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3D Computer Vision
and Video Computing Stereo VisionStereo Vision

Problem
Infer 3D structure of a scene from two or more images taken from 
different viewpoints

Two primary Sub-problems
Correspondence problem (stereo match) -> disparity map

“Similar” instead of “Same”
Occlusion problem: some parts of the scene are visible only  in one eye

Reconstruction problem -> 3D
What we need to know about the cameras’ parameters
Often a stereo calibration problem

Lectures on Stereo Vision
Stereo Geometry – Epipolar Geometry (*) 
Correspondence Problem (*) – Two classes of approaches
3D Reconstruction Problems – Three approaches 
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3D Computer Vision
and Video Computing A Stereo PairA Stereo Pair

Problems
Correspondence problem (stereo match) -> disparity map
Reconstruction problem -> 3D

3D?

CMU CIL Stereo Dataset : Castle sequence
http://www-2.cs.cmu.edu/afs/cs/project/cil/ftp/html/cil-ster.html

?

3D Computer Vision
and Video Computing More Images…More Images…

Problems
Correspondence problem (stereo match) -> disparity map
Reconstruction problem -> 3D
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3D Computer Vision
and Video Computing Part I. Stereo GeometryPart I. Stereo Geometry

A Simple Stereo Vision System
Disparity Equation 
Depth Resolution
Fixated Stereo System

Zero-disparity Horopter

Epipolar Geometry
Epipolar lines – Where to search correspondences

Epipolar Plane, Epipolar Lines and Epipoles
http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Essential Matrix and Fundamental Matrix
Computing E & F by the Eight-Point Algorithm
Computing the Epipoles

Stereo Rectification

3D Computer Vision
and Video Computing Stereo GeometryStereo Geometry

Object pointP(X,Y,Z)

Central
Projection

Rays

Vergence Angle

pl pr

Converging Axes – Usual setup of human eyes
Depth obtained by triangulation
Correspondence problem:  pl and pr correspond to the left and 
right projections of P, respectively.
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3D Computer Vision
and Video Computing A Simple Stereo SystemA Simple Stereo System

LEFT CAMERA RIGHT CAMERAbaseline

Left image:
reference

Right image:
target

disparity

baseline

Zw=0 
Elevation Zw

Depth Z

3D Computer Vision
and Video Computing Disparity EquationDisparity Equation

P(X,Y,Z)Stereo system with 
parallel optical axes

Image plane

Depth

Image plane

dx
BfDZ ==

Disparity: 
dx = xr - xl 

pl(xl,yl)

Optical Center Ol

f = focal length

LEFT CAMERA
B = Baseline

f = focal length

Optical Center Or

pr(xr,yr)

RIGHT CAMERA



7

3D Computer Vision
and Video Computing Disparity vs. BaselineDisparity vs. Baseline

P(X,Y,Z)Stereo system with 
parallel optical axes

Image plane

Depth

Image plane

dx
BfDZ ==

Disparity  
dx = xr - xl 

pl(xl,yl)

Optical Center Ol

f = focal length

LEFT CAMERA
B = Baseline

f = focal length

Optical Center Or

pr(xr,yr)

RIGHT CAMERA

3D Computer Vision
and Video Computing Depth AccuracyDepth Accuracy

Given the same image localization error
Angle of cones in the figure

Depth Accuracy (Depth Resolution) vs. 
Baseline

Depth Error ∝ 1/B (Baseline length)

Two  viewpoints

Z1

Ol Or

Depth Error ∝ 1/B (Baseline length)
PROS of  Longer baseline, 

better depth estimation
CONS

smaller common FOV
Correspondence harder due to occlusion

Depth Accuracy (Depth Resolution) vs. Depth
Disparity (>0) ∝ 1/ Depth
Depth Error ∝ Depth2

Z2

∂Z2>∂Z1

∂Z1

1

Depth Error ∝ Depth
Nearer the point, better the depth 
estimation

An Example
f = 16 x 512/8 pixels, B = 0.5 m
Depth error vs. depth

)(Z  
2

dx
fB
Z

∂=∂

)(
Z
Z  dx

fB
Z

∂=
∂

Absolute error

Relative error
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3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Stereo with Parallel Axes 
Short baseline

large common FOV
large depth error

Long baseline
small depth error
small common FOV
More occlusion problems

Two optical axes intersect at the 

FOV

p
Fixation Point

converging angle θ
The common FOV Increases

Left right

3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Stereo with Parallel Axes 
Short baseline

large common FOV

FOV

large depth error
Long baseline

small depth error
small common FOV
More occlusion problems

Two optical axes intersect at the p
Fixation Point

converging angle θ
The common FOV Increases

Left right
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3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Two optical axes intersect at the Fixation 
Point

converging angle θ
The common FOV Increases

Fixation point

Disparity properties
Disparity uses angle instead of 
distance
Zero disparity at fixation point

and the Zero-disparity horopter
Disparity increases with the distance 
of objects from the fixation points

FOV

θ

>0  : outside of the horopter
<0  : inside the horopter

Depth Accuracy vs. Depth
Depth Error ∝ Depth2

Nearer the point, better the depth 
estimation Left right

3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Two optical axes intersect at the Fixation 
Point

converging angle θ
The common FOV Increases

Fixation 
point

θ
Disparity properties

Disparity uses angle instead of 
distance
Zero disparity at fixation point

and the Zero-disparity horopter
Disparity increases with the distance 
of objects from the fixation points

Horopter

>0  : outside of the horopter
<0  : inside the horopter

Depth Accuracy vs. Depth
Depth Error ∝ Depth2

Nearer the point, better the depth 
estimation Left right

αl αr

αr = αl

dα = 0
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3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Two optical axes intersect at the Fixation 
Point

converging angle θ
The common FOV Increases

Fixation 
point

θ
Disparity properties

Disparity uses angle instead of 
distance
Zero disparity at fixation point

and the Zero-disparity horopter
Disparity increases with the distance 
of objects from the fixation points

Horopter

>0  : outside of the horopter
<0  : inside the horopter

Depth Accuracy vs. Depth
Depth Error ∝ Depth2

Nearer the point, better the depth 
estimation Left right

αl αr

αr > αl

dα > 0

3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Two optical axes intersect at the Fixation 
Point

converging angle θ
The common FOV Increases

Fixation 
point

Disparity properties
Disparity uses angle instead of 
distance
Zero disparity at fixation point

and the Zero-disparity horopter
Disparity increases with the distance 
of objects from the fixation points αr

Horopter

>0  : outside of the horopter
<0  : inside the horopter

Depth Accuracy vs. Depth
Depth Error ∝ Depth2

Nearer the point, better the depth 
estimation Left right

αL

αr < αl

dα < 0
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3D Computer Vision
and Video ComputingStereo with Converging CamerasStereo with Converging Cameras

Two optical axes intersect at the Fixation 
Point

converging angle θ
The common FOV Increases

Fixation 
point

Disparity properties
Disparity uses angle instead of 
distance
Zero disparity at fixation point

and the Zero-disparity horopter
Disparity increases with the distance 
of objects from the fixation points

Horopter

>0  : outside of the horopter
<0  : inside the horopter

Depth Accuracy vs. Depth
Depth Error ∝ Depth2

Nearer the point, better the depth 
estimation Left right

αl αr

∆(dα) ?

3D Computer Vision
and Video Computing BreakBreak

Homework #4 online, due on May 03  before class



12

3D Computer Vision
and Video Computing Parameters of a Stereo SystemParameters of a Stereo System

Intrinsic Parameters
Characterize the 
transformation from 

P

Pl Pr

camera to pixel 
coordinate systems of 
each camera
Focal length, image 
center, aspect ratio

Extrinsic parameters

pl pr

Xl Zl

Yl

Zr

Yr

p
Describe the relative 
position and orientation 
of the two cameras
Rotation matrix R and 
translation vector T

Ol Or
Xr

fl fr

R, T

3D Computer Vision
and Video Computing Epipolar GeometryEpipolar Geometry

Notations
Pl =(Xl, Yl, Zl), Pr =(Xr, Yr, Zr)

Vectors of the same 3-D point 
P in the left and right camera

P

Pl Pr

P, in the left and right camera 
coordinate systems 
respectively

Extrinsic Parameters
Translation Vector T = (Or-Ol) 
Rotation Matrix R

( ) ( )

T)R(PP lr −=

pl pr

Ol Or

Xl

X

fl fr

Zl

Yl

Zr

Yr

R Tpl =(xl, yl, zl), pr =(xr, yr, zr)
Projections of P on the left and 
right image plane respectively
For all image points,  we have 
zl=fl, zr=fr lPp

l

l
l Z

f
= r

r

r
r Z

f Pp =

XrR, T
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3D Computer Vision
and Video Computing Epipolar GeometryEpipolar Geometry

Motivation: where to search 
correspondences?

Epipolar Plane
A plane going through point

P

Pl Pr
A plane going through point 
P and the centers of 
projections (COPs) of the two 
cameras

Conjugated Epipolar Lines
Lines where epipolar plane 
intersects the image planes

E i l

pl pr

Epipolar Plane

Epipolar Lines

Epipoles
The image of the COP of one 
camera in the other

Epipolar Constraint
Corresponding points must lie on 
conjugated epipolar lines

Ol Or
el er

Epipoles

3D Computer Vision
and Video Computing Essential MatrixEssential Matrix

Equation of the epipolar plane
Co-planarity condition of vectors Pl, T and Pl-T

0=× PTT)(P T T)R(PP

Essential Matrix    E = RS 
3x3 matrix constructed from R and T (extrinsic only)

Rank (E) = 2, two equal nonzero singular values

0=×− ll PTT)(P

⎥
⎤

⎢
⎡ −0 yz TT

⎥
⎤

⎢
⎡ 131211 rrr

T)R(PP lr −=

0=l
TEPP

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣−
−=

0
0

xy

xz

y

TT
TTS

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=

333231

232221
rrr
rrrR

Rank (R) =3 Rank (S) =2

0=lr EPP

0=l
T

r Epp

lPp
l

l
l Z

f
= r

r

r
r Z

f Pp =
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3D Computer Vision
and Video Computing Essential MatrixEssential Matrix

Essential Matrix  E = RS
A natural link between the stereo point pair and the 
extrinsic parameters of the stereo system 

0=l
T

r Epp

One correspondence -> a linear equation of 9 entries
Given 8 pairs of (pl, pr)  -> E

Mapping between points and epipolar lines we are 
looking for

Given pl, E -> pr on the projective line in the right plane
Equation represents the epipolar line of pr (or pl) in the q p p p p ( p )
right (or left) image 

Note: 
pl, pr are in the camera coordinate system, not pixel 
coordinates that we can measure

3D Computer Vision
and Video Computing Fundamental MatrixFundamental Matrix

Mapping between points and epipolar lines in the 
pixel coordinate systems

With no prior knowledge on the stereo systemWith no prior knowledge on the stereo system
From Camera to Pixels: Matrices of intrinsic parameters

l
1

ll pMp −= rrr pMp 1−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

100
0

0

int yy

xx
of
of

M
0=l

T
r Epp

Rank (Mint) =3

Questions: 
What are fx, fy, ox, oy ?
How to measure pl in images?

0=l
T

r pFp

1−−= lr EMMF T
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3D Computer Vision
and Video Computing Fundamental MatrixFundamental Matrix

Fundamental Matrix 
Rank (F) = 2
Encodes info on both intrinsic and extrinsic parameters

1−−= lr EMMF T

Encodes info on both intrinsic and extrinsic parameters

Enables full reconstruction of the epipolar geometry
In pixel coordinate systems without any knowledge of 
the intrinsic and extrinsic parameters 
Linear equation of the 9 entries of F

0=l
T

r pFp 0
1333231

232221
131211

)1( )(

)(

)()( =
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
l

im

l
im

r
im

r
im y

x

fff
fff
fff

yx

3D Computer Vision
and Video ComputingComputing F: The Eight-point AlgorithmComputing F: The Eight-point Algorithm
Input: n point correspondences ( n >= 8)

Construct homogeneous system Ax= 0 from
x = (f11,f12, ,f13, f21,f22,f23 f31,f32, f33) :  entries in F

0=l
T

r pFp

Each correspondence give one equation
A is a nx9 matrix

Obtain estimate F^ by SVD of A
x (up to a scale) is column of V corresponding to the least 
singular value

Enforce singularity constraint: since Rank (F) = 2
Compute SVD of F^

TUDVA =

TUDVF̂Compute SVD of F^
Set the smallest singular value to 0:  D -> D’
Correct estimate of F : 

Output:  the estimate of the fundamental matrix, F’
Similarly we can compute E given intrinsic parameters

TUDVF =

TVUDF' '=
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3D Computer Vision
and Video ComputingLocating the Epipoles from FLocating the Epipoles from F

el lies on all the epipolar 
lines of the left image

0=l
T

r pFp

0=l
T

r eFp For every pr

P

Pl Pr

Epipolar Plane

Input: Fundamental Matrix F
Find the SVD of F

TUDVF =

lrp

F is not identically zero

y pr

0=leF

pl pr

Ol Or
el er

Epipolar Lines

Epipoles

The epipole el is the column of V corresponding to the 
null singular value (as shown above)
The epipole er is the column of U corresponding to the 
null singular value

Output:  Epipole el and er

3D Computer Vision
and Video Computing BreakBreak

Homework #4 online, due on May 03  before class
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3D Computer Vision
and Video Computing Stereo RectificationStereo Rectification

P

Pl Pr
Stereo System with Parallel Optical Axes

Epipoles are at infinity

p’l
p’r

Z’l

Y’l Y’r Z’r

Horizontal epipolar lines

Rectification 
Given a stereo pair, the intrinsic and extrinsic parameters, find 
the image transformation to achieve a stereo system of 
horizontal epipolar lines
A simple algorithm:  Assuming calibrated stereo cameras

Ol Or
X’rTX’l

3D Computer Vision
and Video Computing Stereo RectificationStereo Rectification

Algorithm
Rotate both left and 
right camera so that

P

Pl Prright camera so that 
they share the same 
X axis : Or-Ol = T
Define a rotation 
matrix Rrect for the left 
camera 
Rotation Matrix for 

pl pr

Xl
Zl

Yl

Zr

Yr

the right camera is 
RrectRT

Rotation can be 
implemented by 
image transformation

Ol Or
Xr

l r

R, T

TX’l

Xl’ = T,    Yl’ = Xl’xZl,       Z’l = Xl’xYl’
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3D Computer Vision
and Video Computing Stereo RectificationStereo Rectification

Algorithm
Rotate both left and 
right camera so that

P

Pl Prright camera so that 
they share the same 
X axis : Or-Ol = T
Define a rotation 
matrix Rrect for the left 
camera 
Rotation Matrix for 

pl pr

Xl
Zl

Yl

Zr

Yr

the right camera is 
RrectRT

Rotation can be 
implemented by 
image transformation

Ol Or
Xr

l r

R, T

TX’l

Xl’ = T,    Yl’ = Xl’xZl,       Z’l = Xl’xYl’

3D Computer Vision
and Video Computing Stereo RectificationStereo Rectification

Algorithm
Rotate both left and 
right camera so that

P

Pl Prright camera so that 
they share the same 
X axis : Or-Ol = T
Define a rotation 
matrix Rrect for the left 
camera 
Rotation Matrix for 

Zr

p’l
p’r

Z’l

Y’l Y’r

the right camera is 
RrectRT

Rotation can be 
implemented by 
image transformation

Ol Or
X’r

R, T

TX’l

T’ = (B, 0, 0),              P’r = P’l – T’
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3D Computer Vision
and Video Computing Epipolar Geometry: SummaryEpipolar Geometry: Summary

Purpose
where to search correspondences

0=× l
TT

r PTRP

Epipolar plane, epipolar lines, and epipoles
known intrinsic (f) and extrinsic  (R, T)

co-planarity equation
known intrinsic but unknown extrinsic 

essential matrix
unknown intrinsic and extrinsic 

0=l
T

r Epp

fundamental matrix 

Rectification
Generate stereo pair (by software) with parallel optical 
axis and thus horizontal epipolar lines

0=l
T

r pFp

3D Computer Vision
and Video ComputingPart II. Correspondence problemPart II. Correspondence problem

Three Questions
What to match? 

Features: point, line, area, structure?
Where to search correspondence?Where to search correspondence?

Epipolar line?
How to measure similarity?

Depends on features
Approaches

Correlation-based approach
Feature-based approach 

Advanced Topics
Image filtering to handle illumination changesImage filtering to handle illumination changes
Adaptive windows to deal with multiple disparities
Local warping to account for perspective distortion
Sub-pixel matching to improve accuracy
Self-consistency to reduce false matches
Multi-baseline stereo
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3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

(xl, yl)LEFT IMAGE

For Each point (xl, yl) in the left image, define a window centered 
at the point

3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

(xl, yl)RIGHT IMAGE

… search its corresponding point within a search region  in the 
right image
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3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

(xl, yl)dx(xr, yr)RIGHT IMAGE

… the disparity (dx, dy) is the displacement when the correlation 
is maximum

3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

Elements to be matched
Image window of fixed size centered at each pixel in the 
left image

Similarity criterion 
A measure of similarity between windows in the two 
images
The corresponding element is given by window that 
maximizes the similarity criterion within a search region

Search regions
Theoretically search region can be reduced to a 1 DTheoretically, search region can be reduced to a 1-D 
segment, along the epipolar line, and within the 
disparity range.
In practice, search a slightly larger region due to errors 
in calibration
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3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

Equations

∑ ∑ ++++++=
W

Wk

W

Wl
llrlll ldyykdxxIlykxIdydxc )),(),,((),( ψ

disparity

Similarity criterion 
Cross-Correlation

−= −=Wk Wl

)},({maxarg),( dydxcydxd
R∈

==
d

d

uvvu =Ψ ),(

Sum of Square Difference (SSD) 

Sum of Absolute Difference(SAD)

2)(),( vuvu −−=Ψ

||),( vuvu −−=Ψ

3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

PROS
Easy to implement
Produces dense disparity mapProduces dense disparity map
Maybe slow

CONS
Needs textured images to work well 
Inadequate for matching image pairs from very different 
viewpoints due to illumination changes
Wi d i t ith it diff t di itiWindow may cover points with quite different disparities
Inaccurate disparities on the occluding boundaries
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3D Computer Vision
and Video Computing Correlation ApproachCorrelation Approach

A Stereo Pair of UMass Campus – texture, boundaries and occlusion

3D Computer Vision
and Video Computing Feature-based ApproachFeature-based Approach

Features
Edge points
Lines (length orientation average contrast)Lines (length, orientation, average contrast)
Corners

Matching algorithm
Extract features in the stereo pair
Define similarity measure
Search correspondences using similarity measure and 
the epipolar geometry
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3D Computer Vision
and Video Computing Feature-based ApproachFeature-based Approach

LEFT IMAGE

corner line

structure

For each feature in the left image…

3D Computer Vision
and Video Computing Feature-based ApproachFeature-based Approach

RIGHT IMAGE

corner line

structure

Search in the right image… the disparity (dx, dy) is the 
displacement when the similarity measure is maximum
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3D Computer Vision
and Video Computing Feature-based ApproachFeature-based Approach

PROS
Relatively insensitive to illumination changes
Good for man-made scenes with strong lines but weakGood for man-made scenes with strong lines but weak 
texture or textureless surfaces
Work well on the occluding boundaries (edges)
Could be faster than the correlation approach

CONS
O l d thOnly sparse depth map
Feature extraction may be tricky 

Lines (Edges) might be partially extracted in one image
How to measure the similarity between two lines?

3D Computer Vision
and Video Computing BreakBreak

Homework #4 online, due on May 03  before class
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3D Computer Vision
and Video Computing Advanced TopicsAdvanced Topics

Mainly used in correlation-based approach, but can 
be applied to feature-based match

Image filtering to handle illumination changes

Image equalization
To make two images more similar in illumination

dLaplacian filtering (2nd order derivative)
Use derivative rather than intensity (or original color)

3D Computer Vision
and Video Computing Advanced TopicsAdvanced Topics

Adaptive windows to deal with multiple disparities
Adaptive Window Approach (Kanade and Okutomi)

statistically adaptive technique which selects at each pixel y p q p
the window size that minimizes the uncertainty in disparity 
estimates
A Stereo Matching Algorithm with an Adaptive Window: Theory and 
Experiment,  T. Kanade and M. Okutomi. Proc. 1991 IEEE International 
Conference on Robotics and Automation, Vol. 2, April, 1991, pp. 1088-1095

Multiple window algorithm (Fusiello, et al)
Use 9 windows instead of just one to compute the SSD 
measuremeasure
The point with the smallest SSD error amongst the 9 
windows and various search locations is chosen as the 
best estimate for the given points
A Fusiello, V. Roberto and E. Trucco, Efficient stereo with multiple windowing, IEEE 
CVPR pp858-863, 1997
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3D Computer Vision
and Video Computing Advanced TopicsAdvanced Topics
Multiple windows to deal with multiple disparities

Smooth
near far

Smooth

regions

Corners

edges

3D Computer Vision
and Video Computing Advanced TopicsAdvanced Topics

Sub-pixel matching to improve accuracy
Find the peak in the correlation curves

Self consistency to reduce false matches esp for occlusionsSelf-consistency to reduce false matches esp. for occlusions
Check the consistency of matches from L to R and from R to L

Multiple Resolution Approach
From coarse to fine for efficiency in searching correspondences

Local warping to account for perspective distortion
Warp from one view to the other for a small patch given an initial 

ti ti f th ( l ) f lestimation of the (planar) surface normal

Multi-baseline Stereo
Improves both  correspondences and 3D estimation by using more 
than two cameras (images)
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3D Computer Vision
and Video Computing 3D Reconstruction Problem3D Reconstruction Problem

What we have done
Correspondences using either correlation or feature 
based approachesbased approaches
Epipolar Geometry from at least 8 point 
correspondences

Three cases of 3D reconstruction depending on the 
amount of a priori knowledge on the stereo system

Both intrinsic and extrinsic known - > can solve the 
reconstruction problem unambiguously by triangulationreconstruction problem unambiguously by triangulation
Only intrinsic known -> recovery structure and extrinsic 
up to an unknown scaling factor
Only correspondences -> reconstruction only up to an 
unknown, global projective transformation (*)

3D Computer Vision
and Video ComputingReconstruction by TriangulationReconstruction by Triangulation

Assumption and Problem
Under the assumption that both 
intrinsic and extrinsic 
parameters are known Pparameters are known
Compute the 3-D location from 
their projections, pl and pr

Solution
Triangulation: Two rays are 
known and the intersection can 
be computed
Problem: Two rays will not 

p pr

P

l

actually intersect in space due 
to errors in calibration and 
correspondences, and 
pixelization
Solution: find a point in space 
with minimum distance from 
both rays

Ol Or
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3D Computer Vision
and Video ComputingReconstruction up to a Scale FactorReconstruction up to a Scale Factor

Assumption and Problem Statement
Under the assumption that only intrinsic parameters and 
more than 8 point correspondences are given
C t th 3 D l ti f th i j ti l dCompute the 3-D location from their projections, pl and pr, as 
well as the extrinsic parameters

Solution
Compute the essential matrix E from at least 8 
correspondences
Estimate T (up to a scale and a sign) from E (=RS) using the 
orthogonal constraint of R, and then R  

End up with four different estimates of the pair (T, R) p p ( , )
Reconstruct the depth of each point, and pick up the correct 
sign of R and T.
Results: reconstructed 3D points (up to a common scale);
The scale can be determined if distance of two points (in 
space) are known

3D Computer Vision
and Video ComputingReconstruction up to a Projective TransformationReconstruction up to a Projective Transformation

Assumption and Problem Statement
Under the assumption that only n (>=8) point 
correspondences are given

(* not required for this course; needs advanced knowledge of projective geometry )

correspondences are given
Compute the 3-D location from their projections, pl and 
pr

Solution
Compute the Fundamental matrix F from at least 8 
correspondences, and the two epipoles
Determine the projection matrices 

Select five points ( from correspondence pairs) as the 
projective basis

Compute the projective reconstruction 
Unique up to the unknown projective transformation fixed 
by the choice of the five points
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3D Computer Vision
and Video Computing SummarySummary

Fundamental concepts and problems of stereo
Epipolar geometry and stereo rectification
Estimation of fundamental matrix from 8 point pairsEstimation of fundamental matrix from 8 point pairs
Correspondence problem and two techniques: 
correlation and feature based matching
Reconstruct 3-D structure from image 
correspondences given

Fully calibrated
Partially calibration 
Uncalibrated stereo cameras (*)

3D Computer Vision
and Video Computing NextNext

Understanding 3D structure and events from motion

Motion

Homework #4 online, due on May 03  before class


