Computer Science City College of New York
CSc21200 Data
Structures Fall 2015
Programming Assignment 4 (Chapter 5) - Revised sequence
class with the Linked List Toolkit
Adapted from Data Structures and Other Objects Using C++
by Michael Main
and Walter
Savitch
- The Assignment:
- You will implement and test a revised sequence class that
uses a linked list to store the items.
- Purposes:
- Ensure that you can write a small class that uses the linked
list toolkit to create and manipulate a linked list.
- Before Starting:
- Read all of Chapter 5, with particular attention to Sections
5.3 and 5.4.
- Due Date:
- Wednesday,
October 28, 2015. If you have problems, late
work will be accepted on Thursday with no penalties. Late work
may be submitted on Friday or Saturday with 5% penalty per
day. No work will be accepted after Saturday.
- How to Turn In:
- Please submit homeworks using this link.
On the upload page, you can select the file(s) you want to
submit (multiple files can be selected by pressing down CTRL
key while selecting the files). Then enter your last name and
the last 4 digit of your student ID (from CUNYfirst, NOT your
SSN!!!). Once successfully submitted, it will show a page with
RECEIPT NUMBER, save that number or that page because you will
need it to retrieve your grade for that assignment. You can
submit your assignment as many times as you want before the
deadline, only the latest one will be graded.
To retrieve your grade for an assignment (after I finish
grading it), please go to the download page here,
select the assignment, enter the receipt number for that
assignment, your last name and your last 4 digit of your
student ID. The page will then download a TXT file which
contain your graded submission.
- Files that you must write and turn in:
- sequence3.h: The header file for the new sequence
class. Actually, you don't have to write much of this file.
Just start with our version and
add your name and other information at the top. If some of
your member functions are implemented as inline functions,
then you may put those implementations in this file too. By
the way, you might want to compare this header file with your
first sequence header file (sequence1.h)
, and second sequence header file (sequence2.h).
The linked list version no longer has a CAPACITY constant nor
a DEFAULT_CAPACITY constant because the items are stored on a
linked list instead of an array.
- sequence3.cxx: The implementation file for the
new sequence class. You will write all of this file, which
will have the invariant of the sequence class, the
implementations of all the member functions of the sequence
class, and the Big-Os of these functions.
- node1.h and node1.cxx: Copy these files to
your sub-directory. They contain the linked list toolkit from
Section 5.2. You may use these files without changing them.
However we only provide the documentation for the function
list_piece (see Self-Test Exercise 17 on page 239). You may
need to write an implementation of this function if you are
going to use it in writing your copy constructor and
overloading your assignment operator. If you do make changes,
please turn them in.
- Other files that you may find helpful:
- sequence_test.cxx:
This is the same interactive test program that you used with
the earlier sequences. This is exactly what we expect for
the information hiding of the class - the users do not
need to know how the class is implemented ( both the member
variables and the functions) as far as the interfaces (the
prototype of the member functions) remain the same. So
if you want to use the test program with the new sequence, the
only thing you need to do is to copy it to your directory and
open it with your editor. Then change the statements
#include "sequence1.h"
using namespace main_savitch_3;
to
#include "sequence3.h"
using namespace main_savitch_5;
- seq_ex3.cxx: A
non-interactive test program that will be used to grade the
correctness of your new sequence class. The points given by
the program will only be served as a reference; we are going
to look into your code and your analysis ( in the form of
comment lines) for actual grading.
The sequence Class Using a Linked List
Discussion of the Assignment
Your sequence class for this assignment will differ from the your
previous sequence in the following ways:
- The sequence's items are now stored on a linked list. The
head pointer of the linked list is a private member variable of
the sequence class. I suggest that you also have a tail pointer
as an additional private member variable of the sequence class.
The reason for the tail pointer is explained in Section 5.4 of
the textbook.
- Because you are dynamically allocation memory within your
sequence class, you will need to define a copy constructor, an
assignment operator, and a destructor. You need to pay special
attention to the value semantics of your new sequence class -
you need not only to make a copy of the linked list, but also
need to place the node pointers correctly. Please refer to page
260 for more detailed discussions on the value semantics.
Start by declaring the new sequence's private member variables in
sequence3.h. You might try declaring these variables yourself, and
then compare your solution with the suggestion in Section 5.4.
Once again, do your work in small pieces. For example, my first
version of the sequence had only a constructor, start, insert,
advance, and current. My other member functions started out as
stubs.
Design a sequence class using a linked list could be little bit
more complicated than using an array. Therefore, I recommend you
to draw an example linked list such as the one shown in page 260
of the textbook when you are writing code for each member
function. Always remember to show all the member variables in
order to remind you making proper changes of them. You need
to place the cursor and the precursor at various locations, head,
tail and other places. Note that the sequence could be empty, and
cursor and/or precursor could be NULL, even when the sequence is
NOT empty. With the help of small drawings, jobs will be much
easier!
Use the interactive test program and the debugger to track down
errors in your implementation. If you have an error, do not
start making changes until you have identified the cause of the
error. If you come to me for help, we will always ask
you to do the following:
- Show us the invariant that describes how your private member
variables implement the sequence class.
- Use the debugger to show us the problem!
For those working in the Unix operating system: Spend some
time writing your make file. A correct Unix makefile will save you
time. Make sure that each compilation command in the make file has a
TAB as the first character. In order to insert a TAB using emacs,
type Ctrl-Q and then press the TAB key. Or, if you are working from
a modem where the TAB key is disabled, you can type
ESCAPE x quoted-insert RETURN TAB
Run Time Analysis of the sequence classes and grading rules
We will use the number of items in a bag as the input size n of
the project. Please give the Big-O of each function in your
implementation, and compare them with the corresponding functions
of the sequence using a dynamic array. You
should write the time analysis in the comment lines of each
function. The breakdowns of points (of 100) will be
the followings:
Basis points (70) if your implementation passes the seq_ex3 exam
Invariant of the class (5 points)
Run time analysis (10 points)
Other implementation details (15 points)
Zhigang Zhu
( zhu@cs.ccny.cuny.edu ),
2015