk have been completely recovered, and have been merged into the background 

layer with both texture and depth values.  

The size of the XPI-based  LAMP representation in the general case is  

Sxl = (W+(F-m)*P)*H*2*L  (bytes). 

where W*H is the size of an original frame, F is the number of frames in the sequence, m is the 

size of the Gaussian window (m = 64 in our experiments), P is the number of pixels per location 

in the PVI part of the XPI image, and L is the total number of layers. The real sizes of the image-

based representation of the FG sequence is Sxl = (114*2 + 95*2) KB =  418 KB. Compared to 

the size of the original video W×H×F = 352×240×115 = 9.265MB, the real compression ratio is 

22.7. The estimated size using the above equation is  

Sxl = (352+(115-64)*2)*240*2*2 =  423 KB  

assuming P = 2 and L = 2. The theoretical LAMP-to-sequence ratio is Sxl/So = 2L/F + 2PL/W, 

assuming that F is much larger than m. 

6.3. LAMP-Based Rendering 

The 3D LAMP model is capable of synthesizing images from new viewpoints differing from the 

viewpoints of the original image sequence thanks to its multi-perspective representation, 

adaptive resolution, occlusion representation, and depth information. The mapping from a pixel 

in a relief-like LAMP model to its 3D coordinate can be computed by using Eq. (4), and then it 

is straightforward to re-project it to the desired view (in practice an inverse mapping should be 

applied). Because of the neighborhood relations of pixels in the LAMP representation (refer to 

Fig. 14), a rendering algorithm can easily perform interpolation between neighborhood pixels. In 

a relief-like LAMP, an attached layer is always occluded by the layer to which it is attached. So, 

when rendering the attached layers should be drawn first so that an occluded region could be 

seen correctly in a new view. Thanks to the adaptive resolution representation, the higher 

resolutions in the original images can be applied to a new view whose viewpoint is close to those 

of the original image sequence.  Fig. 18 shows the preliminary “rendering” results from the 

relief-like LAMP of the MB sequence. The development of a rendering system based on relief-

like representation is still underway. 
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              (a)                                                   (b) 

Fig. 18. “Rendering” results from relief-based LAMP representation of the MB 

sequence. (a) Normal rendering (with correct occlusion checking of different layers), 

where the building façade is occluded by the tree. (b) The part of the façade is seen 

through the tree. Note that that part is in shadow in the original video sequence, and  

therefore it is darker.  

The rendering process is easier using an image-based LAMP model. For a LAMP model based 

on an XPI (i.e., a combination of x-y and y-t images) in general, Eq. (4) and Eq. (8) should be 

used in the two x-y parts and the one y-t part, respectively. Fortunately, both equations are very 

simple and virtually the same (but reflect the different ways to obtain x and t indices) so that a 

fast implementation is feasible. In order to achieve a correct occlusion relation, a rendering from 

a new view should begin with the farthest layer and end with the nearest  layer, from the 

viewpoint of a synthetic image.  

A simple image based 3D rendering program has been developed  to demonstrate the capability 

of image synthesis of arbitrary views using the image-based LAMP representation. Synthetic 

sequences with a virtual camera of 6 DOF of motion generated from the LAMP model (with and 

without the object layer) of the flower garden sequence can be found on our web page [20]. The 

compactness of the image-based LAMP representation enables the rendering algorithm to 

achieve real-time performance. Fig. 19 shows some snapshots of the synthesis with both the 

background and foreground layers, without the foreground layers. The perspective distortion 

shown at the borders of the synthetic images in the second and the third rows in Fig. 19 clearly 

reveals the accuracy in the recovered depth changes for the tree, house, and garden. The first 

synthetic images in both the second and the third rows were generated from a viewpoint farther 

from the original camera path so that the entire scene can be seen. 
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Fig. 19. Synthetic images from the image-based LAMP model. First row: Snapshots 

of original video sequence; second row: snapshots of the virtual walk-through with 

both the background and the trees; third row: snapshots of synthetic results without 

the tree. The first synthetic images in the 2nd and 3rd rows are generated from 

viewpoint that can see all the scene points in the LAMP model. 

7. COMPARISONS AND DISCUSSIONS 

7.1. Layered Representation 

The LAMP representation is related to such representations as multi-perspective panoramic view 

images (PVIs), sprites, and layered depth images (LDIs). However, it is more than a multi-

perspective PVI in that depth, adaptive-resolution and occlusion are added. It is different from a 

"sprite" (or LDI) since the sprite or LDI is a view of a scene from a single input camera view and 

is without adaptive image resolution. We compare our results [17] with other layered 

representations [10, 11, 13, 22, 23]. A comparison in number of input images, results of layered 

representations, and algorithm performance for the flower garden sequence is summarized in 

Table 2.   

Usually, in a layered representation a set of depth surfaces is first estimated from an image 

sequence of a moving camera and then combined to generate a new view. The layered 

representation proposed in [10] consists of three maps in each layer: a mosaicing intensity map, 
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an alpha map, and a velocity map. The velocity map is actually a set of parameters of the affine 

transformation between layers. Occlusion boundaries are represented as discontinuities in a 

layer's alpha map (opacity). In [10], the first 30 frames of the flower garden sequence were used 

as input. The output were three affine plane layers - the tree, the house, and the flowerbed. 

Occlusion (by the tree) was recovered, but no depth information was provided (i.e., each layer is 

only modeled as an affine plane). Processing of the 30 frames of 720*480 images took 40 

minutes in a HP 9000 series 700 workstation.  

Table 2. Comparison of 4 layered representation results for the flower garden 

sequence 

 Wang-Adelson [10] Ke-Kanade [22] Sawhney-Ayer 
[11] 

Baker-Szeliski-
Anandan[12] 

Image-based LAMP  

Input first 30 frames 
(720x480) 

two frames a few frames first 9 even frames all 115 frames 
(350x240) 

Rep. 3 planar layers (tree, 
flower bed, house) 

4 planar layers 
(tree, branch, 
house, flowerbed) 

4 layers (tree, 
flower bed, 
house, sky ) 

6 layers of Sprites 
(3 tree, 2 flower 
bed,  1 house ) 

2 layers of LAMP (tree, 
background ) 

Depth no no no yes yes, each obtained 
from 64 frames 

Occlusion recovered not recovered not recovered recovered recovered 
Multi-view affine mosaic rep. 2D layer rep. single view 

mosaic 
single view mosaic  multiple-view mosaic 

Adaptive 
res. 

no no no a perspective image adaptive resolution 

Performance 40 mins / 30 frames 
in a HP 9000 series 
700 workstation 

not available not available not available  14 mins / 115 frames 
in a 400 MHz PC 
(general C code) 

 

The subspace approach [22] is an effective method for 2D layer extraction from an uncalibrated 

image sequence. For the flower garden sequence, four planar layers, which roughly correspond 

to tree, branch, house, and flowerbed, are extracted from two frames in the sequence. Depth 

boundaries are accurate after the layer refinement step using color segmentation results (similar 

to our depth-texture fusion step). However, depth information of each layer is not obtained since 

they are 2D layers, and the occluded regions are not recovered since only two frames are used.  

The multiple motion estimation method based on MDL and EM algorithms in [11] is 

computationally expensive. It requires a combinatorial search to determine the correct number of 

layers and the "projective depth" of each point in a layer. For the flower garden sequence, only a 

few frames were processed, and a six parametric motion model was used to segment the scene 
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into four layers - tree, house, flowerbed and sky. Occlusion regions are not recovered in the 

layered model, and depth was not estimated in the flower garden example. 

In the sprite representation [12], each layer consists of an explicit 3D plane equation, a texture 

map (a sprite), and a map with depth offset relative to the plane. For the flower garden sequence, 

eight-parameter homography was used to fit the planar layers. The first nine even frames were 

used in the experiment, and the result was six layers of “sprites” - three for the tree, two for the 

flowerbed, and one for the house. Depth information was attached to each pixel, and the 

occlusion (by the tree) was recovered. Each layer was a single perspective view mosaic. More 

recent work on 3D layer extraction by the same research group [23] uses an integrated Bayesian 

approach to automatically determine the number of layers and the assignment of individual 

pixels to layers. The approach is a very general one. However the segmentation results for the 

flower garden sequence are not as satisfactory as the results in [12]. As the authors pointed out in 

their paper, there was always a danger in choosing the prior in order to obtain a desired result of 

layering, and this remains a challenging research issue.  

For the flower garden sequence, our method segments the scene into two complete layers of the 

image-based LAMP representation: the tree and the background. Each layer has both a texture 

map and a dense depth map. The segmentation is very accurate along the depth boundaries, the 

occluded regions in the selected panoramic view are recovered from other views, and the images 

have adaptive resolutions. Our algorithms can process 115 frames of 350*240 images in 14 

minutes on a 400 MHz PC to obtain the final LAMP model.  The processing time reduces to 2.6 

minutes on a Xeon 2.4 GHz dual-CPU Dell Linux workstation. The time includes reading all of 

the 240 EPIs from a SCSI hard disk and displaying the processed EPIs and  resulting images on 

the screen. 

7.2. Full Perspective, Full Orthogonal,  Multi-Perspective and Multivalued Representations  

There are at least three existing geometric representations for large image sequences, based on 

parallel projection (i.e., a textured digital elevation map),  single-view perspective mosaicing 

(e.g. sprite),  and parallel-perspective panorama (i.e., PVI). A parallel projection of the 

panoramic depth in Fig. 4a of the MB sequence is shown in Fig. 20a that correctly shows the 

aspect ratio of depth and size (height and width) of the scene. However, the resolutions of the 

nearer objects are significantly decreased (or lost) because of this evenly sampled representation. 
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A single view perspective representation, on the other hand, is not a good representation method 

for surfaces of varying orientations and over a large distance (Fig. 20b). A very small depth 

estimation error in the single-view-based representation could be greatly enlarged when re-

projecting to a mosaiced image of a single referenced viewpoint.  

 (a) 

 (b)  

Fig. 20.  Two geometric representations of the 3D panorama of the MB sequence. 

(a) Parallel projection (b) Perspective projection from a viewpoint at the center of the 

path where the video was captured 

A parallel-perspective panoramic view image (PVI) is a compact image-based representation 

that better represents the image data captured by a camera translating over a long distance. Based 

on the multi-perspective panorama, we have proposed a still more compact and more powerful 

representation - 3D layered, adaptive-resolution and multi-perspective panorama (LAMP). To 

our knowledge, this seems to be the first piece of work that integrates multi-perspective 

panoramas and layered representations with adaptive image resolutions in a unified model. The 

relief-like LAMP is basically a single extended multi-perspective panoramic view image (PVI) 

with both texture and depth values, but each pixel has multiple values to represent results of 

occlusion recovery and adaptive resolution enhancement. The image-based LAMP, on the other 

hand, consists of a set of multi-perspective layers, each of which has both texture and depth 

maps with adaptive densities of viewpoints depending on depths of scene points.  No assumption 

is made on the structures of a scene in constructing its 3D LAMP representations. The LAMP 

representations are effective for image-based rendering. 

We have noticed that our LAMP representations are very similar to the multi-valued 

representation (MVR) proposed by Chang and Zakhor [26] in that (1) dense depths are 
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generated, (2) depth regions are grouped by occlusions rather than affine motions, and (3) 

multiple values are extracted for each pixel. However, there are some fundamental differences. 

First, with respect to geometry, we use a single parallel-perspective geometry rather than 

multiple selected perspective views. Therefore, our LAMP representation is more compact for 

long (and particularly translational) video sequences. Second, the multiple values per pixel in our 

LAMP representations come from both occlusion regions and adaptive resolution. Third, the 

methods for constructing dense depth maps and then for generating layered representations are 

different. A multi-frame stereo approach was used to obtain multiple depth maps for the MVR, 

while a panoramic EPI-based method was used to recover the depth of only one parallel-

perspective panoramic view in our LAMP construction. Therefore, our method is more efficient 

since we do not recover depth maps with any redundancy, and yet it is more robust since we use 

many frames ( 64 frames) instead of just a few frames to estimate the depth for each point.  

Finally we shall point out that the limitation of our method is that translational motion for a long 

video sequence is required. Generalization of the LAMP representation to a more general motion 

is possible, but it needs further research. 

8. CONCLUSIONS 

We have proposed a compact representation - 3D layered, adaptive-resolution and multi-

perspective panorama (LAMP). Two kinds of 3D LAMP representations are constructed, both of 

which concisely represent almost all the information from a long image sequence, including 

texture, depth, and occluded regions. The relief-like LAMP is based on a single 2D multi-

perspective panoramic view image (PVI) with both texture and depth values, but each pixel has 

multiple pairs of texture and depth values to represent results of occlusion recovery and 

resolution enhancement. The image-based LAMP, on the other hand, consists of a set of 2D 

multi-perspective layers, each of which has both 2D texture and depth maps with adaptive time-

sampling scales depending on depths of scene points (in the direction of parallel projection). The 

3D LAMP is layered according to the occluding relations of a scene rather than merely the 

depths. The motivation for layering is to represent occluded regions and the different spatial 

resolutions of objects with different depth ranges; meanwhile the model is represented in the 

form of seamless multi-perspective mosaics with viewpoints spanning across a large distance.  
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The LAMP representation is related to such representations as PVI, sprite, and layered depth 

image (LDI). However, it is more than a multi-perspective PVI in that depth, adaptive-

resolution, and occlusion are added in our representation. It is different from the "Sprite" (or the 

layered depth image) since the latter is a view of scene from a single input camera view and is 

without adaptive image resolution. The 3D LAMP representation is capable of synthesizing 

images of new views within a considerably arbitrary moving space, since the intensity and depth 

maps derive almost all the information from the original image sequences. The 3D LAMP 

representations are concise, practical, and powerful representations for image-based modeling 

and rendering. In future work we plan to extend the 3D LAMP models to represent a large-scale 

scene where the camera moves along more general paths, and also to explore other approaches 

for constructing 3D LAMP representations.  
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