```
3D Computer Vision
and Video Computing
    3D Vision
```



Topic 4 of Part II
Visual Motion

## Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu

Cover Image/video credits: Rick Szeliski, MSR

3D Computer Vision

## and Video Computing

Problems and Applications

- The importance of visual motion
- Problem Statement
- The Motion Field of Rigid Motion
- Basics - Notations and Equations
- Three Important Special Cases: Translation, Rotation and Moving Plane
- Motion Parallax
- Optical Flow
- Optical flow equation and the aperture problem
- Estimating optical flow
- 3D motion \& structure from optical flow
- Feature-based Approach
- Two-frame algorithm
- Multi-frame algorithm
- Structure from motion - Factorization method
- Advanced Topics
- Spatio-Temporal Image and Epipolar Plane Image
- Video Mosaicing and Panorama Generation
- Motion-based Segmentation and Layered Representation

```
3D Computer Vision
- and Video Computing Importance of Visual Motion
Structure from Motion
```

- Apparent motion is a strong visual clue for 3D reconstruction
- More than a multi-camera stereo system
- Recognition by motion (only)
- Biological visual systems use visual motion to infer properties of 3D world with little a priori knowledge of it
- Blurred image sequence
- Visual Motion = Video! [Go to CVPR 2004-2010 Sites for Workshops]
- Video Coding and Compression: MPEG 1, 2, 4, $7 \ldots$
- Video Mosaicing and Layered Representation for IBR
- Surveillance (Human Tracking and Traffic Monitoring)
- HCl using Human Gesture (video camera)
- Image-based Rendering
- ...

3D Computer Vision
[
Recognition by Actions: Recognize object from motion even if we cannot distinguish it in any images ...


An up-sampling from images of resolution $15 \times 20$ pixels
From: James W. Davis. MIT Media Lab

```
    \3D Computer Vision
    \square and Video Computing
```

- Two Subproblems
- Correspondence: Which elements of a frame correspond to which elements in the next frame?
- Reconstruction :Given a number of correspondences, and possibly the knowledge of the camera's intrinsic parameters, how to recovery the 3-D motion and structure of the observed world
- Main Difference between Motion and Stereo
- Correspondence: the disparities between consecutive frames are much smaller due to dense temporal sampling
- Reconstruction: the visual motion could be caused by multiple motions ( instead of a single 3D rigid transformation)
- The Third Subproblem, and Fourth....
- Motion Segmentation: what are the regions the the image plane corresponding to different moving objects?
- Motion Understanding: lip reading, gesture, expression, event...


## 3D Computer Vision <br> and Video Computing <br> <br> Approaches

 <br> <br> Approaches}- Two Subproblems
- Correspondence:
- Differential Methods - >dense measure (optical flow)
- Matching Methods -> sparse measure
- Reconstruction : More difficult than stereo since
- Motion (3D transformation betw. Frames) as well as structure needs to be recovered
- Small baseline causes large errors
- The Third Subproblem
- Motion Segmentation: Chicken and Egg problem
- Which should be solved first? Matching or Segmentation
- Segmentation for matching elements
- Matching for Segmentation

```
    3D Computer Vision
- Motion:
```


## - 3D Motion ( R, T):

- camera motion (static scene)
- or single object motion
- Only one rigid, relative motion between the camera and the scene (object)
- Image motion field:
- 2D vector field of velocities of the image points induced by the relative motion.
- Data: Image sequence
- Many frames
- captured at time $t=0,1,2, \ldots$
- Basics: only consider two consecutive frames
- We consider a reference frame and its consecutive frame
- Image motion field
- can be viewed disparity map of the two frames captured at two consecutive camera locations ( assuming we have a moving camera)
$\square \square$ 3D Computer Vision
$\square \square$ and Video Computing he Motio
$\square$ Notations
- $\begin{aligned} & \mathrm{P}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{\mathrm{T}}: \\ & \text { reference frame }\end{aligned}$ reference frame
- $p=(x, y, f)^{\top}$ : the projection of the scene
point in the pinhole camera
- Relative motion between P and the camera

$$
\mathbf{V}=-\mathbf{T}-\boldsymbol{\omega} \times \mathbf{P}
$$

- $\mathrm{T}=\left(\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}, \mathrm{T}_{\mathrm{z}}\right)^{\mathrm{T}}$ : translation component of the motion
- $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{\mathrm{T}}$ : the angular velocity
- Note:
- How to connect this with stereo geometry (with $\mathrm{R}, \mathrm{T}$ )?
- Image velocity $\mathrm{v}=$ ?

$$
\mathbf{p}=\frac{f}{Z} \mathbf{P}
$$


3D Computer Vision
$\square \square$ and Video Computing he Motion Field of Rigid Objects
Notations

- $P=(X, Y, Z)^{\top}$ : 3-D point in the camera reference frame

$$
\mathbf{p}=\frac{f}{Z} \mathbf{P}
$$

- $p=(x, y, f)^{\top}$ : the projection of the scene point in the pinhole camera
- Relative motion between $P$ and the camera
- $T=\left(T_{x}, T_{y}, T_{z}\right)^{\top}$ : translation component of the motion
- $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{\mathrm{T}}$ : the angular velocity
- Note:
- How to connect this with stereo geometry (with $\mathrm{R}, \mathrm{T}$ )?

$\mathbf{R}=\left[\begin{array}{cc}\cos \beta \cos \gamma & -\cos \beta \sin \gamma \\ \sin \alpha \sin \beta \cos \gamma+\cos \alpha \sin \gamma & -\sin \alpha \sin \beta \sin \gamma+\cos \alpha \cos \gamma \\ -\cos \alpha \sin \beta \cos \gamma+\sin \alpha \sin \gamma & \cos \alpha \sin \beta \sin \gamma+\sin \alpha \cos \gamma\end{array}\right.$
$\sin \beta$



## \section*{3D Computer Vision}

- Notes:
- Take the time derivative of both sides of the projection equation
- The motion field is the sum of two components
- Translational part
- Rotational part
- Assume known intrinsic parameters


```
    3D Computer Vision
    and Video Computing
        Motion Field vs. Disparity
```

- Correspondence and Point Displacements

| Stereo | Motion |
| :--- | :--- |
| Disparity | Motion field |
| Displacement - (dx, dy) | Differential concept - <br> velocity $\left(v_{x}, v_{y}\right)$, i.e. time <br> derivative (dx/dt, dy/dt) |
| No such constraint | Consecutive frame close <br> to guarantee good <br> discrete approximation |

## 3D Computer Vision

Pure Translation ( $\omega=0$ )

- Radial Motion Field ( $\mathrm{Tz}<>0$ )
- Vanishing point $\mathrm{pO}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)^{\top}$ :
- motion direction
- FOE (focus of expansion)
- Vectors away from p0 if Tz < 0
- FOC (focus of contraction)
- Vectors towards pO if Tz > 0
- Depth estimation
- depth inversely proportional to magnitude of motion vector v , and also proportional to distance from p to $p_{0}$
- Parallel Motion Field (Tz=0)
- Depth estimation:
- depth inversely proportional to magnitude of motion vector $v$


$$
\binom{v_{x}}{v_{y}}=-\frac{f}{Z}\binom{T_{x}}{T_{y}}
$$



## 3D Computer Vision

## $\square \square$ and Video Computing Special Case 2: Pure Rotation

- Pure Rotation ( $\mathrm{T}=0$ )
- Does not carry 3D information
- Motion Field (approximation)

$$
\binom{v_{x}}{v_{y}}=\frac{1}{f}\left(\begin{array}{ccc}
x y & -\left(x^{2}+f^{2}\right) & f y \\
y^{2}+f^{2} & -x y & -f x
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

- Small motion
- A quadratic polynomial in image coordinates $(x, y, f)^{\top}$
- Image Transformation between two frames (accurate)
- Motion can be large
- Homography (3x3 matrix) for all points
- Image mosaicing from a rotating camera
- 360 degree panorama


3D Computer Vision


- Given small motion

- a quadratic polynomial in image


Only has 8 independent parameters (write it out!)

- Image Transformation between two frames (accurate)
- Any amount of motion (arbitrary)
- Homography ( $3 \times 3$ matrix) for all points
- See Topic 5 Camera Models

```
p'\cong Ap
```

- Image Mosaicing for a planar scene
- Aerial image sequence
- Video of blackboard

```
    3D Computer Vision
    1- and Video Computing
```

- Pure Translation
- Vanishing point and FOE (focus of expansion)
- Only translation contributes to depth estimation
- Pure Rotation
- Does not carry 3D information
- Motion field: a quadratic polynomial in image, or
- Transform: Homography ( $3 \times 3$ matrix R) for all points
- Image mosaicing from a rotating camera
- Moving Plane
- Motion field is a quadratic polynomial in image, or
- Transform: Homography ( $3 \times 3$ matrix A) for all points
- Image mosaicing for a planar scene


## 3D Computer Vision <br> ] and Video Computing Motion Parallax

- [Observation 1] The relative motion field of two instantaneously coincident points
- Does not depend on the rotational component of motion
- Points towards (away from) the vanishing point of the translation direction
- [Observation 2] The motion field of two frames after rotation compensation
- only includes the translation component
- points towards (away from) the vanishing point p0 ( the instantaneous epipole)
- the length of each motion vector is inversely proportional to the depth, and also proportional to the distance from point $p$ to the vanishing point p0 of the translation direction
- Question: how to remove rotation?
- Active vision : rotation known approximately?

```
    3D Computer Vision
\square \square ~ a n d ~ V i d e o ~ C o m p u t i n g ~ M o t i o n ~ P a r a l l a x ~
```

- [Observation 1] The relative motion field of two instantaneously coincident points
- Does not depend on the rotational component of motion
- Points towards (away from) the vanishing point of the translation direction (the instantaneous epipole)

At instant $t$, three pairs of points happen to be coincident

The difference of the motion vectors of each pair cancels the rotational components
. ... and the relative motion field point in (towards or away from) the VP of the translational
 direction (Fig 8.5 ???)

## 3D Computer Vision

## and Video Computing

## Motion Parallax

[Observation 2] The motion field of two frames after rotation compensation

- only includes the translation component

$$
\frac{v_{y}^{T}}{v_{x}^{T}}=\frac{y-y_{0}}{x-x_{0}}
$$

- points towards (away from) the vanishing point p0 ( the instantaneous epipole)
- the length of each motion vector is inversely proportional to the depth,
- and also proportional to the distance from point p to the vanishing point p 0 of the translation direction (if Tz <> 0)

Question: how to remove rotation?

- Active vision : rotation known approximately?
- Rotation compensation can be done by image
 warping after finding three (3) pairs of
 coincident points

```
    3D Computer Vision
\square
```

- Importance of visual motion (apparent motion)
- Many applications...
- Problems:
- correspondence, reconstruction, segmentation, understanding in $x$ - $y$ - t space
- Image motion field of rigid objects
- Time derivative of both sides of the projection equation
- Three important special cases
- Pure translation - FOE
- Pure rotation - no 3D information, but lead to mosaicing
- Moving plane - homography with arbitrary motion
- Motion parallax
- Only depends on translational component of motion

3D Computer Vision
and Video Computing

- Next lecture

```
    \square3D Computer Vision
\square\square and Video Computing Notion of Optical Flow
```

- The Notion of Optical Flow
- Brightness constancy equation
- Under most circumstance, the apparent brightness of moving
 objects remain constant
- Optical Flow Equation
- Relation of the apparent motion with the spatial and temporal derivatives of the image brightness
- Aperture problem
- Only the component of the motion field in the direction of the spatial image gradient can be determined
- The component in the direction perpendicular to the spatial gradient is not constrained by the optical flow equation


3D Computer Vision

## and Video Computing

## Estimating Optical Flow

## - Constant Flow Method

- Assumption: the motion field is well approximated by a constant vector within any small region of the image plane

- Solution: Least square of two variables (u,v) from NxN Equations - NxN (=5x5) planar patch
- Condition: $A^{\top} A$ is NOT singular (null or parallel gradients)
- Weighted Least Square Method
- Assumption: the motion field is approximated by a constant vector within any small region, and the error made by the approximation increases with the distance from the center
 where optical flow is to be computed
- Solution: Weighted least square of two variables $(u, v)$ from NxN Equations - NxN patch
- Affine Flow Method
- Assumption: the motion field is well approximated by a affine parametric model $u^{\top}=A p^{\top}+b$ (a plane patch with arbitrary orientation)

- Solution: Least square of 6 variables (A,b) from NxN Equations - NxN planar patch

```
    3D Computer Vision
\square\square and Video Computing Using Optical Flow
    3D motion and structure from optical flow (p 208-212)
    - Input:
    - Intrinsic camera parameters
    - dense motion field (optical flow) of single rigid motion
- Algorithm
- (good comprise between ease of implementation and quality of results)
- Stage 1: Translation direction
    - Epipole (x0, y0) through approximate motion parallax
    - Key: Instantaneously coincident image points
    . Approximation: estimating differences for ALMOST coincident image points
- Stage 2: Rotation flow and Depth
- Knowns: flow vector, and direction of translational component
- One point, one equation (without depth)-
- Least square approximation of the rotational component of flow - From motion field to depth
- Output
- Direction of translation (f Tx/Tz, f Ty/Tz, f) \(=(x 0, y 0, f)\)
- Angular velocity
- 3-D coordinates of scene points (up to a common unknown scale)
```

■ Step 1. Get (Tx, Ty, Tz) = s (x0,y0,f)

- Step 2. For every point ( $x, y, f$ ) with known v, get one equation about $\omega$ from the motion equation (by eliminate $Z$ since it's different from point to point)
- Step 3. Get Z (up to a scale s) given T/s and $\omega$
 information information

```
    \square3D Computer Vision
    and Video Computing
```

- Two frame method - Feature matching
- An Algorithm Based on the Constant Flow Method
- Features - corners detection by observing the coefficient matrix of the spatial gradient evaluation ( $2 \times 2$ matrix $A^{\top} A$ )
- Iteration approach: estimation - warping - comparison
- Multiple frame method - Feature tracking
- Kalman Filter Algorithm
- Estimating the position and uncertainty of a moving feature in the next frame
- Two parts: prediction (from previous trajectory) and measurement from feature matching
- Using a sparse motion field
- 3D motion and structure by feature tracking over frames
- Factorization method
- Orthographic projection model
- Feature tracking over multiple frames
- SVD


## 3D Computer Vision

## and Video Computing <br> Motion-Based Segmentation

- Change Detection
- Stationary camera(s), multiple moving subjects
- Background modeling and updating
- Background subtraction
- Occlusion handling
- Layered representation (I)- rotating camera
- Rotating camera + Independent moving objects
- Sprite - background mosaicing
- Synopsis - foreground object sequences
- Layered representation (II)- translating (and rotating) camera
- Arbitrary camera motion
- Scene segmentation into layers

```
3D Computer Vision
\square
```

- After learning motion, you should be able to
- Explain the fundamental problems of motion analysis
- Understand the relation of motion and stereo
- Estimate optical flow from a image sequence
- Extract and track image features over time
- Estimate 3D motion and structure from sparse motion field
- Extract Depth from 3D ST image formation under translational motion
- Know some important application of motion, such as change detection, image mosaicing and motion-based segmentation
- Reviews, Exam and Projects


## Exam <br> \& <br> Project Presentations

-Homework \#4 due in May 03, 2011 before class

