

Introduction

CSc I6716 Spring 2013

3D Computer Vision

Introduction

Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu

Course Information

- Basic Information:
 - Course participation
 - Books, notes, etc.
 - Web page check often!
- Homework, Assignment, Exam
 - Homework and exams
 - Grading
- Goal
 - What I expect from you
 - What you can expect from me
 - Resources

- Textbook
 - Online lecture notes (in the form of book chapters) provided with the class
- Additional readings when necessary
 - "Computer Vision A Modern Approach" Forsyth and Ponce, 2003
 - "Three-Dimensional Computer Vision: A Geometric Viewpoint" O. Faugeras, 1998
 - "Image Processing, Analysis and Machine VIsion" Sonika, Hlavac and Boyle, 1999
 - "Introductory Techniques for 3-D Computer Vision" Trucco and Verri, 1998
- On-Line References

- Linear Algebra
- A little Probability and Statistics
- Programming Experience
- Reading Literature (A little)
- An Inquisitive Nature (Curiosity)
- No Fear

Course Web Page

http://www-cs.engr.ccny.cuny.edu/~zhu/CSCl6716-2013s/VisionCourse-Spring-2013.html

- Lectures available in Powerpoint format
- All homework assignments will be distributed over the web
- Additional materials and pointers to other web sites
- Course bulletin board contains last minute items, changes to assignments, etc.
 - CHECK IT OFTEN!
 - You are responsible for material posted there

Course Outline

- Complete syllabus on the web pages (14 meets)
- Rough Outline (3D Computer Vision):

Part 1. Vision Basics (Total 4)

- 1. Introduction (1)
- 2. Image Formation and Processing (1) (hw 1, matlab)
- 3-4. Features and Feature Extraction (2) (hw 2)

Part 2. 3D Vision (Total 7)

- 5. Camera Models (1)
- 6. Camera Calibration (2)(hw 3)
- 7. Stereo Vision (2) (project assignments)
- 8. Visual Motion (2) (hw 4)

Part 3. Exam and Projects (Total 3)

- 9. Midterm exam (1)
- 10. Project and Exam discussions (0.5)
- 11. Student Project presentations (1.5)

- Homework (4): 40%
- Exam (midterm): 40%
- Course Project + Presentation: 20%
 - Groups (2-3 students) for discussions
 - Experiments independently + collaboratively
 - Written Report independently + collaboratively
- All homework must be yours....but you can work together until the final submission
- Teaching Assistant:
 - Mr. Wai L. Khoo <WKhoo@gc.cuny.edu>

- **-** C___
 - For some simple computation, you may use C++
- Matlab
 - An interactive environment for numerical computation
 - Available on Computer Labs machines (both Unix and Windows)
 - Matlab primer available on line (web page)
 - Pointers to on-line manuals also available
 - Good rapid prototyping environment
- Use C++ and/or Matlab for your homework assignments and project(s);
 However Java will also be fine

Course Goals and Questions

- What makes (3D) Computer Vision interesting?
 - Image Modeling/Analysis/Interpretation
 - Interpretation is an Artificial Intelligence Problem
 - Sources of Knowledge in Vision
 - Levels of Abstraction
 - Interpretation often goes from 2D images to 3D structures
 - since we live in a 3D world
 - Image Rendering/Synthesis/Composition
 - Image Rendering is a Computer Graphics problem
 - Rendering is from 3D model to 2D images

3D Computer Vision and Video Computing

Related Field

- Image Processing: image to image
- Computer Vision: Image to model
- Computer Graphics: model to image
- Pattern Recognition: image to class
- Artificial Intelligence: machine smarts
 - Machine perception

All three are interrelated!

- image data mining/ video mining

Applications

- Photogrammetry: camera geometry, 3D reconstruction
- Medical Imaging: CAT, MRI, 3D reconstruction (2nd meaning)
- Video Coding: encoding/decoding, compression, transmission
- Physics & Mathematics: basics
- Neuroscience: wetware to concept

basics

- Computer Science: programming tools and skills?

Applications

- Visual Inspection (*)
- Robotics (*)
- Intelligent Image Tools
- Image Compression (MPEG 1/2/4/7)
- Document Analysis (OCR)
- Image and Video on the Web
- Virtual Environment Construction (*)
- Environment (*)
- Media and Entertainment
- Medicine
- Astronomy
- Law Enforcement (*)
 - · surveillance, security
- Traffic and Transportation (*)
- Tele-Conferencing and e-Learning (*)
- Human Computer Interaction (HCI)

3D Computer Vision and Video Computing

Job Markets

- Homeland Security
 - Port security cargo inspection, human ID, biometrics
 - Facility security Embassy, Power plant, bank
 - Surveillance military or civilian
- Media Production
 - Cartoon / movie/ TVs/ photography
 - Multimedia communication, video conferencing
- Research in image, vision, graphics, virtual reality
 - 2D image processing
 - 3D modeling, virtual walk-thorugh
- Consumer/ Medical Industries
 - Video cameras, Camcorders, Video phone
 - Medical imaging 2D -> 3D

IP vs CV

- Image processing (mainly in 2D)
 - Image to Image transformations
 - Image to Description transformations
 - Image Analysis extracting quantitative information from images:
 - Size of a tumor
 - distance between objects
 - ◆ facial expression
 - Image restoration. Try to undo damage
 - needs a model of how the damage was made
 - Image enhancement. Try to improve the quality of an image
 - Image compression. How to convey the most amount of information with the least amount of data

3D Computer Vision and Video Computing

What is Computer Vision?

Vision is the art of seeing things invisible.

-Jonathan Swift (1667-1745)
"Thoughts on Various Subjects"
Miscellanies in Prose and Verse
(published with Alexander Pope),
vol. 1, 1727

- Computer vision systems attempt to construct meaningful and explicit descriptions of the world depicted in an image.
- Determining from an image or image sequence:
 - The objects present in the scene
 - The relationship between the scene and the observer
 - The structure of the three dimensional (3D) space

Cues to Space and Time

Directly Measurable in an Image

- Spectral Characteristics
 - Intensity, contrast, colors and their
 - Spatial distributions
- 2D Shape of Contours
- Linear Perspective
- Highlights and Shadows
- Occlusions
- Organization
- Motion parallax and Optical Flow
- Stereopsis and sensor convergence

Cues to Space and Time

Inferred Properties

- Surface connectivity
- 3D Volume
- Hidden sides and parts
- Identity (Semantic category)
- Absolute Size
- Functional Properties
- Goals, Purposes, and Intents
- Organization
- Trajectories

Cues to Depth

- Question:
 - How do we perceive the three-dimensional properties of the world when the images on our retinas are only twodimensional?
- Stereo is not the entire story!

3D Computer Vision and Video Computing

Cues to Depth

- Monocular cues to the perception of depth in images
 - Interposition: occluding objects appear closer than occluded objects
 - Relative size: when objects have approximately the same physical size, the larger object appears closer
 - Relative height: objects lower in the image appear closer
 - Linear Perspective: objects appear smaller as they recede into the distance
 - texture gradients
 - Aerial Perspective: change in color and sharpness as object recede into the distance
 - Illumination gradients: gradients and shadow lend a sense of depth
 - Relative Motion: faster moving objects appear closer

- Physiological cues to depth:
 - Focus (accomodation): change in curvature of the lens for objects at different depths
 - Convergence: eyes turn more inward (nasal) for closer objects
 - Retinal disparity: greater for objects further away

